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Abstract: A nonlinear system of differential equations in the problem of free flowing of supercritical
flow is considered and a method of its solution is proposed. The analytical method is based on the
introduction of the velocity hodograph plane and the obtaining of analytical solutions for the system
of partial differential equations. It is pointed out that apart from being purely analytical, the potential
flow model has a great practical demand due to its use as a base for the further research of the flow
resistance forces. The proposed model can be developed by taking into account flow resistance and
gradient, the bottom of the diverting channel flow. The theoretical results are complemented by
numerical experiments and compared with experimental data.
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1. Introduction

In road structures for the water flow from the head sections to the downstream
sections under motorways and railways, due to the high kinetic flow, the structure must be
supported. To protect structures from erosion and failure of the bed, the installation of the
culvert in the vicinity of the outlet of the flow is carried out as a concrete slab with side
walls, a safety tooth, or installed dampers of excess kinetic energy of the water flow [1].

The water flow accelerates as it enters the expansion and its velocities can often
exceed the limits of the unstraightened bed entrainment. The flow is of the free-flow type,
following the non-pressure outlets into a wide diversion channel. The same type of flow
occurs behind distribution header outlets at reservoirs, when water flows behind safety
and catastrophic spillways. The water flows through the structure and forms an integral
part of it. On the other hand, the design of the diversion channel also controls the flow of
the water. Furthermore, when uniform and nonuniform flows are combined, it is necessary
to use the results of high-velocity free-flow problem solving. For the design of hydraulic
structures, flow and bed can be considered as a whole, it is necessary to calculate the
in-channel flow characteristics and hence the impact of the flow on the outlet channel. The
designers then select and design the required anchoring elements and design the structures
using flow parameter calculation methods [2]. Possible ways to use existing calculation
methods for free-flowing water parameters have been widely described in the technical
literature on open-flow hydraulics [3]. The use of modern computers can successfully solve
the analytical problem, choose a solution which is most suitable for the real flow rate, and
transfer this solution to design organizations for the design of hydraulic structures (HS).

Bernadsky N.M. [4] was one of the first to formulate initial preconditions of the
problem for two-dimensional planned open flows and to obtain an approximate method for
calculating its parameters. In fundamental works of Yemtsev B.T. [5] and Vysotsky L.I. [6]
give initial assumptions of two-dimensional water streams model and solution of separate
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problems. Study of such flows is much easier than spatial flows by virtue of reducing the
dimensionality of 3-dimensional space to 2-dimensional. The solution of similar problems
for the flow of plane potential flows are given in works of Loitzyansky L.G. [7]. However,
calculation methods of flow parameters have been developing with time in the direction of
increasing the adequacy of flow models to the real process, and as the publications show,
this fact has been neglected in studies [3–7]. Therefore, flow parameter calculations are
necessary in the case of the installation of surplus kinetic energy annihilators in structures.
The practical value of this paper lies in the description of the problem and methods of its
solution. It should be noted that to date the accuracy of the calculation of the water flow
parameters in its free flow leaves much to be desired [1,2].

This is justified by the fact that a more accurate mathematical model is a nonlinear
system of equations. The solution of a nonlinear system is a more complex mathematical
problem, the solution of which has two options. The first variant is based on a specific
change of variables leading in particular cases to solvability in quadratures. The second
option is associated with an analytical approximate solution method successfully imple-
mented in [8–11] for a number of nonlinear differential equations.

The search for ways to solve the problem is urgent and perspective due to new facts
which have appeared recently:

• the development of up-to-date application software packages making it easier to use
mathematical methods when solving practical tasks in hydraulics of open water flows;

• new approaches in finding the solution of hydraulic structure calculation problems;
• the introduction of new normative indices, requiring detailing of practical HS calcula-

tions at large Froude numbers.

Thus, the abovementioned actualizes the presented research and the novelty of the
obtained results in the task of calculation of free flowing of water in hydraulic structures.

