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Abstract: Many fuzzy concepts have been researched and described with uncertain information.
Collecting data under uncertain information is a difficult task, especially when there is a difference
between the opinions of experts. To deal with such situations, different types of operators have
been introduced. This paper aims to develop the Maclaurin symmetric mean (MSM) operator
for the information in the shape of the interval-valued spherical fuzzy set (IVSFS). In this article,
a family of aggregation operators (AOs) is proposed which consists of interval valued spherical
fuzzy Maclaurin symmetric mean operator (IVSFMSM), interval valued spherical fuzzy weighted
Maclaurin symmetric mean (IVSFWMSM), interval valued spherical fuzzy dual Maclaurin symmetric
mean (IVSFDMSM), and interval valued spherical fuzzy dual weighted Maclaurin symmetric mean
(IVSFDWMSM) operators. In this paper, we studied an elucidative example to discuss the evaluation
of multi-national companies for the application of the proposed operator. Then the obtained results
from the proposed operators are compared. The results obtained are graphed and tabulated for a
better understanding.

Keywords: aggregation operators; decision-making; interval-valued spherical fuzzy set; Maclaurin
symmetric mean

MSC: 03B52, 03E72, 94D05, 94D99

1. Introduction

A fuzzy set (FS) was introduced by Zadeh [1] in 1965 to deal with an uncertain
situation. In FS, there is only one side we can read about how much a phenomenon relates
to a set. To deal with the two-sided opinions of experts Atanassov [2] gave the idea of
an intuitionistic fuzzy set (IFS), in which we use (MD) and (NMD), and an (RD) shows
the accuracy of IFS. IFS also describes the disconnection of phenomena, and the sum is
existing in [0, 1]. Atanassov [3] extended IFS into the interval-valued intuitionistic fuzzy
set (IVIFS). To increase the accuracy of IFS, Yager [4] proposed the idea of the Pythagorean
fuzzy set (PyFS). In which, we take 0 ≤ ( f (ν))2 + (w(ν))2 ≤ 1. Peng and Yager extended
the concept of PyFS into an interval-valued Pythagorean fuzzy set (IVPyFS). Coung [5]
introduced the concept of a picture fuzzy set (PFS), in which we use an abstain degree (AD).
A picture-fuzzy set eliminates the loss of information due to four possibilities (MD, NMD,
AD, and RD). Coung [6] also worked on the extended form of PFS and introduced the
concept of an interval-valued picture fuzzy set (IVPFS). The concept of a spherical fuzzy set
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(SFS) was introduced by Ullah et al. [7]. The notion of q-Rung Orthopair Fuzzy Set (q-ROFS)
was given by Yager [8], in which we use cubic power for the MD, NMD, AD, and RD. A
(SFS) increases the range of accuracy by taking the square of all the degrees. FS theory plays
an important role in different mathematical fields, such as work by Ghaznavi et al. [9] on
the parametric fuzzy equation, and Jafri et al. [10] work on the fuzzy differential equation.
Ullah et al. [11] also worked on the Interval Valued Spherical Fuzzy Set (IVSFS). Some more
work on the SFS and TSFS can be found in [12–14].

Aggregation operators (AOs) [15] are important tools for gathering information under
uncertain information. Over the last decade, a lot of AOs have been developed to aggregate
the results of fuzzy concepts in undefined situations. AOs are very important due to the use
of these operators in different fields of fuzzy theory. If we talk about AOs, the Bonferroni
mean operator (BMO) was developed by Bonferroni [16], and Liang et al. extended it into
the Weighted Pythagorean Fuzzy Geometric Bonferroni mean operator (WFGBM) [17].
Sykora had developed the Heronian Mean operator (HMO) [18], and Yu developed the con-
cept of an intuitionistic fuzzy geometric weighted Heronian Mean operator (IFGHMO) [19].
The generalized Heronian mean operator based on q rung Orthopair (q-ROPFGHMO) [20]
was developed by Wei et al. Over time, many mathematicians made extensions to (BMO),
such as the partitioned Heronian mean (PHM) operator based on linguistic fuzzy num-
bers [21]. To solve (MADM) problems with more accuracy, Xing YP et al. [22] combined
(HMO) with interactional operational law. Dombi t norm (t-conorm) is an elastic operator;
the (DMO) based on (IFS) was developed by Liu et al. [23]. In fuzzy theory, Chen and Ye
developed the concept of generalized Dombi operations (GDO) based on the neutrosophic
cubic fuzzy set [24]. To solve (MADM) problem, Shi and Ye developed the idea of (WN-
SCFS) based on the t norm (t-conorm) [25]. Yang and Pang worked on more extensions to
BMO and Dombi t norm (t-conorm) [26]. The related literature can be found in [13,27–29].

