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Abstract: We study the convergence properties of SIRTR, a stochastic inexact restoration trust-
region method suited for the minimization of a finite sum of continuously differentiable functions.
This method combines the trust-region methodology with random function and gradient estimates
formed by subsampling. Unlike other existing schemes, it forces the decrease of a merit function
by combining the function approximation with an infeasibility term, the latter of which measures
the distance of the current sample size from its maximum value. In a previous work, the expected
iteration complexity to satisfy an approximate first-order optimality condition was given. Here,
we elaborate on the convergence analysis of SIRTR and prove its convergence in probability under
suitable accuracy requirements on random function and gradient estimates. Furthermore, we report
the numerical results obtained on some nonconvex classification test problems, discussing the impact
of the probabilistic requirements on the selection of the sample sizes.

Keywords: trust-region methods; random models; inexact restoration

MSC: 65K05; 90C30; 90C15

1. Introduction

The solutions of large-scale finite-sum optimization problems have become essential
in several machine learning tasks including binary or multinomial classification, regression,
clustering, and anomaly detection [1,2]. Indeed, the training of models employed in such
tasks is often performed by solving the optimization

min
x∈Rn

fN(x) =
1
N

N

∑
i=1

φi(x), (1)

where N is the size of the available data set and the functions φi : Rn → R are continuously
differentiable for all i = 1, . . . , N. As a result, the efficient solution of a machine learning
problem calls for efficient numerical algorithms for (1).

When the data set is extremely large, the evaluation of the objective function fN and
its derivatives may be computationally demanding, making deterministic optimization
methods inadequate for solving (1). A common strategy consists of approximating both the
function and derivatives by employing a small number of loss functions φi sampled ran-
domly, making stochastic optimization methods the preferred choice [3–5]. A major issue
is the sensitivity of most stochastic algorithms to their parameters, such as the learning rate
or sample sizes used for building the function and gradient approximations, which usually
need to be tuned through multiple trials and errors before the algorithm exhibits acceptable
performance. A possible remedy to burdensome tuning is to employ adaptive optimization
methods, which compute the parameters according to appropriate globalization strategies
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[6–20]. Most of these methods have probabilistic accuracy requirements for the function
and gradient estimates in order to ensure either the iteration complexity of the expectation
[7–11,13,15,19,21,22] or the convergence in probability of the iterates [6,12,16–18,20]. In turn,
these requirements are reflected in the choice of sample size, which needs to progressively
grow as the iterations proceed, resulting in an increasing computational cost per iteration.

In [11], the authors proposed the so-called stochastic inexact restoration trust-region
(SIRTR) method for solving (1). SIRTR employs subsampled function and gradient esti-
mates and combines the classical trust-region scheme with the inexact restoration method
for constrained optimization problems [23–25]. This combined strategy involves the re-
formulation of (1) as an optimization problem with two unknown variables x, M, where
x is the object to be recovered and M is the sample size of the function estimate, upon
which the constraint M = N is imposed. Based on this reformulation of (1), the method
acts on the two variables in a modular way: first, it selects the sample size with a deter-
ministic rule aimed at improving feasibility with respect to the constraint M = N; then,
it accepts or rejects the inexact trust-region step by improving optimality with respect to
a suitable merit function. SIRTR has shown good numerical performance on a series of
classification and regression test problems, as its inexact restoration strategy drastically
reduces the computational burden due to the selection of the algorithmic parameters. From
a theoretical viewpoint, the authors in [11] provided an upper bound on the expected
number of iterations to reach a near-stationary point under some appropriate probability
accuracy requirements on the random estimators; remarkably, such requirements are less
stringent than others employed in the literature. However, the convergence in probability
of SIRTR remains unproved, thus leaving open the question of whether the gradient of the
objective function in (1) converges to zero with a probability of one. A positive answer to
this question would be an important theoretical confirmation of the numerical stability of
the method.

In this paper, we improve on the existing theoretical analysis of SIRTR, showing that its
iterates drive the gradient to zero with a probability of one. The results will be obtained by
combining the theoretical properties of SIRTR with some tools from martingale theory, as typi-
cally done for the convergence analysis of adaptive stochastic methods [6,16,18]. Furthermore,
we show the numerical results obtained by applying SIRTR on nonconvex binary classifica-
tion, discussing the impact of the probabilistic accuracy requirements on the performance of
the method.

The paper is structured as follows. In Section 2, we briefly outline the method and
its main steps. In Section 3, we perform the convergence analysis of the method, showing
that its iterates converge with a probability of one. In Section 4, we provide a numerical
illustration of a binary classification test problem. Finally, we report the conclusions and
future work in Section 5.

Notations: Throughout the paper, R is the set of real numbers, whereas the symbol ‖ · ‖
denotes the standard Euclidean norm on Rn. We denote with (Ω,A,P) a probability space,
where Ω is the sample space, A ⊆ P(Ω) is the σ−algebra of events, and P : A → [0, 1] is
the probability function. Given an event A ∈ A, the symbol P(A) stands for the probability
of the event A, and 1A : Ω → {0, 1} denotes the indicator function of an event A, i.e.,
the function such that 1A(ω) = 1 if ω ∈ A, or 1A(ω) = 0 otherwise. Given a random
variable X : Ω → R, we denote with E(X) the expected value of X. Let X1, . . . , Xn be n
random variables, and the notation σ(X1, . . . , Xn) stands for the σ−algebra generated by
X1, . . . , Xn.

