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Abstract: In this paper, we first establish two quantum integral (g-integral) identities with the help
of derivatives and integrals of the quantum types. Then, we prove some new g-midpoint and g-
trapezoidal estimates for the newly established g-Hermite-Hadamard inequality (involving left and
right integrals proved by Bermudo et al.) under g-differentiable convex functions. Finally, we provide
some examples to illustrate the validity of newly obtained quantum inequalities.
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1. Introduction

In recent studies, fractional calculus has proved to be the among of the most widely
used areas of mathematical science. This is because, we can see the activities of researchers
in this field. Besides, there have been published papers in which fixed point theorems
play a key role in existence results for given fractional differential equations [1-3]. Due
to the expansion of this branch of mathematics, mathematicians studied a new field in
which the concept of limit has no role in the definitions of operators. Also, because of
the fundamental role of the quantum parameter g, they called it the theory of quantum
fractional calculus. The initial steps in this field were taken by Jackson [4,5] and then, it
was extended to more practical fields such as combinatorics, quantum mechanics, discrete
mathematics, hypergeometric series, particle physics, and theory of relativity. To remember
and fully understand the concepts of g-calculus, one can mention the sources [6-8].

Recently, different quantum initial value problems (IVPs) and boundary value prob-
lems (BVPs) have been given and discussed by some methods including the fixed-point
theorems, lower-upper solutions, or iteration techniques. To demonstrate such applica-
tions, we can mention oscillation on g-difference inclusions [9], multi-order g-BVPs [10], p-
Laplacian g-difference equations [11], g-symmetric problems [12], singular g-problems [13],
g-integro-equations [14], g-delay equations [15], g-intego-equations on time scales [16], and
so on [17-19].
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Consider the function p : I — R so that I is a real interval. Then, p is called a convex
function if

p(tx + (1 —t)y) <tp(x)+ (1—1t)p(y)

holds for each t € [0,1] and x,y € I.
From [20], it is established that p is convex if and only if p satisfies the Hermite-
Hadamard inequality, formulated as

p(v+“>< 1 /jp(x)dxgw (1)

2 T o—v. 2 ’
foreach v,0 € I with v < o.
On the other hand, Alp et al. [21] proved a new structure of quantum type of the
Hermite-Hadamard inequality for convex mappings via the left g-integrals, and stated it

as follows
qv+o 1 e qe(v) +p(0)
o( ") < 55 [ ot v 2 ¥

In 2020, Bermudo, Kérus and Valdés [22] applied the right g-integral to derive the
right variant of the above inequality; i.e.,

p(””)ﬁ [ () g < PO 2 000) )

[Z}q 0—VJy [2]17

Remark 1. From inequalities (2) and (3), the following two-sided inequality of Hermite—Hadamard
type is obtained (see, [22]):

p(v42rc7> - 2(01_\/)[./jp(x)vdqxf/jp(x)"dqx} @)
< p(V);p(G).

About the left and right inequalities (2) and (3), one can consult [23-30]. In [31],
Noor et al. established an extended version of (2). In [32-35], the authors got help from
two families of the convex and coordinated convex mappings for proving the Newton and
Simpson’s type inequalities in the context of quantum calculus. Moreover, to investigate
different versions of the Ostrowski’s inequalities, see [36,37].

Motivated by the ongoing research, we obtain another version of g-Hermite-Hadamard
inequality in consideration of convex mappings, and prove some new g-midpoint type
inequalities for convex mappings of the g-differentiable type. Also, in some examples, we
show that the newly obtained inequalities are the generalizations of the existing Hermite-
Hadamard inequality and midpoint inequalities. These new results can be used for finding
some error bounds for the midpoint and trapezoidal rules in g-integration formulas that
are very important in the field of numerical analysis.