2. Research Methods
2.1. System of Equations of Motion for Two-Dimensional in Plan Supercriticals Potential,
Stationary, Streams Open Water

First, we consider a system of equations for the simplest two-dimensional flow model.
In the particular case of a flat horizontal channel bottom without taking into account

flow resistance forces, the system of differential equations of motion for a stationary flow is
as follows [5]: 

Vx
∂Vx
∂x + Vy

∂Vx
∂y + g ∂h

∂x = 0;

Vx
∂Vy
∂x + Vy

∂Vy
∂y + g ∂h

∂y = 0;
∂(Vxh)

∂x +
∂(Vyh)

∂y = 0,

(1)

where XY is a Cartesian rectangular coordinate system; Vx, Vy are local velocity vector
projections on the axes OX, OY; h defines local flow depth; g defines gravity acceleration;
x, y are independent variables.

The first two equations of the system (1) are the equations following from Newton’s
second law as applied to fluid motion, the third equation is the continuity equation for
two-dimensional fluid flow [4–6].

The system of Equation (1) is a closed system of differential equations in derivatives
with respect to functions Vx = Vx(x, y); Vy = Vy(x, y); h = h(x, y). This is a system of
essentially non-linear differential equations [12] in which x, y are independent variables.

For potential flows from the condition of no vortex (vortex-free motion) [7,13,14]:

Ω =
∂Vx

∂y
−

∂Vy

∂x
= 0, (2)

where it follows that there is a potential function ϕ(x, y) and
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Vx =
∂ϕ

∂x
, Vy =

∂ϕ

∂y
,

and it also follows that the so-called integral of D. Bernoulli [7] for two-dimensional fluid
flows in plan has the form:

V2

2g
+ h = H0,

where V is the modulus of the local flow velocity vector; H0 is a constant for the entire flow,
determined by the depth values of the flow velocity at some characteristic point.

For supercritical flow the Froude number is greater than unity, i.e.,

Fr2 =
V2

gh
> 1.

From system (1) under condition (2) it follows that there is a current function and a potential
function so that the system of equations of motion in natural coordinates is valid [15,16]:

Vx = ∂ϕ
∂x = u; Vy = ∂ϕ

∂y = v;
h
h0

Vx = ∂ψ
∂y ; h

h0
Vy = − ∂ψ

∂x ;

V2

2g + h = H0; V2 =
(

∂ϕ
∂x

)2
+
(

∂ϕ
∂y

)2
,

(3)

where h0 defines flow depth at the outlet of the pipe
By simplifying the system (3), we obtain the differentials dϕ, dψ:{

dϕ = udx + vdy;
h
h0

dψ = −vdx + udy.

By multiplying the second equation by the imaginary unit i and adding it to the first
equation, we obtain the canonical differential equation:

dϕ + i
h
h0

dψ = udx + vdy + iudy− ivdx, (4)

where i is a complex unit.
Introducing the designation z = x + iy, the equality (4) is rewritten to:

dz =

(
dϕ + i

h
h0

dψ

)
· eiθ

V
, (5)

here, V =
√

u2 + v2 is the local velocity modulus of the liquid flow particle (see the system
of Equation (3)).

Introducing the variables τ = V2

2gH0
, θ the so-called in-plane variables G(τ, θ), Equation (5)

at ϕ = ϕ(τ, θ), ψ = ψ(τ, θ) is the coupling equation between the flow plan Φ(x, y) and the
hodograph velocity plane.

Based on the Equation (5), let us move to the velocity hodograph plane G(τ, θ); we
obtain the following system of differential equations in the velocity hodograph plane [17],
similar to the method proposed by Chaplygin for the gas case [13,18,19]:

∂ϕ
∂τ = h0

2H0
· 3τ−1

τ(1−τ)2 ·
∂ψ
∂θ ;

∂ϕ
∂θ = 2 h0

H0
· τ

1−τ ·
∂ψ
∂τ .

(6)

For supercritical flows
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τ =
V2

2gH0
;

1
3
< τ ≤ 1.

It follows from D. Bernoulli’s integral:

V = τ1/2√2gH0; h = H0(1− τ). (7)

The parameter τ is related to the Froude number by the formula:

Fr =
2τ

1− τ
.

From a comparison of the system (1) and the system (6) it is clear that the system (6)
is linear with respect to the derivatives ∂ϕ

∂τ ; ∂ϕ
∂θ ; ∂ψ

∂θ ; ∂ψ
∂τ and admits analytical solutions,

which greatly facilitate the solution of boundary flow problems for two-dimensional in
plan stationary potential flows.