Maclaurin [30] gave the concept of the MSM operator, which is a high-significance
form of AOs. MSM operators are very important due to their correlation with four (MD,
NMD, AD, and RD) input arguments, like (BMO) and (HMO). As we know, all the existing
operators correlate with two input arguments, but MSM eliminates the loss of information.
Liu [31] proposed an extended form of the IFMSM operator, and Liu et al. [32] did extensive
work on IVIFMSM. Wei and Lu [33] developed the PyFMSM operator, which was later
expanded by Wei et al. [34]. The idea of PFMSM was given by Ullah et al. [35], and extended
work on IVPMSM operators was done by Ashraf et al. [36]. The idea of q-ROPFMSM was
developed by Liu [37], in which we take the cubic powers of MD, NMD, AD, and RD. MSM
operators are unique due to their correlation with more than two input arguments. As we
know, PFMSM [31] operators increased the range of accuracy, so if we take a square of the
four possible degrees, the range of accuracy increases. More work on the MSM operator
can be found in [38–41].

The IVSFS is the framework that covers information with the least amount of data loss
from real-life scenarios. Furthermore, the MSM operator is an interesting AO that aggre-
gates the information by preserving the relationship of the components of the information.
The major contribution of this article is to develop a family of AOs for IVSFS based on the
MSM operator. In Section 2, we define the background of FS theory and the importance
of aggregation operators (AOs). We proposed IVSFMSM and IVSFWMSM in Section 3.
In Section 4, we developed the concept of IVSFDMSM and IVSFDWMSM operators. We
analyze some special cases of the developed AOs in Section 5. In Section 6, we applied the
developed AOs to the MADM problem. In Section 7, we analyze the comparative study of
developed AOs with traditional operators. Conclusive remarks are in Section 8.

2. Preliminaries

In this section, we define the SFS, IVSFS, MSM, and score function of the IVSFS. We
also described the basic operations of the IVSFS and MSM operators.
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Definition 1: [11] For a universal set Z, a SFS is defined as X = {(v, ( f (ν), g(ν), w(ν))) : ν ∈ Z}
where f , g, and w are mapped from Z to [0, 1], with the condition that 0≤ ( f (ν))2 + (g(ν))2

+(w(ν))2≤1. A refusal degree can be defined as A(ν)=
(

1−
(
( f (ν))2+(g(ν))2 + (w(ν))2

))1/2

and a triplet ( f (ν), g(ν), w(ν)) is known as SFV. Further, f (ν) shows MD g(ν) is AD, and w(ν)
is ND.

Definition 2: [11] In a universal set Z an IVSFS is defined as X={(v, ( f (ν), g(ν), w(ν))) : ν ∈ Z}
where f , g and w are mapped from Z to [0, 1] such that f (ν) =

[
f in f (ν), f sup(ν)

]
, g(ν) =[

gin f (ν), gsup(ν)
]

and w(ν) =
[(

win f
)
(ν), wsup(ν)

]
with the condition that 0 ≤ ( f (ν)sup)2+

(g(ν)sup)2 + (w(ν)sup)2 ≤ 1. A refusal degree can be derived as A(ν) =
[

Ain f (ν), Asup(ν)
]

=


(

1−
((

f in f
)2

(ν) +
(

gin f
)2

(ν) +
(

win f
)2

(ν)

))1/2
,((

1−
(
( f sup)2(ν) + (gsup)2(ν) + (wsup)2(ν)

))1/2
)


and a triplet ( f (ν), g(ν), w(ν)) =
([

f in f (ν), f sup(ν)
]
,
[

gin f (ν), gsup(ν)
]
,
[
win f (ν), wsup(ν)

])
is known as IVSFV here f (ν) shows MD g(ν) are AD and w(ν) is ND.

The score function for IVSFVs is given below.

Definition 3: Let Ai =
([

f in f (ν), f sup(ν)
]
,
[

gin f (ν), gsup(ν)
]
,
[
win f (ν), wsup(ν)

])
be values

of IVSFS, then score function is defined as

SC(ν) =

(
f in f (v)

)2
(

1−
(

gin f (v)
)2
−
(

win f (v)
)2
)
+

( f sup(v))2
(

1− (gsup(v))2 − (wsup(v))2
)

3
(1)

the accuracy function is defined as

H(ν) =

(
f in f (v)

)2
(

1 +
(

gin f (v)
)2

+
(

win f (v)
)2
)
+

( f sup(v))2
(

1 + (gsup(v))2 + (wsup(v))2
)

3
(2)

Definition 4: [11] Let L1 =
([

f in f
1 (v), f sup

1 (v)
]
,
[

gin f
1 (v), gsup

1 (v)
]
,
[
win f

1 (v), wsup
1 (v)

])
and

L2 =
([

f in f
2 (v), f sup

2 (v)
]
,
[

gin f
2 (v), gsup

2 (v)
]
,
[
win f

2 (v), wsup
2 (v)

])
be two IVSFVs, then we can

define the following operations. Note that ⊗ and ⊕ denote the multiplication and addition of
two IVSFVs.