This paper is organized as follows: The basics of quantum calculus along with other
topics in the present area are addressed briefly in the next section. In Sections 3 and 4,
some g-midpoint and g-trapezoid type estimates are studied for the inequality (4) under
the g-differentiable functions. The connection between our results and other results in
the literature are also stated. We provide some mathematical examples in Section 5 to
demonstrate the validity of the newly developed inequalities. Section 6 concludes the paper
by giving some ideas for the future.
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2. Preliminaries of g-Calculus

In the preliminaries, we collect the definitions and several properties of quantum
operators. Along with these, some famous inequalities are restated with respect to quantum
integrals. In the whole of the article, 0 < g < 1 is constant.

The g-analogue of n € N is a special sum of g-powers. It is defined as

1—4g" _
My = = = TP (5)

The g-Jackson integral for the function p on [0, o] is given by [4]

r O
/0 p(x)dgx = (1 —¢) quch ©)
and g-Jackson integral for a function p defined on [v, o] is given as [4]

/Va p(x)dyx = /0“ p(x)dgx — /OV p(x)dgx. @)

Definition 1 ([38]). Let p : [v, o] — R be continuous. The left q-derivative of p at x € [v, 0] is

defined by

p(x) —p(gx + (1 —q)v)
1-g)x=v) ~

If v=0and ¢Dyp(x) = D;p(x), then (8) becomes

p(x) — p(gx)
(1—g)x

It is the same g-Jackson derivative [4,38,39].

Vqu(x) =

X #£ . (8)

Dyp(x) = ,x #0.

Definition 2 ([38]). Let p : [v, 0] — R be continuous. The left q-integral of p at z € [v, 0] is
defined by

/Vzp(x)vdqx:(l_ (z—v) i p(g"z+ (1 —4g")v). 9)

If v = 0, then (9) becomes

[e)

[ oodyr = [ o(x)dyx = (1-9) N

It is the same g-Jackson integral [4,38,39].
Later, Bermudo et al. extended the following new quantum operators, which are
introduced as the right g-operators.

Definition 3 ([22]). The right q-derivative of p : [v, o] — R is given by

Dyp(x) = AEEEDN LD s

Definition 4 ([22]). The right q-definite integral of p : [v, o] — Ron [v, o] is given by

o0 = 1 -a)to -~ Eo(iv+ (1)),
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Lemma 1 ([40]). The equality

/OC k() “Dyo(tv + (1 — )o)dgt
k(H)p(tv+ (1—t)o) |

= — V/ Dyk(E)p(qtv + (1= qt)o)dyt — T .

holds if p, x : [v, o] — R are continuous.
Lemma 2 ([41]). The equality

/OC «(t)vDyo(to + (1 - t)v)dqt

k(t)p(to+ (1 —t)v

- v/ Dyx(t)p(qto + (1 —qt)v)d,t.

holds if p, x : [v, 6] — R are continuous.

3. g-Trapezoidal Inequalities

In this section, we establish some right estimates of the inequality (4) using differen-
tiable convex functions.

Lemma 3. Ifp: [v,0] C R — Ris g-differentiable such that  Dgp and ° Dp are integrable and
continuous on [v, |, then

p(v) ‘; p(o) z(olv) [/ vd x+/ qux} (10)

/thqu(tc—i— (1 —t)v)dgt + /qt “Dgp(tv+ (1 —t)o)d, ]

Proof. By Lemma 2, we compute

1

L = /qtqup(tG—l— (1 —t)v)dyt
0

o(to+ (1—t)v)|!

o—v

1
— Giy /p(tcr+ (1 —t)v)dgt
0
0

= g2 sz{l_q Y "olq"o + (1—q")v) (1_q)p(c)}

o—V q = q

v

(0= = 0(0) = —— [ o(x) viyx. a1

Similarly, from Lemma 1, we get

I

/qt “Dgp(tv+ (1 —t)o)d,t
0

o(tv+ (1—t)o)|*

1
4+ 1 /p(tv+ (1—t)o)d,t
0 O'—VO



Axioms 2023, 12, 49

5o0f 14

(c—=v)h

Thus, we obtain the desired identity by combining (11) and (12).

