# Unfolding a Hidden Lagrangian Structure of a Class of Evolution Equations

## Abstract

**:**

## 1. The Problem

## 2. The Newtonian Chain

#### Bridging between the Two Systems

## 3. Closing Comments

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Anderson, I.A. Aspects of the inverse problem to the calculus of variations. Arch. Math.
**1988**, 24, 181–202. [Google Scholar] - Tonti, E. Inverse problem: Its general solution. In Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations and Their Applications; Marcel Decker: New York, NY, USA, 1985; pp. 497–510. [Google Scholar]
- Giaquinta, M.; Hildebrandt, S. Calculus of Variations I. The Lagrangian Formalism; Springer: New York, NY, USA, 1996. [Google Scholar]
- Olver, P.J. Dirac’s theory of constraints in field theory and the canonical form of Hamiltonian differential operators. J. Math. Phys.
**1986**, 27, 2495. [Google Scholar] [CrossRef] - Olver, P.J. On the Hamiltonian structure of evolution equations. Math. Proc. Camb. Philos. Soc.
**1980**, 88, 71. [Google Scholar] [CrossRef] [Green Version] - Whitham, G.B. Linear and Nonlinear Waves; John Wiley and Sons: Cambridge, MA, USA, 1974. [Google Scholar]
- Infeld, E.; Rowlands, G. Nonlinear Waves, Solitons and Chaos; Cambridge Univesity Press: Cambridge, UK, 1990. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge Univesity Press: Cambridge, UK, 1990. [Google Scholar]
- Rosenau, P.; Hyman, J.M. Solitons with finite wavelength. Phys. Rev. Letts.
**1993**, 70, 564. [Google Scholar] [CrossRef] [PubMed] - Rosenau, P.; Zilburg, A. Compactons. J. Phys. A Math. Theor.
**2018**, 51, 343001. [Google Scholar] [CrossRef] - Cooper, F.; Shepard, H.; Sodano, P. Solitary waves in a class of generalized Korteweg–de Vries equations. Phys. Rev. E
**1993**, 48, 4027. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rubinstein, J. Evolution equations for stratified dilute suspensions. Phys. Fluids A Fluid Dyn.
**1990**, 2, 3. [Google Scholar] [CrossRef] - Zilburg, A.; Rosenau, P. On Hamiltonian formulations of the C1(m, a, b) equations. Phys. Letts.
**2017**, A381, 1557. [Google Scholar] [CrossRef] - Olver, P.J. Boundary Conditions and Null Lagrangians in the Calculus of Variations and Elasticity. J. Elast.
**2022**. [Google Scholar] [CrossRef] - Stratton, J.A. Electromagnetic Theory; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Sieniutycz, S. Conservation Laws in Variational Thermo-Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Sieniutycz, S.; Berry, R.S. Canonical formalism, fundamental equation, and generalized thermomechanics for irreversible fluids with heat transfer. Phys. Rev. E
**1993**, 47, 1765. [Google Scholar] [CrossRef] [PubMed] - Rosenau, P.; Pikovsky, A. Solitary phase waves in a chain of autonomous oscillators. Chaos
**2020**, 30, 053119. [Google Scholar] [CrossRef] [PubMed] - Rosenau, P. Hamiltonian dynamics of dense chains and lattices: Or how to correct the continuum. Phys. Letts.
**2003**, A311, 39. [Google Scholar] [CrossRef] - Rosenau, P.; Schochet, S. Compact and almost compact breathers: A bridge between an anharmonic lattice and its continuum limit. Chaos
**2005**, 15, 015111. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rosenau, P.
Unfolding a Hidden Lagrangian Structure of a Class of Evolution Equations. *Axioms* **2023**, *12*, 2.
https://doi.org/10.3390/axioms12010002

**AMA Style**

Rosenau P.
Unfolding a Hidden Lagrangian Structure of a Class of Evolution Equations. *Axioms*. 2023; 12(1):2.
https://doi.org/10.3390/axioms12010002

**Chicago/Turabian Style**

Rosenau, Philip.
2023. "Unfolding a Hidden Lagrangian Structure of a Class of Evolution Equations" *Axioms* 12, no. 1: 2.
https://doi.org/10.3390/axioms12010002