2. The SIRTR Method

Here, we present the stochastic inexact restoration trust-region (SIRTR) method, which
was formerly proposed in [11]. SIRTR is a trust-region method with subsampled function
and gradient estimates, which combines first-order trust-region methodology with the
inexact restoration method for constrained optimization [25]. In order to provide a detailed
description of SIRTR, we reformulate (1) as the constrained problem
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min
x∈Rn

fM(x) =
1
M ∑

i∈IM

φi(x),

s.t. M = N

(2)

where IM ⊆ {1, . . . , N} is a sample set of the size of the cardinality |IM| such that |IM| = M.
To measure the infeasibility distance of M from the constraint M = N, we introduce a
function h that measures the distance of M ∈ {1, . . . , N} from N. Function h is supposed to
satisfy the following properties.

Assumption 1. The function h : {1, 2, . . . , N} → R is monotonically decreasing and satisfies
h(1) > 0, h(N) = 0.

From Assumption 1, the existence of some positive constants h and h follows such that

h ≤ h(M) ≤ h, for 1 ≤ M ≤ N. (3)

An example of a function h : {1, . . . , N} → R satisfying Assumption 1 is h(M) = N−M
N .

SIRTR is a stochastic variant of the classical first-order trust-region method, which
accepts the trial point according to the decrease of a convex combination of the function
estimate fM with function h. We report SIRTR in Algorithm 1.

At the beginning of each iteration k ≥ 0, we have at our disposal the iterate xk, the
trust-region radius δk, the sample size Nk ∈ {1, . . . , N}, the penalty parameter θk, and
the flag iflag, where iflag = succ if the previous iteration was successful, in the sense
that is specified below, and iflag = unsucc otherwise. Then, in Steps 1–5, perform the
following tasks.

• In Step 1, if iflag = succ, we reduce the current value h(Nk) of the infeasibility
measure and find some Ñk+1 ∈ {1, . . . , N} satisfying h(Ñk+1) ≤ rh(Nk) with r ∈ (0, 1).
On the other hand, if iflag=unsucc, Ñk+1 remains the same from one iteration to the
other, i.e., we set Ñk+1 = Ñk. Note that Ñk+1 = N if Nk = N.

• Step 2 determines a trial sample size Nt
k+1 that satisfies h(Nt

k+1)− h(Ñk+1) ≤ µδ2
k with

µ > 0 and is used to form the random model. In principle, we could fix Nt
k+1 = Ñk+1,

but selecting a smaller sample size, if possible, yields a computational saving in the
successive step. The relation between Nt

k+1 and Ñk+1 depends on δk; small values of
δk give Nt

k+1 = Ñk+1; otherwise, Nt
k+1 is allowed to be smaller than Ñk+1.

• Step 3 forms the random model mk(p) and the trial step pk. The linear model is given
by mk(p) = fNt

k+1
(xk) + gT

k p, where

fNt
k+1

(xk) =
1

Nt
k+1

∑
i∈INt

k+1

φi(xk), (4)

and
gk =

1
Nk+1,g

∑
i∈INk+1,g

∇φi(xk), (5)

with INk+1,g ⊂ {1, . . . , N} with cardinality |INk+1,g | = Nk+1,g.
Minimizing mk over the ball of center 0 and radius δk gives the trial step

pk = argmin
‖p‖≤δk

mk(p) = −δk
gk
‖gk‖

.
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Algorithm 1 Stochastic Inexact Restoration Trust-Region (SIRTR)
Given x0 ∈ Rn, N0 ∈ {1, . . . , N}, η1 ∈ (0, 1), θ0 ∈ (0, 1), r ∈ (0, 1), γ > 1, µ > 0, η2 > 0,
0 < δ0 < δmax.
0. Set k = 0, iflag=succ.
1. Reference sample size

If iflag=succ
find Ñk+1 such that Nk ≤ Ñk+1 ≤ N and

h(Ñk+1) ≤ rh(Nk), (6)

Else
set Ñk+1 = Ñk.

2. Trial sample size
If Nk = N

set Nt
k+1 = N

Else
find Nt

k+1 such that

h(Nt
k+1)− h(Ñk+1) ≤ µδ2

k . (7)

3. Trust-region model
Choose INt

k+1
⊆ {1, . . . , N} such that |INt

k+1
| = Nt

k+1.

Choose Nk+1,g and INk+1,g ⊆ {1, . . . , N} such that |INk+1,g | = Nk+1,g.
Compute gk as in (5), and set pk = −δk

gk
‖gk‖

.

Compute fNt
k+1

(xk) as in (4), and set mk(pk) = fNt
k+1

(xk) + gT
k pk.