L1 ⊗ L2 =





[
f in f
1 (ν) f in f

2 (ν), f sup
1 (ν) f sup

2 (ν)
]

 1−
(

1− gin f
1 (ν)2

)(
1− gin f

2 (ν)2
)1/2

,(
1−

(
1− gsup

1 (ν)2
)(

1− gsup
2 (ν)2

))1/2


(

1−
(

1− win f
1 (ν)2

)(
1− win f

2 (ν)2
))1/2

,(
1−

(
1− wsup

1 (ν)2
)(

1− wsup
2 (ν)2

))1/2


,


, ν ∈ Z
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L1 ⊕ L2 =






(

1−
(

1− f in f
1 (ν)2

)(
1− f sup

2 (ν)2
))1/2

,(
1−

(
1− f sup

1 (ν)
)(

1− f sup
2 (ν)

))1/2

[
gin f

1 (ν)gin f
2 (ν), gsup

1 (ν)gsup
2 (ν)

]
,[

win f
1 (ν)win f

2 (ν), wsup
1 (ν)wsup

2 (ν)
]

,


, ν ∈ Z



ξL1 =





[(
1−

(
1− f in f

1 (ν)
)ξ
)1/2

,
(

1−
(

1− f sup
1 (ν)

)ξ
)1/2

]
,[(

gin f
1 (ν)

)ξ
,
(

gsup
1 (ν)

)ξ
]

,[(
win f

1 (ν)
)ξ

,
(

wsup
1 (ν)

)ξ
]


, ν ∈ Z



L1
ξ =





[(
f in f
1 (ν)

)ξ
,
(

f sup
1 (ν)

)ξ
]

,[(
1−

(
1− gin f

1 (ν)
)ξ
)1/2

,
(

1−
(

1− gsup
1 (ν)

)ξ
)1/2

]
,[(

1−
(

1− win f
1 (ν)

)ξ
)1/2

,
(

1−
(

1− wsup
1 (ν)

)ξ
)1/2

]


, ν ∈ Z


Definition 5: [35] Let Ai = (i = 1, 2, 3, . . . , r) be a collection of positive real numbers. Then

MSM(ν)(c1, c2, . . . , cr) =

(
∑1≤i1≤,...,iY≤r ∏Y

τ=1 Aiτ

CY
r

) 1
Y

is called MSM. Where (c1, c2, . . . , cY) convert all the l-tuple combinations of (1, 2, . . . , r) and CY
r is

the binomial coefficient.

Now we discuss the main work regarding this article.

3. Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean (IVSFMSM) Operator

In this section, we developed the concept of the IVSFMSM and IVSFWMSM operators.

Definition 6: Let Ai =
([

f in f
i (v), f sup

i (v)
] [

gin f
i (v), gsup

i (v)
] [

win f
i (v), wsup

i (v)
])

and be
two IVSFVs. Then, the IVSFMSM operator is given by

IVSFMSM(A1, A2,..., Ar) =

 ⊕
1≤i1≤,...,iY≤r

(
Y
⊗

τ=1
Aiτ

)
CY

r


1/

.
Y

. (3)

Theorem 1: Let Ai =
([

f in f
i (v), f sup

i (v)
]
,
[

gin f
i (v), gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
be a collec-

tion of IVSFVs. Then, using IVSFMSM operator, we get
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IVSFMSM(A1, A2, · · · , Ar)

=






1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f in f
iτ (v)

)2
)))1/CY

r
1/Y

1/2


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f sup
iτ (v)

)2
)))1/CY

r
1/Y

1/2


,



1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
))))1/CY

r
1/

.
Y

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
))))1/CY

r
1/

..
Y


,



1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2





Proof: By using Definition 6, we have

Y⊗
τ=1

Aiτ =



[
Y
∏

τ=1

(
f in f
iτ (v)

)2
,

Y
∏

τ=1

(
f sup
iτ (v)

)2
]

,[
1−

Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
)

, 1−
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
)]

,[
1−

Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
)

, 1−
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
)]


,
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⊕
1≤i1≤,...,<iY≤r

(
Y⊗

τ=1

Aiτ

)
=





(
1− ∏

1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
f in f
iτ (v)

)2
))1/2

,

(
1− ∏

1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
f sup
iτ (v)

)2
))1/2


,



((
∏

1≤i1≤,...,<iY≤r
1−

(
Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
))))1/2

,

(
∏

1≤i1≤,...,<iY≤r
1−

(
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
)))1/2


,



(
∏

1≤i1≤,...,<iY≤r
1−

(
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
)))1/2

,

(
Y
∏

1≤Y1≤,...,<iY≤r
1−

(
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
)))1/2





1
CY

r

⊗
1≤Y1≤,...,<YY≤r

(
Y⊗

τ=1

Aiτ

)
=





1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
f in f
iτ (v)

)2
))1/CY

r
1/2

,

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
f sup
iτ (v)

)2
))1/CY

r
1/2


,



1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
)))1/CY

r
1/2

,

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
)))1/CY

r
1/2




1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
)))1/CY

r

,

1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
)))1/CY

r




therefore, we get
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IVSFMSM(A1, A2, . . . , Ar)

=






1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
f in f
iτ (v)

)2
)))1/CY

r
1/

.
Y


1
2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f sup
iτ (v)

)2
)))1/CY

r
1/Y

1
2


,



1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
))))1/CY

r
1/

..
Y


1
2


,



1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2




as we know, an aggregation operator fulfills the criteria of three properties (boundedness,
idempotency, and monotonicity). So, IVSFMSM operators satisfied these properties as
given below