Velocity hodograph plane G(τ, θ) is characterized by the independent coordinates θ, τ:
where τ is the parameter which depends on the speed value; θ is the angle of slope of the
local velocity vector to the longitudinal axis of flow symmetry.

In [18,20], the separation of variables method for finding analytical solutions of the sys-
tem (6) for integer values of the separation parameter is described. In [21], it is described for any
positive values of the separation parameter.

2.2. On the Boundary Problem of the Free Supercritical Flow behind an Unpressurised Culvert
When It Spreads into a Wide Discharge Channel

The flow diagram of a real water flow (Figure 1), including drag forces, can be found
in the reference manuals [1,2,22,23].

Scheme description. Water flows at high velocity from an unpressurised outlet into a
wide diverting channel. Resistance forces to flow have the form [1]:

Fr =
K
hα

,

where K, α depend on the selected flow resistance law and the roughness of the discharge
channel bottom.

Figure 1. Schematic of a real flow spread.

According to (7) the flow resistance forces increase as the depth of the flow decreases.
Therefore, as a result of combined effect of gravity, inertia and flow resistance forces, the
water flow becomes lobe shaped (confirmed by experiments).

From the experiments, field observations and published papers on supercritical flow
[17,24–28], it can be argued that at the discharge of the flow from the pipe, there is a section
of the flow, where the drag forces are small. As the flow resistance forces increase, the
section turns into a still flow through a hydraulic jump and narrows in accordance with the
general flow conditions of supercritical and calm flows [5,15].
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The solution of determining the geometry of the flow distribution petal and the flow
parameters within it will be shown in a later paper [17,29,30]. In this paper, we are going to
study the flow spreading model in a simple case of the potential flow, as the base case, on
which the real flow spreading model will be built.

Scheme of free flowing of potential supercritical flow behind unpressurized pipe in
wide plain horizontal channel is shown in Figure 2.

Figure 2. Schematic of a potential supercritical flow behind an unpressurised pipe into a wide, plain
horizontal channel.

At the discharge from the pipe, the flow parameters are as follows V0, h0, b: V0 is a speed
modulus; h0 defines flow depth at the outlet of the pipe; b is pipe width; θ = 0 is the angle
characterizing the flow velocity vector at its exit from the pipe;

F2
0 =

V2
0

gh0
> 1—the flow is supercritical, i.e., high velocity.

There is a sharp curvature of the extreme current line in its small vicinity at point K, so from
now on we will assume that at this point there is a discontinuity of the flow in its parameters.

We start solving the problem by solving it in the velocity hodograph plane. The
authors in [13,26] found that the solution of the system (6) can be chosen as:

A sin θ

τ1/2 = ψ(τ, θ); A
h0

H0
· cos θ

τ1/2(1− τ)
= ϕ(τ, θ); (8)

1
3
< τ0 ≤ τ ≤ 1,

where A is constant for the entire flow.
The version (8) may be applied to the problem, since for the extreme current line it

follows from (8):
A sin θ

τ1/2 =
V0b

2
, (9)

as the outermost current line detaches 50% of the total flow rate from the flow symmetry axis.
From (9) it follows that:

A =
V0b

2 sin θmax
, (10)

where θmax is an inclination angle of the velocity vector to the OX axis at τ = 1 [16].
Given (10), the equation for the outermost current line is converted to:

sin θ

τ1/2 = sin θmax.

Since it is known that supercritical flow, on entering expansion, widens, the angle θ
must be a monotonically increasing function τ, and since the function τ1/2 is also mono-
tonically increasing, the ratio sin θ

τ1/2 can be made constant along the outermost line of the
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current. However, precisely at the point this design does not meet the boundary conditions
τ = τ0, θ = 0. Consequently, at the point · we assume flow discontinuity in its parameters
(not continuity).

Proceeding from the continuity equation (Figure 3), separating elementary flow stream
before and after it, taking into account Bernoulli integral, we obtain:

cos θκ =
τ1/2

κ (1− τκ)

τ1/2
0 (1− τ0)

or
cos θκ

τ1/2
κ (1− τκ)

=
1

τ1/2
0 (1− τ0)

. (11)

Figure 3. Elementary flow before and after exiting the pipe.

