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1. Introduction

In a study related to analytic functions starlike in one direction, Robertson in [1]
defined the following integral

g(z) =
∫ z

0

1 + ie−iα sin α[p(z)− 1]
1− 2 cos βze−iα + e−2iαz2 dz (1)

and established that g(z) is univalent in |z| < 1 if α, β are in [0, π] and Re p(z) ≥ 0. Here,
in this paper, we study the geometrical implications of the integrand defined in (1) and its
applications to certain class of analytic functions defined in the unit disc. Let A denote the
class of functions analytic in the unit disc U = {z : |z| < 1} and having an expansion of
the form

f (z) = z +
∞

∑
n=2

anzn. (2)

In addition, let NP denote the class of functions that are analytic in the unit disc and
equals 1 at z = 0. We call P the class of functions p ∈ NP which satisfies Re(p(z)) > 0,
z ∈ U .

Very well-known subclasses of A are the so-called family of starlike and convex func-
tions, which we denote here by S∗ and C, respectively. Using the principal of subordination [2],
Ma and Minda [3] defined the classes S∗(ψ) and C(ψ) as follows.

S∗(ψ) =
{

f ∈ A :
z f ′(z)

f (z)
≺ ψ(z)

}
and C(ψ) =

{
f ∈ A : 1 +

z f ′′(z)
f ′(z)

≺ ψ(z)
}

,

where ψ(z) ∈ P maps U onto a starlike region with respect to 1 with ψ′(0) > 0 and
symmetric with respect to the real axis. The classes S∗(ψ) and C(ψ) consolidated the study
of several generalizations of starlike and convex functions. Setting ψ to be a conic region,
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several authors studied the classes of analytic functions associated with the conic regions.
Most popular among those studies are S∗(

√
1 + z) defined by Sokół [4] and followed by

S∗(z +
√

1 + z2) defined by Raina and Sokół [5]. For studies related to the conic region,
refer to [6–9] and references provided therein.

Convex and Starlike in One Direction

A domain D is convex in the direction of the line L if each line parallel to L either
misses D, or is contained entirely in D, or intersection with D is either a segment or a
ray. Note that such a domain need not be convex or starlike with respect to any point. A
function f ∈ A is said to be convex in the direction of the line L if it maps the unit disc
onto a domain which is convex in the direction of the line L. Here, we denote such a set
of functions as CV(r), if L is the real axis. Similarly, ST (r) denotes the class of functions
starlike in the direction of the real axis, refer to [1] for its formal definition.

Now, we define the function

Λ[α, β; p(z)] =
e−iα[cos α + i sin α p(z)]

1− 2 cos βze−iα + e−2iαz2 , (3)

with α, β ∈ [0, π] and p(z) ∈ P . The function Λ[α, β; p(z)] is related to the class of
functions starlike with respect to the real axis (see page 210 in [10]). To be precise, the
function f (z) ∈ A is said to be in ST (r) if and only if there is a α, β ∈ [0, π] and p(z) ∈ P
such that

f (z)
z

=
e−iα[cos α + i sin α p(z)]

1− 2 cos βze−iα + e−2iαz2 .

Now, let p(z) = 1 + z/1 − z in (3), it can be seen that
{

Λ
[
α, β; 1+z

1−z

]}
z=0

= 1

but Re
{

Λ
[
α, β; 1+z

1−z

]}
≯ 0 (see Figure 1). Hence, we observe that in general func-

tion Λ[α, β; p(z)] does not belong to class P , but belongs to NP . Further, to illustrate
the fact that impact of Λ[α, β; p(z)] is not same on all conic region. We let p(z) =

z +
√

1 + z2 in (3), then the function Λ
[
α, β; z +

√
1 + z2

]
is convex univalent in U . How-

ever, Re Λ
[
α, β; z +

√
1 + z2

]
≯ 0 (z ∈ U ), so the function Λ

[
α, β; z +

√
1 + z2

]
which

is convex in U does not belong to P . However, the function Λ
[
α, β; z +

√
1 + z2

]
will

be convex and in P if |z| < 0.7 (see Figure 2). From Figures 1 and 2, we can see that
Λ[α, β; p(z)] ∈ NP and maps the unit disc onto a domain which is symmetric with respect
to the real axis irrespective of the choice of p(z).

-5 0 5

-5

0

5

Figure 1. Mapping of the unit disc under Λ
[

π
2 , π

2 ; p(z)
]

if p(z) = 1 + z/1− z.
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Figure 2. Mapping of |z| < 0.7 under Λ
[

π
2 , π

2 ; p(z)
]

if p(z) = 1 + z/1− z.