4. Penalty parameter
If Predk(θk) ≥ η1(h(Nk)− h(Ñk+1))

set
θk+1 = θk

Else
set

θk+1 =
(1− η1)(h(Nk)− h(Ñk+1))

mk(pk)− fNk (xk) + h(Nk)− h(Ñk+1)
. (8)

5. Acceptance test
If Aredk(xk + pk, θk+1) ≥ η1 Predk(θk+1) and ‖gk‖ ≥ η2δk (success)

define

xk+1 = xk + pk

δk+1 = min{γδk, δmax} (9)

set Nk+1 = Nt
k+1, k = k + 1, iflag=succ and go to Step 1.

Else (unsuccess)
define

xk+1 = xk

δk+1 =
δk
γ

, (10)

set Nk+1 = Nk, k = k + 1, iflag=unsucc and go to Step 1.

• In Step 4, we compute the penalty parameter θk+1 ∈ (0, 1) that governs the predicted
reduction Predk in the function and infeasibility measure, which we define as

Predk(θ) = θ( fNk (xk)−mk(pk)) + (1− θ)(h(Nk)− h(Ñk+1)). (11)



Axioms 2023, 12, 38 5 of 17

If θ = θk satisfies
Predk(θ) ≥ η1(h(Nk)− h(Ñk+1)), (12)

then, we set θk+1 = θk; otherwise, we compute θk+1 as the biggest value for which
Inequality (12) is satisfied and takes the explicit form given in (8).

• In Step 5, we establish if we accept (success) or reject (unsuccess) the trial point xk + pk.
The actual reduction Aredk at point x̂ is defined as

Aredk(x̂, θ) = θ( fNk (xk)− fNt
k+1

(x̂)) + (1− θ)(h(Nk)− h(Nt
k+1)), (13)

and we declare a successful iteration whenever the following conditions are both met:

Aredk(xk + pk, θk+1) ≥ η1 Predk(θk+1) (14)

‖gk‖ ≥ η2δk. (15)

Condition (14) reduces to the standard acceptance criterion of deterministic trust-
region methods when Nk = Ñk+1 = Nt

k+1 = N. If both conditions are satisfied,
we accept the step pk and set xk+1 = xk + pk, increase the trust-region radius based
on the update rule (9), and set Nk+1 = Nt

k+1, iflag=succ; otherwise, we retain the
previous iterate, i.e., xk+1 = xk, reduce the trust-region radius according to (10), and
set Nk+1 = Nk, iflag = unsucc.

3. Convergence Analysis

In this section, we are interested in the convergence properties of Algorithm 1. To this
aim, we note that the function estimates fNt

k+1
(xk) in (4) and gradient estimates gk in (5)

are all random quantities. Consequently, Algorithm 1 generates a random process, that
is, the iterates Xk, the trust region radii ∆k, the gradient estimates Gk,∇ fNt

k+1
(Xk), and the

values Ψk of the Lyapunov function Ψ in (21) at iteration k are to be considered as random
variables, with their realizations denoted as xk, δk, gk, and ψk.

Our aim is to show the convergence in probability of the iterates generated by
Algorithm 1, in the sense that

P
(

lim
k→∞
‖∇ f (Xk)‖ = 0

)
= 1, (16)

i.e., the event limk→∞ ‖∇ f (Xk)‖ = 0 holds almost surely. We note that the authors in [11]
derived a bound on the expected number of iterations in Algorithm 1 required to reach the
desired accuracy in the gradient norm, but did not show the convergence results of Type (16).

3.1. Preliminary Results

We recall some technical preliminary results that were obtained for Algorithm 1 in
[11]. First, we impose some basic assumptions on the functions in Problem (1).

Assumption 2. (i) Each function φi : Rn → R is continuously differentiable for i = 1, . . . , N.
(ii) The functions fM : Rn → R, M = 1, . . . , N, are bounded from below on Rn, i.e., there exists

flow ∈ R such that
fM(x) ≥ flow, 1 ≤ M ≤ N, x ∈ Rn.

(iii) The functions fM : Rn → R, M = 1, . . . , N, are bounded from above on a subset Ω ⊆ Rn,
i.e., there exists fup ∈ R such that

fM(x) ≤ fup, 1 ≤ M ≤ N, x ∈ Ω.

Furthermore, the iterates {xk}k∈N defined by Algorithm 1 are contained in Ω.
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Combining Step 4 of Algorithm 1 with Bound (3) and Assumption 2(iii), it is possible
to prove that for any realizations of the algorithm, the sequence {θk}k∈N is bounded away
from zero.

Lemma 1 ([11], Lemma 2). Let Assumptions 1 and 2 hold and consider a particular realization of
Algorithm 1. Let κφ > 0 be defined as follows:

κφ = max{| flow|, | fup|}. (17)

Then, {θk}k∈N is a positive, non-increasing sequence such that

θk ≥ θ = min

{
θ0,

(1− η1)(1− r)h
2kφ + h

}
, ∀ k ≥ 0. (18)

Furthermore, Condition (12) holds with θ = θk+1.