Property 1: (Idempotency Property) Let αi =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,[

win f
i (v), wsup

i (v)
])

and αj =
([

f in f
j (v) , f sup

j (v)
]
,
[

gin f
j (v) , gsup

j (v)
]
,
[
win f

j (v), wsup
j (v)

])
be two collections of IVSFVs. If Ai = A then (all are identical)

IVSFMSM(A1, A2, A3, . . . , Ar) = A

Property 2: (Monotonicity Property) Let Aiτ andǍiτ be two IVSFVs. If f in f
i (v) ≤ f̌ in f

i (v),

f sup
i (v) ≤ f̌ sup

i (v),gin f
i (v) ≥ ǧin f

i (v),gsup
i (v) ≥ ǧsup

i (v), and win f
i (v) ≥ w̌in f

i (v),
wsup

i (v) ≥ w̌sup
i (v) then

IVSFMSM(A1, A2, . . . , Ar) ≤ IVSFMSM
(

Ǎ1, Ǎ2, . . . , Ǎr
)
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Property 3: (Boundedness Property) Let Ai =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,[

win f
i (v), wsup

i (v)
])

be a collection of IVSFVs and let Ain f and Asup denote the smallest and the
greatest IVSFVs respectively. Then

Ain f ≤ IVSFMSM(A1, A2, . . . , Ar) ≤ Asup

Definition 7: Let Ai =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
be a

collection of IVSFVs and ωi be the weight vector of Ai such that ∑n
i=1 ωi = 1 . Then, the

IVSFWMSM operator is defined by

IVSFWMSM(A1, A2, . . . , Ar) =




⊗

1≤i1≤,...,<iY

(
Y

⊗(Aiτ )
τ=1

)ωiτ

CY
r


1/

.
Y
. (4)

Theorem 2: Let Ai =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
be a col-

lection of IVSFVs. Then, using IVSFWMSM operator, we get

IVSFWMSM(A1, A2, . . . .., Ar)

=






1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(((
f in f
iτ (v)

)2
)ωiτ

)))1/CY
r
1/

..
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(((
f sup
iτ (v)

)2
)ωiτ

)))1/CY
r
1/

.
Y


1/2


,



1−

1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

..
Y


1/2

,

1−

1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

..
Y


1/2


,



1−

1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

..
Y


1/2

,

1−

1−
(

∏
1≤Y1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

..
Y


1/2





.
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Proof: Proof is skipped.

4. Interval-Valued IVSFDMSM Operator

The main purpose of this part of the paper is to develop the ideas of IVSFDMSM and
IVSFDWMSM by using MD, NMD, and AD.

Definition 8: Let Ai =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
be a

collection of IVSFVs. Then, IVSFDMSM is defined as

IVSFDMSM(A1, A2, . . . , Ar) =

[
1
Y

(
⊕

1≤i1≤,...,<iY≤r

(
Y
⊗

τ=1
Aiτ

)1/CY
r
)]

Theorem 3: Let Ai =
([

f in f
i (v) , f sup

i (v)
]
,
[

gin f
i (v) , gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
denote

the collection of IVSFVs. Then, by using IVSFDMSM operators, we have

IVSFDMSM(A1, A2, . . . , Ar)

=





1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))))1/CY

r
1/

.
Y


1/2

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

( .
Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))))1/CY

r
1/

.
Y


1/2


,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gin f

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gsup

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2



,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
wsup

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2





.
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Proof: Using Definition 8, we have

Y⊗
τ=1

Aiτ =



(1−
.

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
)) 1

2

,

(
1−

.
Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
)) 1

2

,

[ .
Y
∏

τ=1
gin f

iτ (v),

.
Y
∏

τ=1
gsup

iτ (v)

]
,

[ .
Y
∏

τ=1
win f

iτ (v),

.
Y
∏

τ=1
wsup

iτ (v)

]


(
Y⊗

τ=1

Aiτ

)1/CY
r

=




(

1−
Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))1/CY

r

,(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))1/CY

r

,


1−

(
1−

(
Y
∏

τ=1

(
gin f

iτ (v)
)2
))1/CY

r

,

1−
(

1−
(

Y
∏

τ=1

(
gsup

iτ (v)
)2
))1/CY

r

,


1−

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
))1/CY

r

,

1−
(

1−
(

Y
∏

τ=1

(
wsup

iτ (v)
)2
))1/CY

r





.⊗
1≤i1≤,...,<iY≤r

(
Y⊕

τ=1

Aiτ

)1/CY
r

=





 ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))1/CY

r

1/2

,

 ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))1/CY

r

1/2


,



1− ∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gin f

iτ (v)
)2
))1/CY

r

,

1/2

1− ∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gsup

iτ (v)
)2
))1/CY

r

1/2


,



1− ∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
))1/CY

r

,

1/2

1− ∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
wsup

iτ (v)
)2
))1/CY

r

1/2




therefore, we get
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IVSFDMSM(A1, A2, . . . , Ar)

=





1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))1/CY

r

1/
.

Y


1/2

,

1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))1/CY

r

1/
.