Flow rate at the pipe outlet ∆Q0 = b0 ·V0 · h0.
Behind the pipe along the extreme current line ∆Qκ = bκ ·Vκ · hκ .
Given that V = τ1/2√2gH0, h = H0(1− τ), we derive the Equation (11) from the

condition ∆Q0 = ∆Qκ .
Thus, Equation (11) indirectly confirms the validity of choosing the solution of the

problem in the form (8).
The constant A is determined from the condition θ = θmax at τ = 1, i.e., from the boundary

condition, proceeding to the right (at infinity, meaning by infinity Fr → ∞, τ →1).

2.3. Description of the Method for Solving the Problem in the Velocity Hodograph Plane

To solve (close) the problem in the velocity hodograph plane, it is necessary to deter-
mine the flow parameters at the point ·: τ = τκ , θ = θκ .

For this purpose, we first assume that a simple wave [5] is immediately adjacent to the
area of uniform flow and the following equilibrium flow scheme is valid (8).

In the diagram in Figure 4, from point A0 at an angle α0, a linear relationship of the
2nd family A0M0 is drawn; M0Mn is a linear relationship of the 1st family. The diagram is
a pairing of a uniform flow I with a section of basic flow (unperturbed) or a general form
III, of which II is a section of basic flow with flow discontinuity perturbations at point A.

If there were no discontinuities in the flow parameters, then the conjugate points on
the characteristic of the 1st family M0Mn, which passes through the entire flow via the
points M0(τ0, 0) and Mn(1, θmax) with corresponding points on the outermost current line
A0 An would pass through a simple wave.

In a simple wave, the characteristics of the 2nd family would be straight lines which
would pass through the points on the characteristic of the 1st family.

The calculation by [31] showed that there was a satisfactory agreement with the
experimental data for the first two steps, and then the discrepancy increased exponentially.
To improve the accuracy the new mathematical model discussed in this paper is assumed
which takes into account that only A0M0 is a straight line, the remaining perturbation
lines degenerate into the lines of equal Froude numbers. Section II is therefore a section
with perturbation lines—lines of equal Froude numbers AM∗, LM∗∗, etc.). The subsequent
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calculation according to the corrected program [32] confirmed the correctness of this
assumption and good convergence of the calculated and experimental data.

Figure 4. Flow spread diagram.

In the velocity hodograph plane, this section has the parameters:

τ = τ0 =
V2

0
2gH0

; θ = θ0 = 0;

The characteristics of the 1st family M0Mn passes through the points M0 with parame-
ters τ0, θ = 0 and Mn with parameters τ = 1, θ = θmax.

2.3.1. Solving the Problem in the Uniform Flow Area (Section I)

In section I, the solution to this problem consists of determining the geometry and
parameters of the flow and consists of several steps.

1. Since at M0 the flow velocity and the parameter τ0, then the lines angle α0 is also
determined at this point:

α0 = arcsin

(√
1− τ0

2τ0

)
,

and consequently, the direction of the rectilinear characteristic of the 2nd family—A0M0.
2. Knowing the length of the inertial front [33–37], the geometry of the uniform flow

section can be determined.

X I
D = trunc

[ √
F0 − 1

sin θmax(F0 + 2)
h0

]
+ 1 cm,

X I
D—front length of the inertial section along the flow symmetry axis OX.

The geometry of section I is determined by the parameters X I
D, α0 = arcsin

√
1−τ0
2τ0

,
and pipe width b.
Since the flow in area I is uniform, then τ = τ0, θ = 0, V = V0, h = h0.

3. Let us determine parameter values τ, θ on the characteristic of the 1st family. From
the characteristic equation of the 1st family [20,38], the angle θ can be determined at
the known τ ∈ [τ0, 1]

θ(τ) =
√

3 · arctg

√
3τ − 1

3(1− τ)
− arctg

(√
3τ − 1
1− τ

)
+ C1, (12)

where

C1 = arctg

√
3τ0 − 1
1− τ0

−
√

3 · arctg

(√
3τ0 − 1

3(1− τ0)

)
.