Since the acceptance test in Algorithm 1 employs function and gradient estimates, we
cannot expect that the objective function fN is decreased from one iteration to the other;
however, the authors in [11] showed that an appropriate Lyapunov function Ψ is reduced
at each iteration. This Lyapunov function is defined as

Ψ(x, M, θ, δ) = v(θ fM(x) + (1− θ)h(M) + θΣ) + (1− v)δ2, (19)

where v ∈ (0, 1) and Σ ∈ R are any constants that satisfy

fNk (x)− h(Nk) + Σ ≥ 0, x ∈ Ω, k ≥ 0, (20)

where such a constant exists thanks to Bound (3) and Assumption 2(ii). For all k ≥ 0, we
denote the values of Ψ along the iterates of Algorithm 1 as follows:

ψk = Ψ(xk, Nk, θk, δk), ∀ k ≥ 0. (21)

Thanks to (20) and the positive sign of h (see Assumption 1), we can easily deduce
that the sequence {ψk}k∈N is non-negative, indeed

ψk ≥ v
(
θk fNk (xk) + (1− θk)h(Nk) + θk(− fNk (xk) + h(Nk))

)
= vh(Nk) ≥ 0. (22)

Furthermore, the difference between two successive values ψk+1 and ψk can be easily
rewritten as

ψk+1 − ψk = v
(
θk+1( fNk+1(xk+1)− fNk (xk)) + (1− θk+1)(h(Nk+1)− h(Nk))

)
+v(θk+1 − θk)( fNk (xk)− h(Nk) + Σ) + (1− v)(δ2

k+1 − δ2
k ). (23)

If k is a successful iteration, then Nk+1 = Nt
k+1. By recalling (20) and the fact that the

sequence {θk}k∈N is monotone non-increasing (see Lemma 1), then, Equality (23) yields

ψk+1 − ψk ≤ −vAredk(xk+1, θk+1) + (1− v)(δ2
k+1 − δ2

k ). (24)

Otherwise, Algorithm 1 sets xk+1 = xk and Nk+1 = Nk. By inserting these updates in
(23), together with (20) and the fact that {θk}k∈N is non-increasing, we obtain

ψk+1 − ψk ≤ (1− v)(δ2
k+1 − δ2

k ). (25)

Using (24) and (25) in combination with Step 5 of Algorithm 1, we can prove the
following results.
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Theorem 1 ([11], Theorem 1). Let Assumptions 1–2 hold and consider a particular realization of
Algorithm 1. In (19), choose v ∈ (v†, 1), where v† is defined by

v† = max

{
(γ2 − 1)δ2

max

η2
1(1− r)h + (γ2 − 1)δ2

max
,

γ2 − 1
η1η2θ + γ2 − 1

}
. (26)

Then, there exists a constant σ = σ(v) > 0 such that

ψk+1 − ψk ≤ −σδ2
k , for all k ≥ 0, (27)

hence, the sequence {δk} in Algorithm 1 satisfies

lim
k→∞

δk = 0.

We now introduce a Lipschitz continuity assumption on the gradients of the functions
φi appearing in (1).

Assumption 3. Each gradient ∇φi is Li−Lipschitz continuous for i = 1, . . . , N. We use the
notation L = 1

2 max1≤i≤N Li.

The gradient estimates are bounded under Assumptions 2 and 3, as stated in the
following lemma.

Lemma 2 ([11], Lemma 5). Let Assumptions 2 and 3 hold. Then, there exists gmax such that for
any realization of Algorithm 1

‖gk‖ ≤ gmax, k ≥ 0, (28)

where gmax =
√

8Lκφ, and κφ is given in (17).

Let us introduce the following events

Gk,1 = {‖∇ fN(Xk)− Gk‖ ≤ ν∆k}, (29)

Gk,2 = {‖∇ fN(Xk)−∇ fNt
k+1

(Xk)‖ ≤ ν∆k}, (30)

where ν is a positive parameter. By using a similar terminology to the one employed in [22],
the iteration k is said to be true if the events Gk,1 and Gk,2 are both true.

The next lemma shows that k is successful whenever the iteration k is true and the
trust-region radius δk is sufficiently small. This result is crucial for the analysis in the next
section.

Lemma 3 ([11], Lemma 6). Let Assumptions 1–3 hold and set η3 = δmaxgmax(θ0(2ν+L)+(1−θ)µ)
η1(1−η1)(1−r)h .

Suppose that, for a particular realization of Algorithm 1, the iteration k is true and the following
condition holds

δk < min
{
‖gk‖

η2
,
‖gk‖

η3
,
(1− η1)‖gk‖

2ν + L

}
. (31)

Then, iteration k is successful.

3.2. Novel Convergence Results

Here, we derive two novel convergence results in probability holding for Algo-
rithm 1. The results are provided under the assumption that the random variables Gk
and ∇ fNt

k+1
(Xk) are sufficiently accurate estimators of the true gradient at Xk, in the proba-

bilistic sense specified below.