Y


1/2


,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gin f

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gsup

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2



,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
wsup

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2




IVSFDMSM operators also satisfied the aggregation properties (Boundedness, Idem-

potency, and Monotonicity).

Property 4: (Idempotency property) Let Ai =
([

f in f
i (v), f sup

i (v)
] [

gin f
i (v), gsup

i (v)
]

[
win f

i (v), wsup
i (v)

])
and if Ai = A then (all are identical)

IVSFDMSM(A1, A2, A3, . . . , Ar) = A.

Property 5: (Boundedness Property) Let Ai =
([

f in f
i (v), f sup

i (v)
]
,
[

gin f
i (v), gsup

i (v)
]
,[

win f
i (v), wsup

i (v)
])

be a collection of IVSFVs and let Ain f and Asup denote the smallest and the
greatest IVSFVs, respectively. Then

Ain f ≤ IVSFFDMSM(A1, A2, . . . , Ar) ≤ Asup.

Definition 9: Let Ai =
([

f in f
i (v), f sup

i (v)
]
,
[

gin f
i (v), gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
be a col-

lection of IVSFVs. Then, the IVSFDWMSM operator is given as
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IVSFDWMSM(A1, A2, . . . , Ar) =





1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
)ωiτ

)1/CY
r

1/
.

Y


1
2

,

1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
)ωiτ

)1/CY
r

1/
.

Y


1
2


,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
gin f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1
2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
gsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1
2



,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
win f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1
2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
wsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1
2

,





.

Theorem 4: Let Ai =
([

f in f
i (v), f sup

i (v)
]
,
[

gin f
i (v), gsup

i (v)
]
,
[
win f

i (v), wsup
i (v)

])
denote the

collection of IVSPFNs. Then, by using IVSFDWMSM operators, we have

IVSFDWMSM(A1, A2, . . . , Ar)

=





1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
)ωiτ

)1/CY
r

1/
.

Y


1/2

,

1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
)ωiτ

)1/CY
r

1/
.

Y


1/2


,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
gin f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
gsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1/2



,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
win f

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

((
wsup

iτ (v)
)2
)ωiτ

)))1/CY
r
1/

.
Y


1/2

,





.
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Proof: The proof is the same as in Theorem 3 above.
We will discuss a numerical example to illustrate the calculation process.
We take the values
A1 = ([0.21, 0.30], [0.18, 0.25], [0.05, 0.19]), A2 = ([0.09, 0.31], [0.15, 0.20], [0.19, 0.25]),

A3 = ([0.08, 0.17], [0.14, 0.20], [0.21, 0.24]), A4 = ([0.17, 0.31], [0.07, 0.12], [0.20, 0.25]) also
r = 4 and Y = 1. Now we take a weight vector such as (0.3, 0.2, 0.1, 0.4)T .

For MD,

=





1−

1−

1−
((

(1− 0.21)2
)0.3
× (1− 0.09)2

)0.2

×
(
(1− 0.08)2

)0.1
×
(
(1− 0.17)2

)0.4


1
4


1
1
2

,

1−

1−

1−
((

(1− 0.30)2
)0.3
× (1− 0.31)2

)0.2
×(

(1− 0.17)2
)0.1
×
(
(1− 0.31)2

)0.4


1/4


1
1/2




,

= [0.11, 0.12]

for AD,

=



1−


(

1−
(
(0.18)2)0.3

)
×
(

1−
(
(0.15)2)0.2

)
×

1
1(

1−
(
(0.14)2)0.1

)
×
(

1−
(
(0.07)2)0.4

)


1
4


1
2

,

1−


(

1−
(
(0.25)2)0.3

)
×
(

1−
(
(0.20)2)0.2

)
×

1/1(
1−

(
(0.20)2)0.1

)
×
(

1−
(
(0.12)2)0.4

)


1/4
1/2


,

= [0.01, 0.04]

for NMD,

=



1−


(

1−
(
(0.05)2)0.3

)
×
(

1−
(
(0.19)2)0.2

)
×

1
1(

1−
(
(0.24)2)0.1

)
×
(

1−
(
(0.20)2)0.4

)


1
4


1
2

,

1−


(

1−
(
(0.19)2)0.3

)
×
(

1−
(
(0.25)2)0.2

)
×

1/1(
1−

(
(0.21)2)0.1

)
×
(

1−
(
(0.25)2)0.4

)


1/4
1/2


,

= [0.02, 0.06]

5. Special Cases Analysis

In this section, we observe the changes in the proposed operators in different frame-
works. To begin, take the IVSFMSM abstinence values, which are zero, and convert them
into IVPyFMSM operators such as

{
gin f

iτ = 0, gsup
iτ = 0

}



Axioms 2023, 12, 4 14 of 22

IVSFMSM(A1, A2, . . . .., Ar)

=






1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f in f
iτ (v)

)2
)))1/CY

r
1/

.
Y


1
2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f in f
iτ (v)

)2
)))1/CY

r
1/

.
Y


1
2


,



1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gin f

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
gsup

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2


,



,1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
))))1/CY

r
1/

.
Y


1
2


;


IVSFDMSM(A1, A2, . . . , Ar)

=





,1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))1/CY

r

1/
.