Axioms 2023, 12, 11 8 of 16

Setting the spacing ∆τ = 1−τ0
N , we get:

τi = τ0 + i∆τ

θi is determined from (12) at a fixed N.
The angle θmax is also determined from the system of Equation (12).

4. Let us determine the flow coefficients at the intersection points i of the current line with
the characteristic of the 1st family. From the equation equitable along the current line

sin θ

τ1/2 = K sin θmax

subject to certain parameters θi, τi from (12) the flow coefficient Ki between this current
line and the longitudinal axis of flux symmetry OX is determined.

Ki =
sin θi

τ1/2 sin θmax
.

Wave angle at the point θi, τi can be determined by a well-known formula [5]:

αi = arctg

√
1− τi

2τi
.

2.3.2. Problem Solving in the General Flow Area (Section III)

1. Let us define the parameters τ, θ in the flow area of section III. The base flow is given
by the equations in the velocity hodograph plane (Figure 5):

Figure 5. Flow spread diagram to the new mathematical model.

ψ = A
sin θ

τ1/2 ; ϕ = A
h0

H0
· cos θ

τ1/2(1− τ)
.

This section is bounded by the 1st family characteristic and the flow symmetry axis
OX. The characteristic runs through a point M0 with parameters τ = τ0; θ = 0. This is
the main flow characteristic that runs through the entire flow. It has the form [20]:

θ =
√

3 · arctg

√
3τ − 1

3(1− τ)
− arctg

(√
3τ − 1
1− τ

)
+ C1,
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where

C1 = arctg

√
3τ0 − 1
1− τ0

−
√

3 · arctg

(√
3τ0 − 1

3(1− τ0)

)
.

2. Setting the parameters θi, τi at the points of intersection of the characteristics of the 1st
family and the corresponding current line, it is possible to determine the parameters of
the intersection points iof the current line and jof the equipotentiality from the system

sin θij

τ1/2
ij

= Ki sin θmax;

cos θij

τ1/2
ij (1−τij)

= cos θi
τ1/2

i (1−τi)
.

Herewith
τ0 ≤ τij ≤ 1; θ ≤ θij ≤ θmax.

3. Coordinates of the points xij, yij in region III of the flow is determined from the
differential relation (5).
If moving along the corresponding current line, Equation (5) by virtue of the condition
dϕ = 0 is recomposed after separating the variables in the form of: dx = dϕ cos θ

τ1/2
√

2gH0
;

dy = dϕ sin θ

τ1/2
√

2gH0
.

(13)

Expressing the differential dϕ and the angle θ by τ, using the links along the current
line and integrating Equation (13), the coordinates of the points with the parameters
θij, τij and this was described in the monographs [18,20].

4. Determination of parameters at points C1, L1. Let us draw the equipotential through
the point C. Then the equation of the equipotential passing through the point C:

cos θC

τ1/2
C (1− τC)

=
cos θC1

τ1/2
C1

(
1− τC1

) .

At point C1 we assume τC1 = τ∗. Consequently,

cos θC1 =
cos θC · τ1/2

C1

(
1− τC1

)
τ1/2

C (1− τC)
.

θC1 = arccos θC1 .

Alternatively,

sin θC1 =
√

1− cos2 θC1 ;

θC1 = arcsin
√

1− cos2 θC1 .

Similarly, we determine the parameters at the point L1.
5. Determining the coordinates of the points C1, L1. Parameters at a point C1 are τC1 , θC1 .

The equation of the current line passing through the point C1:

sin θC1

τ1/2
C

= K sin θmax.

2.3.3. Determination of Flow Parameters in the Simple Wave Region (Section II)

A simple current wave in section II, bounded by the uppermost current line and the
characteristic of the first family, passing through the point M0.
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1. We determine tg(θ + α) as an angular coefficient of slope of the tangent to the 1st
family characteristic tg(θ + α) = f ∗(τ) and a section of its uniformity. Since tg(θ + α)
is a monotonically increasing function of the argument τ, then we determine the
monotonicity areas of the function:

f (τ) = θ + α = θ(τ) + α(τ),

where
θ(τ) =

√
3 · arctg

√
3τ−1

3(1−τ)
− arctg

(√
3τ−1
1−τ

)
+ C1;

α(τ) = arcsin
√

1−τ
2τ .