Motivated by [11–17], we now define a generalized class of Bazilevič functions.

Definition 1. For 0 ≤ α, β < π, ν ≥ 0 and γ ∈ C such that Re(γ) > 0, a function f belongs to
the classMSν(α, β; γ; ψ(z)) if it satisfies{

(1− γ)

(
f (z)

z

)ν

+ γ f ′(z)
(

f (z)
z

)ν−1
}
≺ e−iα[cos α + i sin α ψ(z)]

1− 2 cos βze−iα + e−2iαz2 , (4)

where ψ(z) ∈ NP has a power series representation of the

ψ(z) = 1 + R1z + R2z2 + R3z3 · · · . (5)

Setting α = β = 0 and p(z) = 1− z2 in Definition 1, we get

MSν(0, 0; γ; 1− z2) =

{
f ∈ A : Re

[
(1− γ)

(
f (z)

z

)ν

+ γ
z f ′(z)

f (z)

(
f (z)

z

)ν]
> 0

}
.

For different choices of the parameters, the classMSν(α, β; γ; ψ(z)) reduces to those
classes which have been studied in [18–21]. In particularMSν(0, 0; 1; 1− z2) is the well-
known class of Bazilevič functions. For other studies closely related to this present study,
refer to [22–24].

2. Inclusion Relations and Integral Representations

Now, we state some results which we use to establish our main results.

Lemma 1 ([25]). Let g be convex in U , with g(0) = a, γ 6= 0 and Re(γ) > 0. Suppose that ϑ(z)
is analytic U , which is given by

ϑ(z) = a + ϑnzn + ϑn+1zn+1 + · · · , z ∈ U . (6)

If

ϑ(z) +
zϑ
′
(z)
δ
≺ g(z),

then
ϑ(z) ≺ q(z) ≺ g(z),

where
q(z) =

δ

n zδ/n

∫ z

0
g(t) t(δ/n)−1dt.

The function q is convex and is the best (a, n)-dominant.



Axioms 2023, 12, 24 4 of 10

In order to further broaden our study, we drop the necessity of p(z) in (3) to satisfy
the condition Re p(z) > 0. So, hereafter, throughout this paper, we denote

Λ[α, β; ψ(z)] =
e−iα[cos α + i sin α ψ(z)]

1− 2 cos βze−iα + e−2iαz2 , (7)

where ψ(z) ∈ NP is defined as in (5).

Theorem 1. Let the function Λ[α, β; ψ(z)] defined as in (7) be convex univalent in U. Let
f ∈ MSν(α, β; γ; ψ(z)) with Re(γ) > 0 and ν 6= 0, then(

f (z)
z

)ν

≺ q(z) =
ν

γ
z
−ν
γ

∫ z

0
t

ν
γ−1
(

e−iα[cos α + i sin α ψ(t)]
1− 2 cos βte−iα + e−2iαt2

)
dt ≺ Λ[α, β; ψ(z)]. (8)

and q(z) is the best dominant.

Proof. Let h(z) be defined by

h(z) =
(

f (z)
z

)ν

, z ∈ U . (9)

Then the function h(z) is of the form h(z) = 1 + c1z + c2z2 + · · · and is analytic in U .
Differentiating both sides of (9) and by simplifying, we have

(1− γ)

(
f (z)

z

)ν

+ γ f ′(z)
(

f (z)
z

)ν−1

= h(z) +
γ

ν
zh′(z). (10)

By hypothesis f ∈ MSν(α, β; γ; ψ(z)), so from Definition 1, we have

h(z) +
γ

ν
zh′(z) ≺ e−iα[cos α + i sin α ψ(z)]

1− 2 cos βze−iα + e−2iαz2 .

Applying Lemma 1 to (10) with δ = ν
γ and n = 1, we get(

f (z)
z

)ν

≺ ν

γ
z
−ν
γ

∫ z

0
t

ν
γ−1
(

e−iα[cos α + i sin α ψ(t)]
1− 2 cos βte−iα + e−2iαt2

)
dt ≺ Λ[α, β; ψ(z)]. (11)

Hence, the proof of the Theorem 1

Remark 1. From (10), it can be easily seen that if γ = 0, we can get(
f (z)

z

)ν

≺ e−iα[cos α + i sin α ψ(z)]
1− 2 cos βze−iα + e−2iαz2 .