Y


1/2

1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))1/CY

r

1/
.

Y


1/2


,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gin f

iτ (v)
)2
)))1/CY

r
1/Y

1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
gsup

iτ (v)
)2
)))1/CY

r
1/Y

1/2



,




1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2

,


1−

(
∏

1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
wsup

iτ (v)
)2
)))1/CY

r
1/

.
Y


1/2
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if we set giτ = 0 then IVSFMSM and IVSFDMSM change into IVPyFSMSM and
IVPyDMSM operators.

IVPyFMSM(A1, A2, . . . , Ar)

=





1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f in f
iτ (v)

)2
)))1/CY

r
1/

.
Y

,

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
f sup
iτ (v)

)2
)))1/CY

r
1/

.
Y


,


1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
win f

iτ (v)
)2
))))1/CY

r
1/

.
Y

,

1−

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
1−

(
wsup

iτ (v)
)2
))))1/CY

r
1/

.
Y




now for, IVPyDFMSM,

IVPyFDMSM(A1, A2, . . . , Ar)

=




1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f in f
iτ (v)

)2
))1/CY

r

1/
..

Y

,

1−

1− ∏
1≤i1≤,...,<iY≤r

(
1−

Y
∏

τ=1

(
1−

(
f sup
iτ (v)

)2
))1/CY

r

1/
..

Y



1/2

,



1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
win f

iτ (v)
)2
)))1/CY

r
1/

.
Y

,

1−
(

∏
1≤i1≤,...,<iY≤r

(
1−

(
Y
∏

τ=1

(
wsup

iτ (v)
)2
)))1/CY

r
1/

.
Y



1/2


when we take AD as zero, then the interval-valued spherical dual fuzzy MSM (IVSFDMSM) op-
erator changes into the interval-valued Pythagorean fuzzy dual MSM (IVPyFDMSM) operator.

6. Application to MADM

In this section, we use the proposed operators in the MADM process. MADM is a
process by which we can choose the better option in an uncertain situation [42–44]. In the
MADM process, we take limited alternatives that depend on limited attributes [45–47].
In this way, the experts express their opinions in the form of interval-valued spherical
fuzzy numbers (IVSFVs) and prefer different sources according to their thinking. The
best option is chosen by basing the aggregation operators on expert recommendations.
Suppose P̌ =

{
P̌1, P̌2, . . . , P̌n

}
are the set of attributes that can choose the best option based

on observations, and that the set of alternatives is ǩ =
{

ǩ1, ǩ2, . . . , ǩn

}
. The data is given in

the form of IVSFVs under uncertain information, where we have four facts from an expert’s
opinion that can be aggregated for all the alternatives. In the proposed work, experts
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expressed their opinions in the form, “We use MSM operators to aggregate the result in the
form of IVSFMSM and IVSFDMSM operators”. The details of this procedure are as follows:

Step 1. The experts use uncertain data in the form of MD, NMD, and AD restrictions
for IVSFS. The results of alternatives P̌ = P̌i concerning attributes ǩ = ǩi are given in the
form IVSFV.

Aiτ =
([

f in f
iτ , f sup

iτ

]
,
[

gin f
iτ , gsup

iτ

]
,
[
win f

iτ , wsup
iτ

])
such that

0 ≤
((

f sup
iτ

)2
+
(

gsup
iτ

)2
+
(

wsup
iτ
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Step 2. In this step, we deal with two types of attributes (benefit and cost). To deal
with the cost type of attributes, we use the process of normalization. In which we change
all cost types of attributes into benefit types of attributes.
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Step 3. After using the process of normalization, we apply the two aggregation

operators IVSFMSM and IVSFDMSM to the given uncertain data.
Step 4. After getting aggregated results by applying the proposed operators, we use

Definition 3 to get the score function value of those results.
Step 5. By using score values, we get a ranking of the obtained results.

Example 1: Consider the problem of evaluating of the progress of multinational companies.
Suppose the multinational companies are evaluated based on some attributes as given below:

1. ǩ1 for stock purchases;
2. ǩ2 for stock award;
3. ǩ3 for the charge of control;
4. ǩ4 for the bonus of the company.

Consider four companies
{

P̌1, P̌2, P̌3, P̌4
}

be evaluated based on attributes
{

ǩ1, ǩ2, ǩ3, ǩ4

}
.

For this reason, the expert gave his opinion in the form of IVSFV, where k1 represents
stock purchases; k2 shows stock awards; k3 shows the charge of control, and k4 shows the
bonus of the company. In this scheme, each attribute is given the weight vector wiτ =

(0.2, 0.3, 0.1, 0.4)T such that ∑n
i=0 wi = 1. The process of the multinational companies is

given below. In this example, the values of r are 4 and the parameter Y = 3.
In Table 1, we use undefined data in the form of IVSFVs as the opinions of experts of

the company.
In Table 2, the experts use proposed operators to aggregate the given undefined data,

however, we provided the aggregated values obtained by the IVSFMSM operator. In the
next step, we must find the score values of the alternatives.