O

Theorem 1. Under the hypotheses of Lemma 3, we have the following inequality if |° Dyp| and
’qup’ are convex:

Proof. From Lemma 3 and using the convexity of | D,yp| and |

IN

IN

o) +o(0) _ [ o) vt [ o) %y
o—V 2
1l |vDgp(0)| 4+ |“Dgp(v)| +

2[3],

p(v) ; p(o) _ 2(01V) [/p(x) vdqur/P(x) qux]

1

0

U;V / qt{t|vDgo(0)| + (1 — t)|vDyo(v)| }d,t
0

1
+/qt{t"’qu(v)\ +(1— t)|‘7qu(cr)|}dqt}
0

1

1y Dy0(0) /qtzdt+|qup V)| [ gt(1 - )yt
0

o—Yv

1
+|°Dyp(v)| /qt2dqt—|— |“Dyp(0)] /qt(l—t)dqt}
0 0

o—V q
"/qu )|[3 +|VDﬂp )|[2}
q
3
q o q
+|°Dyp(v)| = + |°Dgp(0o
| lip( )|[3]q | q q[?’
o—Vv

{IvDyo(e)] + 7Dyl |}{‘§}

+{[vDgp(v)| + |“Dgp(c { q3 N

[2],03]

which completes the proof. [

, We obtain

5 /qt|Vqu to+ (1 —t)v)dgt| +/qt |"Dyp(tv+ (1 —t)o dqt|]

(13)
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Theorem 2. Under all the hypotheses of Lemma 3, we have the following inequality if | ‘fqu|7”1
and |vDgp|"', p1 > 1 are convex:

p(v) er p(o) _ Giy {/p(x) vdqx+/P(x) qux]

q(c =) | ((2l41vDgp(0)|"" + g*[vDgp(v)[" 71 14)
3],

+

[2] ’GD p !Pl +q |GD p |P1
3]

q

Proof. The power mean inequality and Lemma 3 give

p(VHZ'P(G) N z(cl—v) {/p(x) vdqx+/p(x) qux]

1
/qt|Vqu(tc+ (1 —t)v)|dqt+/qt |“Dyp(tv+ (1 —t)6)|dqt]
0 0

IN

1 1

(o0 —v) i z
5 /qtd,,t /qt|qup (to+ (1 —t)v)|"dyt

0 0

IN

1

1 L5 /1 o
+ (/ qtdqt) (/ gt |"Dygp(tv + (1 — t)a)\”ld,,t) :

0 0

By the convexity of |\,qu|p1 and |6qu|p1, we have

IA
a
N
=
—
—
)
-
[
-
-
~
T
=
~
o—_
=
—_
=
-]
-
ko)
+
—_
|
-
-
i
-
ko)
[
QU
=
~
=

1 T i
+ (/ qtdqt) (/ qt{t|°Dgp(v)| + (1 — t)|“qu(cr)\}d,,t) (15)
0

(o —v) (mq’Vqu )| +q*[vDgo(v ’w)l
3]

q

+<[2} 41°Dgp(¥)|"" + 2| Dyp (o) |”1>
3],

Thus, the proof is completed. [
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Theorem 3. Under the hypotheses of Lemma 3, the following inequality is satisfied if | ‘fqu|7”1
and |vDgp|"*, p1 > 1 are convex:

p(V)ﬂsz(G) _ 2(01_V> {/p(x) qux—i-/p(x) qux]
g(oc—) 1 [vDap (o)™ +glvDyp(v)[™ |
< 2 ([71 + 1}[7) ( q > "

2],
‘O‘D p ’Pl _’_q’ch p ’Pl) 1
+( = ,

whererl_l —l—pl_l =1

Proof. The Holder inequality and Lemma 3 give

p(v) ; p(o) 2(61_ ) [/ dqx—|—/ qux]