To do this, we solve the equation

f ′τ = θ′(τ) + α′(τ) = 0. (14)

Root of the Equation (14) τ = τ∗ defines areas of uniformity of the function f (τ), and
consequently the functions f ∗(τ):

[τ0, τ∗], [τ∗, 1].

At the site [τ0, τ∗] the function f ∗(τ) monotonically decreases, and in the area [τ∗, 1]
monotonically increases.

2. Similarly, to section II with simple waves, we connect the Froude line points M∗ and
A of equal numbers AM∗, the line on which is τ = τ∗, and the angle θ is determined
from the solution to the problem.
Equal Froude number lines convey perturbations in the presence of discontinuities in
the flow parameters.

3. From the equation of the extreme current line determine the angle

θ∗A = arcsin
(

τ1/2
∗ sin θmax

)
.

As tgθ increases ultimately along the extreme current line ACLAn, the points A and
M∗ can be connected by Froude’s equal number perturbation waves.
Perturbations by equal Froude number lines are more generic disturbances than a
simple wave. In a simple wave

θ = constA, τ = constA.

In a wave of Froude equal numbers line τ = const.
Point M∗ should necessarily be connected to point A, as the minimum possible value
at point A must be τ = τ∗ and further increase downstream.

4. Further conducting an equipotential M0C, let us determine the flow parameters at
point C by solving the system:

cos θC
τ1/2

C (1−τC)
= 1

τ1/2
0 (1−τ0)

;
sin θC
τ1/2

C
= sin θmax.

Similarly, we determine the flow parameters at the point L:

sin θL

τ1/2
L

= sin θmax, (15)
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assuming (15) τL = τ∗∗, where τ∗∗ is a parameter at a characteristic point M∗∗, for
which the following equation is true:

θ(τ∗∗) = (τ∗∗).

5. Choice of steps in sections: Step selection ∆τ1 on a characteristic M0Mn between the
points M0 and M∗:

∆τ1 =
τ∗ − τ0

N1
.

Then,
τi = τ0 + ∆τ1 · i; i = 0, 1, 2, . . . , N1.

Selecting the sampling step ∆τ2 between the points M∗ and M∗∗:

∆τ2 =
τ∗∗ − τ∗

N2
.

Then,
τj = τ∗ + ∆τ2 · j; j = 0, 1, 2, . . . , N2.

Selecting the sampling step ∆τ3 between the points M∗∗ and Mn(τ):

∆τ3 =
1− τ∗∗

N3
.

Then,
τk = τ∗∗ + ∆τ3 · k; k = 0, 1, 2, . . . , N3.

6. The right lines A0M0, A1M1 in a simple wave are determined from the condition
that the characteristic of the 2nd family passes through the point Ai and has an
angular coefficient tg(θi − αi) [5]. Extreme current line points Ai are determined by
the distance ρi on the corresponding line Mi Ai :

ρi =
b(1− Ki)

√
τ0(1− τ0)

2
√

τi(1− τi) sin αi
,

the flow rate between the outermost current line and the longitudinal axis of flow
symmetry is maintained. It is equal to half of the total flow rate.

Based on the proposed theory, an algorithm and a PC software has been developed
which gives adequate results.

2.3.4. Improvement of the Proposed Algorithm

The presented theory and algorithm can be somewhat improved in the following way.
Based on the calculation results, it is found that the function θi + αi of τi is not uni-

formly monotonous at τ0 ≤ τi ≤ 1, and it defines a tangent tg(θi + αi) to the characteristic
of the 1st family and the values θi, τi along a simple wave connecting the points Ai and Mi.

It has been found that the function θi + αi decreases monotonically to τ = τ∗ and
further increases monotonically τ = τ∗ which corresponds to the point M∗.

It has also been revealed that the bundle of centered lines exits from a point A0 at the
points M1, M2, . . . , M∗.

It is also revealed that due to the hydraulic jump at the point A0 by the parameters τ, θ
the characteristic of the 1st family and the upper-most line of the current cascade cannot be
matched by simple waves. The right lines Ai Mi degenerate into lines of equal Frood numbers:

τ = const.
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Thus, the concept of a «simple wave» can be extended to the concept of a «Froude
equal numbers wave». Apparently, along the line Fr = const, τ = const, V = const,
h = const follow.