Corollary 1. Let f ∈ MSν(π
2 , 0; γ; 1 + z2) with Re(γ) > 0, then for ν 6= 0, we have(

f (z)
z

)ν

≺ q(z) =
ν

γ
z
−ν
γ

∫ z

0
t

ν
γ−1
(

1− it
1 + it

)
dt ≺ 1 + z

1− z
.

and q(z) is the best dominant.

Proof. Let ψ(z) = 1 + z2 in (7). Since ψ(z) = 1 + z2 maps unit disc onto convex domain
in the right half plane, the choice of p(z) = 1 + z2 is admissible as per the Definition 1.
Replacing α = π

2 , β = 0 and ψ(z) = 1 + z2 in (7), we get

Λ
(π

2
, 0, 1 + z2

)
=

1 + z2

1 + 2iz− z2 =
1− iz
1 + iz

.
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Clearly,the function Λ
(

π
2 , 0, 1 + z2) maps the unit disc on to convex region which is

symmetric with respect to the real axis (see Figure 3).

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8

Figure 3. Mapping of the unit disc under Λ
(

π
2 , 0, ψ(z)

)
if ψ(z) = 1 + z2.

On replacing the superordinate function in Theorem 1, we get the desired result.

Corollary 2. Let f ∈ MSν(π
2 , π

2 ; γ; (1 + z)2) with Re(γ) > 0 , then for ν 6= 0, we have(
f (z)

z

)ν

≺ q(z) =
ν

γ
z
−ν
γ

∫ z

0
t

ν
γ−1
(

1 + t
1− t

)
dt ≺ 1 + z

1− z
.

and q(z) is the best dominant.

Remark 2. Notice that ψ(z) = (1 + z)2 in the Corollary 2 does not belong to P (see Figure 4). How-
ever, ψ(z) = (1 + z)2 is admissible as per the definition of the function classMSν(α, β; γ; ψ(z)),
as ψ(0) = 1 and ψ(z) ∈ NP .

0 1 2 3 4

-2

-1

0

1

2

Figure 4. Mapping of the unit disc under Λ
(

π
2 , π

2 , ψ(z)
)

if ψ(z) = (1 + z)2.

If we let γ = 1 = ν in Corollary 1, we get

Corollary 3. Let f ∈ MSν(π
2 , 0; 1; 1 + z2) with Re(γ) > 0, then

f (z) ≺ q(z) = −z− i log(1 + z2).

and q(z) is the best dominant.
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If we let γ = 1 = ν in Corollary 2, we get

Corollary 4. Let f ∈ MSν(π
2 , π

2 ; 1; (1 + z)2) with Re(γ) > 0, then

f (z) ≺ q(z) = −z− 2 log(1− z).

and q(z) is the best dominant.

As a consequence of Theorem 1, we have the following integral representation of the
classMSν(α, β; γ; ψ(z)).

Theorem 2. Let the function Λ[α, β; ψ(z)] defined as in (7) be convex in U . Let
f ∈ MSν(α, β; γ; ψ(z)) with 0 ≤ γ ≤ 1, then for ν 6= 0, we have

(i) for 0 < γ ≤ 1,

f (z) =
{

ν

γ
z−ν

(
1
γ−1

) ∫ z

0
t

ν
γ−1
(

e−iα(cos α + i sin α ψ[w(t)])
1− 2 cos βw(t)e−iα + e−2iα[w(t)]2

)
dt
} 1

ν

,

(ii) for γ = 0,

f (z) = z
{

e−iα(cos α + i sin α ψ[w(z)])
1− 2 cos βw(z)e−iα + e−2iα[w(z)]2

} 1
ν

,

where w is analytic in U with w(0) = 0 and |w(z)| < 1.

Remark 3. Theorems 1 and 2 are not valid for ν = 0. Let us suppose that ν = 0, then (4) can be
equivalently written as

d
dz

log
[

f (z)
z

]
=

e−iα(cos α + i sin α ψ[w(z)])
γ z[1− 2 cos βw(z)e−iα + e−2iα[w(z)]2]

− 1− 2γ

γ z
.

Integrating the above expression, we get

f (z) = z exp
{∫ z

0

(
e−iα(cos α + i sin α ψ[w(t)])

γ t[1− 2 cos βw(t)e−iα + e−2iα[w(t)]2]
− 1− 2γ

γ t

)
dt
}

(γ 6= 0).

Unlike in Theorem 1, Λ[α, β; ψ(z)] needs not be convex if ν = 0.