/qt|qup to+ (1—t)v)|d, t+/qt |“Dgp(tv + (1 —t)o)|dy t]
(U;’) (/Ol(qt)rldqt> h (j’qup(tG+ (1- t)v)|”1dqt) "
0
+</01(qt)r1dqt>r11 (/l |“Dyp(tv+(1— t)c)|”1dqt> ! :
0

By the convexity of |vDgp|"" and |*Dyp|"", we have

IN

IN

p(v) +p(0) 1 /“p( dH/ o) %l

2 2(c—v)

1

g (/ 14 t) /1{t|\,qu(O')|+ t)|vDyp(v)|}d, t)pl
0
([ ) ( JtDp < - t>|Gqu<v>|}dqt) E
0

_ q<o—v>< 1 ) (rwqo 0)|" + glv Dol r*“)
2 \[n+1, 21,
|0‘D p ’Pl +q’GD p )’Pl ﬁ
+( . |

Thus, the proof is completed. [J

IN
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4. g-Midpoint Inequalities
In this section, we establish some right estimates of inequality (4) for differentiable
convex functions.

Lemma4. Ifp: [v,0] C R — Ris g-differentiable such that v Dgp and ° Dyp are integrable and
continuous on [v, o], then

p<V‘£U) B 2(01—\/) [V/Gp(x) vdqx+/6p(x) Od,x

1

- G;V /qt Dyo(to+ (1—t)v dt+/qt—1 VDyo(to + (1= t)v)d,t
0 1

2

1
2
+/ —gt) *Dyp(tv + (1— t)o dqt+/ 1—gt) “Dyp(tv + (1 — £)0)d,t
0 1

Z

Proof. It can be easily proved by following the procedure used in Lemma 3. O

Theorem 4. Under the hypotheses of Lemma 4, the following inequality holds if | Dgp| and
|vDyp| are convex:

=Y |.p 3 Dyp(v) 2 A2 1 g
< Dy )|4([4]q [2]q>+| (V)] 4(14), +ql2],) (17)
o v # o 5‘72+4‘1_2q3_1
+| qu( )’4([4]q+q[2]q) +| q ( )| 8([4}q+‘7[2]q> ]

Proof. It can be easily proved by following the procedure used in Theorem 1. [J

Theorem 5. Under the hypotheses of Lemma 4, this inequality is satisfied if | Dgp|"" and |vDgp|™, p1 > 1

are convex:
P(V; ) [/Up dx+/ x)%dgx
=5
()

B, +a* "
VD 771 VD P1 9 18
X( gp(o | 3 + [vDgp (V)| 8([4]q+q[2])> (18)
1—L
z_q P1
*(4%)
6 —q[2] 5q —2g% — 2 "
% VD o P1 q 'VD P q q
( 70(0)]| (8, +4 L1)+| P" g )
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7\
(ot
< |1° -4 _ o o le '
( Dyo(v)] 8%” Dye(e)| 8([4],,+q[2]q))
1_1
24 p1
()

6 —q[2] 50— 2% —2 g
°D v P q + °pD o P q q .
X ( qp( )| 8([4]514—5][2}(]) ‘ qp( )| 8[3]q )

Proof. It can be easily proved by following the procedure used in Theorem 2. [

Theorem 6. Under the hypotheses of Lemma 4, we have the following inequality if | Uqu‘p Y and
lvDyp|"*, p1 > 1 are convex:

|p<v42—0) _ 2(01_V) [jp(x)vdqx+/p(x)‘7dqx}

+ </;(1 — qt)“dqt> " <|Vqu(o)|4§]q + ’Vqu(V)|6Z[2_] 1) : (19)
1 n . L op
I\ | MVH@H 12(9)| 5

2

where p;l —i—r;l =1

Proof. It can be easily proved by following the procedure used in Theorem 3. [J

5. Examples

In this section, we show the validity of the established inequalities using some examples.