Axioms 2023, 12, 38 8 of 17

Assumption 4. Let Fk−1 = σ(G0, . . . , Gk−1,∇ fNt
1
(X0), . . . ,∇ fNt

k
(Xk−1)). Then, the events

Gk,1,Gk,2 are true with sufficiently high probability conditioned to Fk−1, and the estimators Gk and
∇ fNt

k+1
(Xk) are conditionally independent random variables given Fk−1, i.e.,

P(Gk,1|Fk−1) = π1, P(Gk,2|Fk−1) = π2, and π3 = π1π2 >
1
2

. (32)

First, we provide a liminf-type convergence result for SIRTR, which shows that the
gradient of the objective function converges in probability to zero relative to a subsequence
of the iterates.

Theorem 2. Suppose that Assumptions 1–4 hold. Then, there holds

P
(

lim inf
k→∞

‖∇ f (Xk)‖ = 0
)
= 1.

Proof. The proof parallels that in ([16], Theorem 4.16). By contrast, assume that there exists
ε > 0 such that the event

‖∇ f (Xk)‖ ≥ ε, ∀ k ≥ 0 (33)

holds with positive probability. Then, let {xk}k∈N be a realization of {Xk}k∈N such that
‖∇ f (xk)‖ ≥ ε for all k ≥ 0, and {δk}k∈N is the corresponding realization of {∆k}k∈N. From
Theorem 1, we know that limk→∞ δk = 0; therefore, there exists k̄ such that

δk < b = min
{

ε

2ν
,

ε

2η2
,

ε

2η3
,

ε(1− η1)

2(2ν + L)
,

δmax

γ

}
, ∀ k ≥ k̄. (34)

Consider the random variable Rk with realizations given by

rk = logγ

(
δk
b

)
, k ≥ 0. (35)

Note that rk satisfies the following properties.

(i) If k ≥ k̄, then rk ≤ 0; this is a consequence of (34).
(ii) If k is a true iteration and k ≥ k̄, then rk+1 = rk + 1; indeed, since Gk,1 is true and

δk < ε/(2ν), it follows that

‖gk −∇ fN(xk)‖ ≤ νδk <
ε

2
. (36)

Then, ‖∇ f (xk)‖ ≥ ε yields

‖gk‖ ≥
ε

2
, (37)

which, combined with (34), implies that δk satisfies Inequality (31). Thus, Lemma 3
implies that the iteration k is successful. Since δk ≤ δmax/γ and the k-th iteration is
successful, by (9) it follows that δk+1 = γδk. Hence, rk+1 = rk + 1.

(iii) If k is not a true iteration and k ≥ k̄, then rk+1 ≥ rk − 1; this is because since we cannot
apply Lemma 3 (k is not true), all we can say about the trust-region radius is that
δk+1 ≥ δk/γ.

Then, defining the σ-algebra FGk−1 = σ(1G0,1 · 1G0,2 , . . . ,1Gk−1,1
· 1Gk−1,2

), which is in-
cluded in Fk−1, it follows from properties (ii)–(iii) and Assumption 4 that

E(Rk+1|FGk−1) ≥ π1π2(Rk + 1) + (1− π1π2)(Rk − 1) ≥ Rk,
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where the second inequality follows from π1π2 > 1
2 . Hence, we have that {Rk}k∈N is a

submartingale. We also define the random variable

Wk =
k

∑
i=0

(2 · 1Gi,1 · 1Gi,2 − 1), k ≥ 0. (38)

{Wk}k∈N is also a submartingale as

E(Wk+1|FGk−1) = E(Wk|FGk−1) + 2E(1Gk+1,1
· 1Gk+1,2

|FGk−1)− 1

= Wk + 2P(Gk+1,1 ∩ Gk+1,2|FGk−1)− 1

≥Wk,

where, again, the last inequality is due to the fact that π1π2 > 1
2 . Since Wk cannot have a

finite limit, from ([16], Theorem 4.4) it follows that the event lim supk→∞ Wk = ∞ holds
almost surely. Since we have rk − rk0 ≥ wk − wk0 by definition of {Rk}k∈N and {Wk}k∈N, it
follows that Rk has to be positive infinitely often with a probability of one. However, this
contradicts property (i) listed above, which allows us to conclude that (33) cannot occur.

In the following, we show that SIRTR generates iterates such that the corresponding
gradients evaluated at the SIRTR iterates converge (in probability) to zero. The next lemma
is similar to ([6], Lemma 4.2); however, some crucial modifications are needed here; indeed,
unlike in [6], we take into account the fact that SIRTR enforces the decrease in the Lyapunov
function Ψ defined in (19) rather than the objective function.

Lemma 4. Suppose that Assumptions 1–4 hold. Let {Xk} and {∆k} be the random sequences
generated by Algorithm 1. For a fixed ε > 0, define the following subset of natural numbers

{Ki} = {k ≥ 0 : ‖∇ f (Xk)‖ > ε}.

Then,
∑

k∈{Ki}
∆k < ∞.

holds almost surely.