In Table 3, we use Definition 1 of the score function. The score values show that all
the operators are much more fruitful, but IVSFDMSM is the most fruitful compared to other
operators because it shows much more accuracy. IVSFDWMSM shows negative score values.
The stepwise procedure of the evaluation of the multinational companies is given below:

The decision panel of the company gave opinions in the form of IVSFV;
Step 1. Then we aggregated the obtained information with proposed operators

IVSFMSM, IVSFWMSM, IVSFDMSM, and IVSFDWMSM;
Step 2. In this step, we make a ranking of proposed operators by using score functions;
Step 3. This is the end of the procedure with the ranking of the companies.
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From Table 4, it is shown that the finest multinational company is P̃4 using IVSFMSM
and IVSFDWMSM. P̃3 is the better option for the IVSFWMSM and IVSFDMSM operators.

Table 1. Values obtained from experts regarding companies in form of IVSFV.

P̃1 P̃2

f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u) f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u)
ˇ
k1

0.23 0.35 0.14 0.15 0.12 0.45 0.05 0.21 0.17 0.31 0.15 0.19

ˇ
k2

0.21 0.56 0.2 0.3 0.08 0.12 0.32 0.42 0.18 0.19 0.29 0.36

ˇ
k3

0.15 0.21 0.09 0.18 0.29 0.41 0.19 0.34 0.25 0.28 0.17 0.22

ˇ
k4

0.19 0.25 0.37 0.41 0.09 0.12 0.05 0.17 0.04 0.14 0.09 0.12

P̃3 P̃4

f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u) f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u)
ˇ
k1

0.12 0.31 0.15 0.21 0.09 0.11 0.12 0.15 0.1 0.16 0.13 0.15

ˇ
k2

0.11 0.19 0.09 0.14 0.05 0.25 0.11 0.22 0.17 0.41 0.09 0.17

ˇ
k3

0.03 0.17 0.02 0.18 0.1 0.16 0.09 0.21 0.21 0.42 0.25 0.31

ˇ
k4

0.03 0.16 0.01 0.25 0.02 0.21 0.03 0.04 0.01 0.02 0.02 0.06

Table 2. The aggregated information with the IVSFMSM operator.

P̃1 P̃2

f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u) f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u)
ˇ
k1

0.05 0.52 0.54 0.51 0.64 0.05 0.01 0.04 0.52 0.53 0.52 0.53

ˇ
k2

0.46 0.51 0.51 0.51 0.52 0.46 0.46 0.46 0.50 0.51 0.50 0.51

ˇ
k3

0.57 0.02 0.03 0.01 0.12 0.57 0.52 0.55 0.01 0.03 0.01 0.02

ˇ
k4

0.51 0.46 0.46 0.46 0.46 0.51 0.50 0.51 0.46 0.46 0.46 0.46

P̃3 P̃4

f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u) f̃ (i) f̃ (u) g̃(i) g̃(u) w̃(i) w̃(u)
ˇ
k1

0.00 0.02 0.50 0.52 0.50 0.52 0.23 0.02 0.51 0.55 0.51 0.52

ˇ
k2

0.46 0.46 0.50 0.50 0.50 0.50 0.46 0.91 0.50 0.51 0.50 0.50

ˇ
k3

0.50 0.52 0.00 0.02 0.00 0.02 0.50 0.03 0.01 0.03 0.01 0.01

ˇ
k4

0.50 0.50 0.46 0.46 0.46 0.46 0.50 0.01 0.45 0.46 0.46 0.45
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Table 3. Score values of aggregated results by using the developed operator.

Score P̃1 P̃2 P̃3 P̃4

IVSFMSM −0.0035 −0.0008 −0.0003 −0.0021

IVSFWMSM −0.0051 −0.0029 −0.0014 −0.0049

IVSFDMSM 0.3287 0.3403 0.3354 0.1749

IVSFDWMSM 0.0270 0.0269 0.0268 0.0135

Table 4. Ranking of the score values of the aggregated results from Table 2.

Operators Ranking Values

IVSFMSM P̃4 < P̃3 < P̃2 < P̃1
IVSFWMSM P̃3 < P̃2 < P̃4 < P̃1
IVSFDMSM P̃3 < P̃2 < P̃4 < P̃1

IVSFDWMSM P̃4 < P̃3 < P̃2 < P̃1

Now we show the ranking values in Figure 1.Now we show the ranking values in Figure 1. 

 

Figure 1. Ranking of score function of the aggregated results. 
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Figure 1. Ranking of score function of the aggregated results.

From Figure 1, we can see the behavior of the score values obtained as the result of all
the developed AOs. In Figure 1, all the results are shown that are described in Table 1.

Now, we discuss sensitivity analysis, in which we compare the accuracy of the pro-
posed operators by taking different values of parameter Y, as in Table 5.
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Table 5. Sensitivity analysis of the proposed operators.