If the condition is added to the Froude equal numbers line θ = const, then it transforms
into a simple wave. The «simple wave» lines are converted to «equal Froude number lines»
when there are hydraulic jumps in the flow, as described in this paper.

As a consequence of this, the schematic in Figure 4 can be replaced by the following
schematic (Figure 6).

Figure 6. Schematic for calculating the flow parameters.

The flow parameters in this scheme vary uniformly downstream from point A0 along
the extreme current line (confirmed by experiments), and the disturbance lines are the lines
of equal Froude numbers. These connect the corresponding points between the uppermost
current line and the first family characteristic.

According to this scheme the section:
I—zone of uniform flow;
III—zone of basic flow;
II—perturbation transmission area via equal Froude number lines: Ai M∗i .
The algorithm for calculating the parameters of the upper-most current line in this

case is as follows:
– the point on the characteristic of the 1st family M∗ in which the functions f (τ) = θ + α

take a minimum is numerically determined. Let us denote it by τ∗, the corresponding value θ
by θ∗.

Then the equation for the extreme current line will be true for τ∗ ≤ τ ≤ 1, θA ≤ θ ≤ θmax.
The equation in the velocity hodograph plane for the extreme upper current line:

sin θ

τ1/2 = sin θmax.

counts at the point A0 τ = τ∗. Then

θA = arcsin
[
τ1/2
∗ sin θmax

]
.

Thus, going further to the physical plane of flow, using the complex relationship be-
tween the planes Φ(x, y) = G(τ, θ) by the method described in the article and monographs
[18,20], we determine the coordinates of the outermost current line and the velocity and
depth values along it.

3. The Discussion of the Results

Let us consider a flow with the following parameters:

• initial flow velocity V0 [cm/s];
• initial depth of the flow relative to the bottom h0 [cm];
• gravity acceleration g = 981 [cm/s2];
• pipe width b [cm].

Flow coordinates are obtained from the field experiment

XE =
(

0 4 24 44 64 71
)T ; YE =

(
b/2 9.5 38 59 76 80

)T .
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3.1. Solving the Problem in the Uniform Flow Area (Section I)

Using the algorithm above, we find:

• Froude number F0 = 2.4;
• initial flow velocity V0=

Q
h0b = 147.654 cm/s;

• hydrodynamic head H0= 20.382 cm;
• initial flow kinetics (block 1, item 4) τ0 = 0.545;
• wave angle at the point where the flow exits the pipe α0 = 0.702 p or α0 = 40◦23;
• angle of the velocity vector of the liquid flow to the OX axis at infinity θmax = 0.981p

or θmax = 56◦23;
• length of inertial front X I

D = 3 cm;
• distance from the end of the inertial section to the point along the flow symmetry axis

M0 AM0 = 9.457 cm;
• the length of the straight-line segment of the 2nd family characteristic between the

points A0 and M0
A0M0 = 12.387 cm.

Let us break down the kinetic flow parameter from τ0 to 1 for 10 spacings. Step length
∆τ = 0.051.

Table 1 shows calculated values for flow abscissa, flow velocity and depth.

Table 1. Kinetics values τi, flow abscissa Xi0, its velocity Vi0 and depth hi0 at the symmetry axis points.

τi 0.545 0.596 0.646 0.697 0.747 0.798 0.848 0.899 0.949 1
Xi0 6.299 7.269 8.547 10.259 12.642 16.169 21.942 33.244 66.336 3233
Vi0 147.654 154.345 160.759 166.926 172.873 178.622 184.192 189.599 194.855 199.963
hi0 9.274 8.234 7.215 6.176 5.157 4.117 3.098 2.059 1.039 0

The equipotential can be highlighted by a specific parameter value τ on the flow
symmetry axis. By setting the parameter τ0 to the point M0 on the flow symmetry axis
it can be possible to determine the parameters θτC, C followed by the coordinates xCyC
of—point on the outermost current line. Then by changing the kinetic parameter (e.g., with
a constant step) we obtain a set of extreme current line points. The numerical experiment
was to calculate the values of kinetics parameter, angle of slope of flow velocity vector to
symmetry axis and coordinates of points on the extreme line of current with abscissa on
symmetry axis. Calculation results are summarized in Table 2.