Proof. Let us consider the generic realizations {xk}k∈N, {gk}k∈N, {δk}k∈N, {θk}k∈N, and
{ki}i∈N of Algorithm 1. Furthermore, we let {pi} be the subsequence of {ki}, where the
iteration is true, whereas {ni} denotes the complementary subsequence so that {ki} =
{pi} ∪ {ni}. First, we show that ∑k∈{pi} δk < ∞. If {pi} is finite, then there is nothing

to prove. Otherwise, since limk→∞ δk = 0, there exists k̃ such that δk < b for all k ≥ k̃,
where b is given in (34). Let us consider any pi ≥ k̃. Since Gk,1 is true, δpi < ε/(2ν), and
‖∇ f (xpi )‖ > ε, we can reason as in (36) and (37) to conclude that ‖gpi‖ ≥ ε/2. Combining
this lower bound with δpi < b, we have that Inequality (31) is satisfied with k = pi. Hence,
iteration pi is successful by Lemma 3 and we have

Aredk(xpi+1 , θpi+1) ≥ η1 Predk(θpi+1)

≥ η2
1(h(Npi )− h(Ñpi+1))

≥ η2
1(1− r)h(Npi )

≥
η2

1(1− r)h
gmaxδmax

δpi‖gpi‖, (39)

where the first inequality is the acceptance test (14), the second follows from Step 4 of the
SIRTR algorithm, the third follows from (6), and the last follows from (3) and Lemma 2.
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Now, starting from Inequality (24) (which holds only for successful iterations), we can
derive the following chain of inequalities

ψpi − ψpi+1 > v Aredk(xpi+1, θpi+1)− (1− v)(δ2
pi+1 − δ2

pi
)

≥
vη2

1(1− r)h
gmaxδmax

δpi‖gpi‖ − (1− v)
(γ2 − 1)

η2
δpi‖gpi‖

=

(
v

(
η2

1(1− r)h
gmaxδmax

+
(γ2 − 1)

η2

)
− (γ2 − 1)

η2

)
︸ ︷︷ ︸

:=c

δpi‖gpi‖, (40)

where the second inequality follows from (39), (9), and (15). Now, recalling the definition
of v† given in (26), we choose v in (19) as

max

{
v†,

(γ2 − 1)gmaxδmax

η2
1η2(1− r)h + (γ2 − 1)gmaxδmax

}
< v < 1, (41)

and, consequently, c in (40) is positive while keeping Theorem 1 still applicable. Then,
plugging ‖gpi‖ ≥ ε

2 into (40) yields

ψpi − ψpi+1 >
εc
2

δpi .

Summing the previous inequality over k ∈ {pi}, k ≥ k̃, and noting that ψk − ψk+1 > 0
for any k (due to (27)), we obtain

∑
k∈{pi}, k≥k̃

δk <
2
εc ∑

k∈{pi}, k≥k̃

(ψk − ψk+1)

≤ lim
K→∞

2
εc

K

∑
k=k̃

(ψk − ψk+1)

= lim
k→∞

2
εc

(ψk̃ − ψK+1)

≤ 2
εc

ψk̃,

where the last inequality follows from (22). Then, we have shown that

∑
k∈{pi}

δk < ∞.

Furthermore, let us introduce the Bernoulli variable Bk = 2 · 1Gk,1
· 1Gk,2

− 1, which
takes a value of 1 when the iteration k is true and a value of −1 otherwise. Note that due to
Assumption 4,

P(Bk = 1|Fk−1) >
1
2

.

Moreover, the sequence {∆k} is a sequence of non-negative uniformly bounded ran-
dom variables. Then, we can proceed as in the proof in ([6], Lemma 4.2), and using ([6],
Lemma 4.1) we obtain

P

 ∑
k∈{Pi}

∆k < ∞

 ∩
 ∑

k∈{Ni}
∆k = ∞


 = 0.
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This implies that almost surely

∑
k∈{Ni}

∆k < ∞,

hence, the thesis follows.

As a byproduct of the previous lemma, we obtain the expected convergence result in
probability in the exact same way as in [6].

Theorem 3. Suppose that Assumptions 1–4 hold. Let {Xk} be the sequence of random iterates
generated by Algorithm 1. Then, there holds

P
(

lim
k→∞
‖∇ f (Xk)‖ = 0

)
= 1.

Proof. The proof follows exactly as in ([6], Theorem 4.3).

4. Numerical Illustration

In this section, we evaluate the numerical performance of Algorithm 1 equipped with
the probabilistic accuracy requirements imposed in Assumption 4. Algorithm 1 was imple-
mented using MATLAB R2019a, and the numerical experiments were performed on an 8
GB RAM laptop with an Intel Core i7-4510U CPU 2.00-2.60 GHz processor. The related soft-
ware can be downloaded from sites.google.com/view/optml-italy-serbia/home/software
(accessed on 1 September 2022).

We perform our numerical experiments on a binary classification problem. Denoting
with {(ai, bi)}N

i=1 a training set, where ai ∈ Rn is the i-th feature vector, and bi ∈ {0, 1} is
the associated label, we address the following nonconvex optimization problem:

min
x∈Rn

fN(x) =
1
N

N

∑
i=1

(
bi −

1

1 + e−aT
i x

)2
. (42)

Note that (42) can be framed in Problem (1) by setting φi(x) = (bi − 1/(1 + e−aT
i x))2,

i = 1, . . . , N, namely the composition of the least-square loss with the sigmoid function.
Furthermore, it is easy to see that the objective function fN satisfies Assumption 2 since
each φi is continuously differentiable and fN is bounded from below and above.