Example 1. For a convex function p : [0,1] — R given as p(x) = x> + 2, by (13) with q = 1,
the left side of the inequality
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and the right side of it becomes

7*([vDgp(v)| + | Dgp(0)])

alo —v) |vDyp(0)| + |7 Dgp (V)| + 1 7]

23],
= 0.33.

q

It is clear that
0.09 < 0.33.

Example 2. For a convex function p : [0,1] — R given by p(x) = x> + 2, by (14) with q = }
and p1 = 2, the left side of the inequality

p(v) ; p(o) _ 2(01_V) jp(x) qux+/ p(x) qux]
— ;—% /1(x2+2)0d;x+ 1(x2+2) dlx}
= 0.09 ' 0

g(o—v) | {[215/~vDge(0)|" +*|vDgp(v) |\ 71
3]

q

+

[2] ‘O'qu |P1 +q |GD p ’Pl 1
3]

q

= 0.35.

It is clear that
0.09 < 0.35.

Example 3. For a convex function p : [0,1] — R given by p(x) = x2 + 2, from (16) with q = %
and p1 = r1 = 2, the left side of the inequality

o o
p(v);p( /p vdqx+/p(x) “qu]
A% v
5 1] ¢ f
- 22{/ x +2) d%xf/(x +2) dlx]
0 0
— 0.09

and the right side of it becomes

ao-v( 1
2 [7‘1—|—1}q

1
N |0'D p |P1 +q|GD p )’Pl 2]
2],

= 045.

(HDW o) +g|vDgo(v) |“>

2],
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It is clear that
0.09 < 0.45.

Example 4. For a convex function p : [0,1] — R given by p(x) = x? + 2, from (17) with g = 1,
the left side of the inequality

<V;G) B 2(01 V)

©

and the right side becomes

(o0 —v) o 3 N 5q2+4q—2q3—1
) ‘Vqu( )|4<{4]q+q[2]q) +"’qu( )| 4([4}q+9][2]q)
D ofv 3 op o(oy 2T T 41207 1
+| qu( )’4([4]q+ﬂ2]q) +| qu( )| 8([4}q+‘7[2]q) ]
= 0.38.

It is clear that
0.15 < 0.38.

Example 5. For a convex function p : [0,1] — R given by p(x) = x* +2, by (18) with q = 3,
the left side of the inequality

o

/ p(x),dgx + / ]

(5%) 3
L/l 2 +2) d1x+/ 2 +2) dlx]

N —

o
4
— 015

and the right side of it becomes

1— L
(0 —v) [<q> P1
2 4[2}q
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1

6 —q[2] 50—202—2\"
_ STl jep ooy =222
8([4],+4[2

where p1 = 2, it is clear that
0.15 < 0.50.

Example 6. For a convex function p : [0,1] — R given by p(x) = x> + 2, from (19) with
= %and p1 = r1 = 2, the left side of the inequality

= 015

and the right side of it becomes

o—v 1 g 1 1+2g\7
: 2 ){”’<zr1+l[n+1}q> <|VD"p(G)|4[2}q+|”qu(v)|4E]q>

+</f(1 - qt)”dqt> " (\qup(U)!é]q +vDee ()|,

2

1 g 1
+‘7<z[+uq> ("’qu“)’ o, 1Pl g

+</11(1 - qt)”dqt> '

2

= 0.39.

It is clear that
0.15 < 0.39.

6. Conclusions

In this paper, new variants of midpoint and trapezoidal inequalities for differentiable
convex functions in the framework of g-calculus are established. We also used well-known
power mean and Holder inequalities to find g-type of trapezoidal and midpoint inequalities
in consideration of g-differentiable convex mappings. These new results can be used for
finding some error bounds for the midpoint and trapezoidal rules in g-integration formulas
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that are very important in the field of numerical analysis. It is an interesting idea that
other mathematicians in this field can derive new inequalities for quantum coordinated
convex mappings.
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