Operators l = 1 l = 2 l = 3 l = 4

IVSFMSM P̃1 = P̃2 = P̃3 = P̃4 P̃3 < P̃4 < P̃1 = P̃2 P̃4 < p̃3 < p̃2 < P̃1 P̃4 < P̃1 < P̃3 < P̃2

IVSFWMSM P̃3 < P̃1 < P̃4 < P̃2 P̃3 < P̃1 < P̃2 < P̃4 P̃3 < P̃3 < P̃4 < P̃1 P̃4 < P̃1 < P̃3 < P̃2

IVSFDMSM P̃1 = P̃2 = P̃3 = P̃4 P̃4 < P̃3 < P̃2 < P̃1 P̃3 < P̃2 < P̃4 < P̃1 P̃2 < P̃3 < P̃4 < P̃1

IVSFDWMSM P̃1 < P̃2 < P̃4 < P̃3 P̃4 < P̃3 < P̃2 < P̃1 P̃4 < P̃3 < P̃2 < P̃1 P̃2 < P̃3 < P̃4 < P̃1

From Table 5 above, we show that the proposed operators (IVSFMSM, IVSFWMSM,
IVSFDMSM, and IVSFDWMSM) show different accuracy by taking different values of
parameter Y. At Y = 1, all the alternatives show the same result for IVSFMSM and
IVSFDMSM. In IVSFWMSM P̃3 is much more accurate and in IVSFDWMSM P̃1 is much
more effective. At Y = 2, P̃3 is much more effective in IVSFMSM and IVSFWMSM. P̃4 is
much more accurate in IVSFDMSM and IVSFDWMSM. At Y = 3, P̃3 is much more accurate
in IVSFWMSM and IVSFDMSM operators. P̃4 is effective in IVSFMSM and IVSFDWMSM
operators. At Y = 4, P̃4 is effective in IVSFMSM and IVSFWMSM also P̃2 is much more
accurate in IVSFDMSM and IVSFDWMSM operators.

7. Comparative Study

In this part of the article, we compare traditionally used aggregation operators with
those proposed. As we know, SFS eradicates uncertainty due to its extended limits. In
this section, we compare IVSFMSM operators with existing operators’ interval-valued
spherical fuzzy weighted averaging (IVSFWA), interval-valued SF Hamacher weighted av-
eraging (IVSFHWG), interval-valued SF weighted geometric (IVSFWG), interval-valued SF
Dombi weighted averaging (IVSFDWA), and interval-valued SF Dombi weighted geometric
(IVSFDWG) operators.

In Table 6, we show the ranking of various defined operators with proposed operators
by using the score values of those operators. We show that P̃1 is much more accurate in
IVSFHWA, IVSFHWG, IVSFWA, IVFWG, IVSFDWA, IVSFMSM, and IVSFDMSM. P̃2 is
much more fruitful in IVSFWMSM and IVSFDWMSM.

Table 6. A comparative analysis of different operators with newly developed IVSMSM, IVSWMSM,
IVSDMSM, and IVSDWMSM.

Operators Ranking

IVSFHWA [48] P̌4 < P̌3 < P̌2 < P̌1
IVSFHWG [48] P̌1 < P̌4 < P̌3 < P̌2
IVSFWA [49] P̌4 < P̌3 < P̌2 < P̌1
IVSFWG [50] P̌4 < P̌3 < P̌2 < P̌1

IVSFDWA [51] P̌3 < P̌2 < P̌1 < P̌4
IVSFMSM P̃4 < P̃3 < P̃2 < P̃1

IVSFWMSM P̃3 < P̃2 < P̃4 < P̃1
IVSFDMSM P̃3 < P̃2 < P̃4 < P̃1

IVSFDWMSM P̃4 < P̃3 < P̃2 < P̃1

From Figure 2. in a comparative analysis, it is clear that P̌4 is a much more effective
proposed operator than other defined operators. The basic benefit of the MSM operator is
to aggregate the interrelated data in fuzzy theory. Hamacher AOs and Dombi AOs are also
very effective in fuzzy theory for aggregating undefined data. In Figure 2, we see that P̌4 is
the most fruitful option.
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Now we show the ranking values in Figure 1. 

 

Figure 1. Ranking of score function of the aggregated results. 

 

Figure 2. Comparative ranking of AOs with proposed operator. 
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Figure 2. Comparative ranking of AOs with proposed operator.

8. Conclusions

In this paper, we proposed the MSM operator by using IVSF information. The main
advantage of these proposed operators is that IVSFMSM gave more accuracy than other
operators (IVFMSM). After proposing the operator, we investigated the properties (Bound-
edness, Monotonicity, and Idempotency) of each AO. The progress of the multinational
companies is evaluated with the help of the MADM procedure. Then we compared the
results obtained with Dombi weighted aggregation (DWAOs), Dombi weighted geometric
mean operators (DWGOs), and Hamacher weighted aggregation operators (HWAMOs).
We can see that the proposed operator is much more effective because IVSFMSM minimizes
the loss of information under uncertain conditions. However, the IVSF information is also
limited because sometimes the sum of the upper values of the intervals may exceed one.
Hence, the developed AOs are also limited to only IVSF information and can be further
extended to any other framework. In the future, we aim to extend the developed approach
to the framework defined in [52].
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