In Table 1, we report the four data sets used for our experiments. For each data set,
we specify the number of feature vectors N, the number of components n of each feature
vector, and the size NT of the testing set INT .

Table 1. Data sets used.

Training Set Testing Set

Data Set N n NT

A8A [26] 15,887 123 6809
A9A [26] 22,793 123 9768

MNIST [27] 60,000 784 10,000
PHISHING [28] 7739 68 3316

We implement two different versions of Algorithm 1, which differ from one another in
the way the two sample sizes Nt

k+1 and Nk+1,g for the estimators in (4) and (5) are selected.

• SIRTRnop: this is Algorithm 1 implemented as in [11]. In particular, the infeasibility
measure h and the initial penalty parameter θ0 are chosen as follows:

h(M) =
N −M

N
, θ0 = 0.9.

sites.google.com/view/optml-italy-serbia/home/software
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In Step 1, the reference sample size Ñk+1 is computed as follows:

Ñk+1 = min{N, dc̃Nke}, (43)

where c̃ = 1.05. It is easy to see that Rule (43) complies with Condition (6) by setting
r = (N − (c̃− 1))/N. In Step 2, the trial sample size Nt

k+1 is chosen in compliance
with Condition (7) as

Nt
k+1 =


dÑk+1 − µNδ2

ke, if dÑk+1 − µNδ2
ke ∈ [N0, 0.95N]

Ñk+1, if dÑk+1 − µNδ2
ke < N0

N, if dÑk+1 − µNδ2
ke > 0.95N.

(44)

In Step 3, the sample size Nk+1,g is fixed as

Nk+1,g = dcNt
k+1e, (45)

where c = 0.1. Furthermore, the set INt
k+1

for computing fNt
k+1

(xk) and fNt
k+1

(xk + pk)

is sampled uniformly at random using the MATLAB command randsample, whereas
gk ∈ Rn is a sample average approximation as in (5) using INk+1,g ⊆ INt

k+1
. The other

parameters are set as x0 = (0, 0, . . . , 0)T , δ0 = 1, δmax = 1, γ = 2, η = 10−1, η2 = 10−6,
µ = 100/N. Note that Choices (44)–(45) for the sample sizes Nt

k+1, Nk+1,g are not
sufficient to guarantee that Assumption 4 holds so that Theorems 2–3 do not apply to
this version of Algorithm 1.

• SIRTRp: this implementation of Algorithm 1 differs from the previous one only in
the choice of the sample sizes Nt

k+1, Nk+1,g. In this case, we force these two param-
eters to comply with Assumption 4. According to ([29], Theorem 7.2, Table 7.1), a
subsampled estimator ∇ fS(xk) =

1
S ∑i∈IS

∇φi(xk) with sample size |IS| = S satisfies
the probabilistic requirement

P(‖∇ fS(Xk)−∇ fN(Xk)‖ ≤ νδk|Fk−1) ≥ π, (46)

where π ∈ (0, 1) if the sample size S complies with the following lower bound

S ≥ Nχ,ν,π
k+1 = min

{
N,
⌈

4χ

νδk

(
2χ

νδk
+

1
3

)
log
(

n + 1
1− π

)⌉}
, (47)

where χ = 1
5 maxi=1,...,N ‖ai‖. Based on the previous remark, we choose the samples

sizes of SIRTRp as follows

Nt
k+1 =


max{Nχ,ν,π

k+1 , dÑk+1 − µNδ2
ke}, if dÑk+1 − µNδ2

ke ∈ [N0, 0.95N]

max{Nχ,ν,π
k+1 , Ñk+1}, if dÑk+1 − µNδ2

ke < N0

N, if dÑk+1 − µNδ2
ke > 0.95N.

(48)

Nk+1,g = max
{

Nχ,ν,π
k+1 , dcNt

k+1e
}

. (49)

Setting π > 1/
√

2, choosing Nt
k+1, Nk+1,g as in (48) and (49), and sampling INt

k+1

and INk+1,g uniformly and independently at random in {1, . . . , N}, we guarantee
that Assumption 4 holds with π1 = π2 = π, thus ensuring the convergence in
probability of SIRTRp according to Theorems 2–3. For our tests, we set π = 3/4 and
ν = 10‖∇ fN(x0)−∇ fN0(x0)‖.
For each data set, we perform 10 runs of both SIRTRnop and SIRTRp and assess their

performances by measuring the following metrics:

• training loss, given as fN(xk) with fN defined in (42);
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• testing loss, defined as

fNT (xk) =
1

NT
∑

i∈INT

φi(xk),

where INT denotes the testing set and NT its dimension;
• classification error, defined as

ek =
1

NT
∑

i∈INT

|bi − bpred
i (xk)|, (50)

where bi denotes the true label of the i−th feature vector of the testing set and
bpred

i (xk) = max{sign(aT
i xk), 0} is the corresponding predicted label at iteration k.