3. Initial Coefficients’ Bounds

The Fekete–Szegö problem possesses various geometric quantities which are helpful
in establishing univalence and norm estimates. Most of all recent papers establish the
Fekete–Szegö inequalities for the defined function classes.

We need the following well-known coefficient estimates for functions belonging to the
class P .

Lemma 2 ([3]). Let p ∈ P and also let v be a complex number, then

|p2 − vp2
1| ≤ 2 max{1, |2v− 1|}. (12)

The result is sharp for functions given by

p(z) = p2(z) =
1 + z2

1− z2 , p(z) = p1(z) =
1 + z
1− z

.

Lemma 3 ([26]). If p(z) = 1 + ∑∞
k=1 pkzk ∈ P , then |pk| ≤ 2 for all k ≥ 1, and the inequality is

sharp for p(z) = p1(z) = 1+z
1−z .



Axioms 2023, 12, 24 7 of 10

Theorem 3. Let f (z) = z + a2z2 + a3z3 + · · · ∈ MSν(α, β; γ; ψ(z)) for z ∈ U . Also, let
α, β ∈ [0, π] and p(z) ∈ NP satisfy the condition for all z ∈ U∣∣∣∣Im( i sin α zp′(z)

e−iα[cos α + i sin α p(z)]
− e−2iαz2 − 2 cos βze−iα

1− 2 cos βze−iα + e−2iαz2

)∣∣∣∣ < 1. (13)

Then, the bounds of the initial coefficients of f are given by

|a2| ≤

√
4 cos2 β + sin2 αR2

1

|ν + γ| (14)

and

|a3| ≤
2 cos β

|ν + 2γ| max
{

1,
∣∣∣∣ sec β− 4 cos β

2

∣∣∣∣}+
sin α|R1|
|ν + 2γ|

max

{
1,

∣∣∣∣∣R2

R1
+ 2e−iα cos β− (ν− 1)e−iα(2 cos β + i sin α R1)

2(ν + 2γ)

2i sin α(ν + γ)2R1

∣∣∣∣∣
}

. (15)

Further, the Fekete–Szegö inequality for µ ∈ C is given by∣∣∣a3 − µa2
2

∣∣∣ ≤ 2 cos β

|ν + 2γ| max
{

1,
∣∣∣∣ e−iα sec β− 4e−iα cos β

2

∣∣∣∣}+
sin α|R1|
|ν + 2γ|

max

{
1,

∣∣∣∣∣R2

R1
+ 2e−iα cos β− (ν + 2µ− 1)e−iα(2 cos β + i sin α R1)

2(ν + 2γ)

2i sin α(ν + γ)2R1

∣∣∣∣∣
}

.

Proof. The function Λ[α, β; ψ(z)] defined in (7) belongs to NP . The hypothesis (13) is
equivalent to

∣∣∣Im( zΛ′ [α, β; ψ(z)]
Λ[α, β; ψ(z)]

)∣∣∣ < 1, which implies the function Λ[α, β; ψ(z)] ∈ P (see

Theorem 2 in [27]). Now, f ∈ MSν(α, β; γ; ψ(z)) (z ∈ U ) implies that there is a Schwarz
function w(z) such that{

(1− γ)

(
f (z)

z

)ν

+ γ f ′(z)
(

f (z)
z

)ν−1
}

=
e−iα(cos α + i sin α ψ[w(z)])

1− 2 cos βw(z)e−iα + e−2iα[w(z)]2
. (16)

Define the function h(z) by

h(z) = 1 + h1z + h2z2 + · · · = 1 + w(z)
1− w(z)

≺ 1 + z
1− z

, z ∈ U . (17)

We can note that h(0) = 1 and h ∈ P (see Lemma 3). Using (17), it is easy to see that

w(z) =
h(z)− 1
h(z) + 1

=
1
2

[
h1z +

(
h2 −

h2
1

2

)
z2 +

(
h3 − h1h2 +

h3
1

4

)
z3 + · · ·

]
.