The calculation results for the last column of Table 2 show good convergence of the
algorithm with the experimental data, Given in the dissertation work of Kokhanenko V.N. [17].

Table 2. Calculation of extreme line flow point ordinates and comparison with experimental data.

Point No. Abscissa on the
Symmetry Axis at X0i

Parameter of
Kinetics, τCi

Angle of Inclination of
the Flow Velocity Vector
to the Axis of Symmetry

Flow Ordinates on
the Extreme Line

Experimental Data
at Some Points

Relative Algorithm
Error, %

1 0 0.545 0.661 8 8 0
2 4 0.767 0.815 10.442 11 5.073
3 8 0.866 0.884 13.637
4 12 0.908 0.914 18.687
5 16 0.931 0.93 23.973
6 20 0.945 0.94 29.402
7 24 0.954 0.947 34.926 38 8.090
8 28 0.961 0.952 40.519
9 32 0.966 0.956 46.162
10 36 0.97 0.959 51.846
11 40 0.973 0.961 57.56
12 44 0.975 0.963 63.3 59 7.288
13 48 0.978 0.965 69.06
14 52 0.979 0.966 74.84 73 2.458
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3.2. Problem Solution in the General Flow Area (Section III) and in the Simple Wave Area
(Section II)

Kinetics parameter at point A0 on the outermost current line τ∗ = 0.6667. The found
value τ∗ is constant on the line A0M∗ the line of constant Froude numbers.

Angle of inclination of the flow velocity vector at the point A can be θA = 0.746 p or
θA = 42◦74.

Parameters in the velocity hodograph plane of point C of the intersection of equipoten-
tialism with the current ruler and passing through the point M0: τC = 0.719, θC = 0.782 p
or θC = 44◦82.

Let us set 35 points on the characteristic M0Mn between points M0 and M∗. Then the
step is equal to ∆τ1 =9.7·10−3. The kinetic parameter, the inclination angle of the liquid
velocity vector to the OX axis and the flow coefficients at these points are given in Table 3.

Table 3. Kinetics, slope angle of the fluid velocity vector to the OX axis and flow coefficients at the
points on the characteristic M0 Mn (area III).

Step No. Kinetics Angle of Inclination of Velocity Vector Fluid Flow Coefficient

1 0.5452 0.145 0.212
2 0.5756 0.157 0.229
3 0.6059 0.17 0.246
4 0.6363 0.184 0.263
5 0.6667 0.197 0.28
6 0.6765 0.211 0.297
7 0.6862 0.224 0.314
...

...
...

...
31 0.9208 0.697 0.788
32 0.9306 0.734 0.819
33 0.9404 0.778 0.853
34 0.9501 0.834 0.896
35 0.9599 0.937 0.97

The parameter grid in area III can now be constructed. The current line is given by the
flow coefficients and the equipotential by the kinetic parameter. Next, the coordinates of
the points in the general view area and at the far end of the current line are determined
using the parameters obtained. Figure 7 shows a diagram of the outermost current line and
some equipotentials. For comparison, the same figure shows a plot of the extreme current
line obtained experimentally.

Figure 7. Plots of extreme current line and some equipotentials (solid) obtained from numerical
calculations and extreme current line obtained from in situ experiments (dashed).
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4. Conclusions

In this paper, a new method of calculating parameters of free-flow supercritical poten-
tial flow behind rectangular non-pressure outlets has been proposed.

It has been proved theoretically and practically by means of calculation results that
pairing of uniform flow with the flow of general form (12) should be carried out by means
of perturbation lines in the form of Froude equal number lines.

To solve the nonlinear system of differential equations in the new calculation method,
an auxiliary virtual plane of the velocity hodograph and its coupling equations to the main
characteristic of the 1st family in the physical plane are used.

Transition to the physical plane is implemented at the point M* of change of the
monotonicity sign, which allowed us to obtain an analytic solution of the overall problem
in terms of the current line, equipotential and the virtual plane of the velocity hodograph.

Further development of the method will make it possible to obtain a series of graphs
for various Froude numbers at the pipe outlet and to improve the universal graph by I.A.
Sherenkov [28].
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