We note that (42) can be seen as the optimization problem arising from training a
neural network with no hidden layers and the sigmoid function as the activation function
for the output layer. Then, as in [30,31], we measure the computational cost of evaluating
the objective function and its gradient in terms of forward and backward propagations.
Namely, we count the number of full function and gradient evaluations, by considering
the computation of a single function φi equivalent to 1

N forward propagations, and the
evaluation of a single gradient∇φi equivalent to 2

N propagations. Regarding SIRTRnop, we

note that the computational cost per iteration is determined by
Nt

k+1+Nk+1,g
N propagations

since INk+1,g ⊆ INt
k+1

. On the contrary, the computational cost of SIRTRp is determined

by
Nt

k+1
N +

2Nk+1,g
N propagations, as INt

k+1
and INk+1,g are sampled independently from one

another. For both algorithms, the computational cost per iteration increases as the iterations
proceed; indeed, since δk tends to zero as k tends to infinity (Theorem 1), Rules (44)–(48) will
eventually select the trial sample size Nt

k+1 equal to the reference sample size Ñk+1, which is
increasing geometrically. We expect that the computational cost increases faster in SIRTRp,
as this algorithm also requires the gradient sample size Nk+1,g to increase due to Conditions
(47)–(49). Finally, we note that the computational cost per iteration of both algorithms is
higher than that of the standard stochastic gradient algorithm, which is usually 2Ng

N , with
Ng being a prefixed gradient sample size. However, the increasing sample sizes result
in more accurate function and gradient approximations so the higher computational cost
likely implies a larger reduction in the training loss fN per iteration, as seen in previous
comparisons of SIRTR with a non-adaptive stochastic approach in [11].

In Figure 1, we show the decrease in the training loss, testing loss, and classification
error (all averaged over the 10 runs) versus the average computational cost for the first
20 propagations. For most data sets, we observe that SIRTRnop performs comparably or
even better than SIRTRp. However, for one of the four data sets (mnist) in SIRTRnop, the
accuracy deteriorates after the first propagations, whereas SIRTRp provides a more accurate
classification and a quite steady decrease in the average training loss, testing loss, and
classification error. This different performance of the two algorithms can be explained by
looking at Figure 2, which shows the increase in the percentage ratio 100Nk+1

N of the sample
size Nk+1 over the data set size N (averaged over the 10 runs) for both algorithms. As we
can see, the sample size in SIRTRp rapidly increases to 60% of the data set size in the first
50 iterations, whereas the same percentage is achieved by SIRTRnop after 150–200 iterations.
Overall, we can conclude that the probabilistic requirements of Assumption 4 ensure the
theoretical support for convergence in probability but might be excessively demanding.
In fact, the numerical examples show that a slower increase in the sample size than that
imposed by the probabilistic requirements of Assumption 4 provides a good trade-off
between the computational cost and the accuracy in the classification.

In Figure 3, we test the sensitivity of SIRTRp with respect to the initial penalty pa-
rameter θ0 by reporting the average training loss versus the average computational cost
obtained with three different values of θ0. We observe that the performance of the algorithm
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is not considerably affected by the choice of this parameter, although large oscillations
in the average training loss occur for smaller values of θ0 in mnist when θ0 = 0.1. As a
general comment, small initial values of θ0 may not be convenient, as the sequence {θk}
is non-increasing and small values of θk promote a decrease in the infeasibility measure h
rather than a decrease in the training loss (see the definition of the actual reduction in (13)).
Similar considerations can be made for SIRTRnop in Figure 4.
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Figure 1. From top to bottom row: data sets a8a, a9a, mnist, phishing. From left to right: average
training loss, testing loss, and classification error versus average computational cost.
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Figure 2. Average percentage ratio of the sample size Nk+1 over the data set size N versus iterations.
Top row: a8a (left) and a9a (right). Bottom row: mnist (left) and phishing (right).



Axioms 2023, 12, 38 15 of 17

0 10 20 30 40 50
Cost

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Cost

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Cost

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Cost

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 tr
ai

ni
ng

 lo
ss

Figure 3. Average training loss versus average computational cost of SIRTRp equipped with different
values for the initial penalty parameter θ0. Top row: a8a (left) and a9a (right). Bottom row: mnist
(left) and phishing (right).
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Figure 4. Average training loss versus average computational cost of SIRTRnop equipped with
different values for the initial penalty parameter θ0. Top row: a8a (left) and a9a (right). Bottom row:
mnist (left) and phishing (right).

5. Conclusions

In this paper, we have proved the convergence in probability of a stochastic trust-
region method based on the inexact restoration approach (SIRTR) under the assumption
that the function and gradient estimates are sufficiently accurate with sufficiently high
probability. This result is novel for SIRTR and agrees with other results obtained in the
existing literature [16,18,19]. The numerical experiments on binary classification show that
the probabilistic requirements improve the numerical stability of the algorithm, ensuring
satisfactory accuracy for all data sets. Future work could address the replacement of
the probabilistic requirements considered here with alternative strategies for ensuring
convergence in probability, such as variance reduction techniques, or the development of
a second-order version of SIRTR for improving accuracy based on approximations of the
Hessian obtained through subsampling.
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