On applying the above expression in (16), after a long and tedious computation,
we get

e−iα(cos α + i sin α ψ[w(z)])
1− 2 cos βw(z)e−iα + e−2iα[w(z)]2

= 1 +
e−iα h1

2
(2 cos β + i sin α R1)z

+

{
e−iα cos β

[
h2 −

h2
1

4

(
e−iα sec β− 4e−iα cos β + 2

)]

+
ie−iα sin αR1

2

[
h2 −

h2
1

2

(
1− R2

R1
− 2e−iα cos β

)]}
z2 + · · · . (18)
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The left-hand side of (16) is equivalent to

{
(1− γ)

(
f (z)

z

)ν

+ γ f ′(z)
(

f (z)
z

)ν−1
}

= 1 + (ν + γ)a2z + (ν + 2γ)

[
a3 +

(ν− 1)a2
2

2

]
z2 + · · · . (19)

From (18) and (19), we have

a2 =
e−iα h1

2(ν + γ)
(2 cos β + i sin α R1) (20)

and

a3 =
e−iα cos β

(ν + 2γ)

[
h2 −

h2
1

4

(
e−iα sec β− 4e−iα cos β + 2

)]
+

ie−iα sin αR1

2(ν + 2γ)[
h2 −

h2
1

2

(
1− R2

R1
− 2e−iα cos β +

(ν− 1)e−iα(2 cos β + i sin α R1)
2(ν + 2γ)

2i sin α(ν + γ)2R1

)]
(21)

Hence, applying Lemma 3 in (20), we get (14). To obtain (15), we apply Lemma 2
in (21).

In view of the Equations (20) and (21), for µ ∈ C, we have

∣∣∣a3 − µa2
2

∣∣∣ = ∣∣∣∣∣ e−iα cos β

(ν + 2γ)

[
h2 −

h2
1

4

(
e−iα sec β− 4e−iα cos β + 2

)]
+

ie−iα sin αR1

2(ν + 2γ)[
h2 −

h2
1

2

(
1− R2

R1
− 2e−iα cos β +

(ν− 1)e−iα(2 cos β + i sin α R1)
2(ν + 2γ)

2i sin α(ν + γ)2R1

)]

−
µe−2iα h2

1(2 cos β + i sin α R1)
2

4(ν + γ)2

∣∣∣∣∣
=

∣∣∣∣∣ e−iα cos β

(ν + 2γ)

[
h2 −

h2
1

4

(
e−iα sec β− 4e−iα cos β + 2

)]
+

ie−iα sin αR1

2(ν + 2γ)

[
h2 −

h2
1

2(
1− R2

R1
− 2e−iα cos β +

(ν + 2µ− 1)e−iα(2 cos β + i sin α R1)
2(ν + 2γ)

2i sin α(ν + γ)2R1

)]∣∣∣∣∣
≤ 2|e−iα cos β|

|ν + 2γ| max
{

1,
∣∣∣∣ e−iα sec β− 4e−iα cos β

2

∣∣∣∣}+

∣∣ie−iα sin αR1
∣∣

|ν + 2γ|

max

{
1,

∣∣∣∣∣R2

R1
+ 2e−iα cos β− (ν + 2µ− 1)e−iα(2 cos β + i sin α R1)

2(ν + 2γ)

2i sin α(ν + γ)2R1

∣∣∣∣∣
}

. (22)

On simplifying (22), we get (16). Hence, the proof of Theorem 3 is completed.

Letting ν = 0, γ = 1, α = π
2 = β and ψ(z) = (1 + z)2 in Theorem 3, we get

Corollary 5. If f (z) = z + a2z2 + a3z3 + · · · ∈ A satisfy the inequality

z f ′(z)
f (z)

≺ 1 + z
1− z

.
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Then, the bounds of the initial coefficients of f are given by

|a2| ≤ 2, |a3| ≤ 3.

and the Fekete–Szegö inequality for µ ∈ C is given by∣∣∣a3 − µa2
2

∣∣∣ ≤ max{1, |4µ− 3|}.

4. Conclusions

The main derivation we have provided here is that a certain differential characteriza-
tion subordinate to a function which is not Carathéodory. Apart from the function being
not Carathéodory, it was challenging as it involved a long computation when it came to
find the coefficient estimate. Further, we have discussed some geometrical and analytic
properties of the function Λ[α, β; ψ(z)] in detail. However, in the defined function class,
the left-hand side of differential characterization in (4) is closely related to the well-known
studies conducted by various authors (see [11,28,29]). Some subordination properties and
initial coefficient estimates are our main results.

The further scope of this study is that it can be extended by taking special functions
such as exponential function, Legendre polynomial, q-Hermite polynomial, Chebyshev
polynomial, or Fibonacci sequence instead of considering ψ(z) as in (4). We also note
that the extremal function in the defined function classMSν(α, β; γ; ψ(z)) could not be
established here.
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functions. Appl. Math. Lett. 2011, 24, 2010–2014. [CrossRef]
24. Juma, A.R.S.; Al-khafaji, S.N.; Irmak, H. Properties and characteristics of a family consisting of Bazilević (type) functions specified
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