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Abstract: In the present article, we give analytical solutions for temperature distribution in a rectan-
gular parallelepiped with the help of a multivariable I-function. The results established in this paper
are of a general character from which several known and new results can be deduced. We also give
the special and particular cases of our main findings.

Keywords: multivariable I-function; multivariable H-function; temperature distribution

1. Introduction and Preliminaries

Fractional calculus is three centuries old—as old as conventional calculus. Its impor-
tance has been highlighted by many researchers in recent years.

Fractional calculus is based on integrals and the derivatives of non-integer arbitrary
order, fractional differential equations and methods of their solution, approximations and
implementation techniques. The concept of differentiation and integration to non-integer
order is by no means new. Interest in this subject was evident almost as soon as the ideas
of classical calculus were known. For the past three centuries, this subject was considered
by mathematicians, and only in the last few years has it been applied to the fields of
engineering, science and economics. As is well known, several physical phenomena are
often better described by fractional derivatives. However, recent attempts have been made
to define the fractional derivative as a local operator in fractal science theory.

In recent years, several authors have studied the functions of two or more variables,
for example, see [1-5]. Recent expansion in the theory of I-functions has become important
due to the introduction of the multivariable I-function which has been studied by many
authors (for recent work, see [6,7]). Recently, Kumar & Ayant [8] provided an application
of the Jacobi polynomial and multivariable Aleph-function in heat conduction in a non-
homogeneous moving rectangular parallelepiped. Prasad & Pati [9] used the modified
multivariable H-function and provided the temperature distribution in a rectangular paral-
lelepiped. In the present paper, we provide an application of the multivariable I-function
for temperature distribution in a rectangular parallelepiped.

The multivariable I-function is defined in terms of the multiple Mellin-Barnes-type
integral, and is given in the following manner [10]:

Axioms 2022, 11, 488. https:/ /doi.org/10.3390/axioms11090488

https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms11090488
https://doi.org/10.3390/axioms11090488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5415-1777
https://orcid.org/0000-0003-0651-294X
https://orcid.org/0000-0002-1694-7907
https://doi.org/10.3390/axioms11090488
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11090488?type=check_update&version=2

Axioms 2022, 11, 488

2 0f 10

S (T R
_ 10m2,0,135+ 50,1’ e ;) ) . 2752072 Jpy
[z, yz) =1 ("),4() 1) L2
P22 D335 e P A5 5p b l.lg( ) '3()
2]/ 2] 7 2] 1 7
Zy 42

(arj; “5]1),. . “5;))1 N (ﬂj(l)r“](l))l,pu)’ o <afir)’“f(r))1,p<">
]

(b’j"ﬁg’)" o ’ﬁx’))l,qy : (blql)’ﬁ]('l))l,q(lﬁ' "; (b<r)fﬁj(r)>l,q(r) /
_ (27-[1w)’/£1 . ../r(;‘(sll. .. ,s,) {1j¢i(5i)2?i} dsy - - - ds,,

where z; # 0, w = v/—1, and
(v — g {Is r(1-af +als) |

¢i(si) = . \ , , (forallie {1,---,
s {Hq <1 B b](l) n ﬁj(z)si)} {Hf:n(m.l r(a](z) _ “]('I)Si>} oralli €
E(s1,- -, Hk 2{ (1_akf+21 1%) )}
[T Z{HJ i Ty = £ si) |
1

x HZ:z{H?il (1—bk]+2 1[‘5@31)}.

)

1), )

®)

For the existence and convergence conditions of (1) (the reader may wish to refer to work

by Prasad [10]).

The absolute convergence condition of the multiple Mellin-Barnes-type contour (1) can
be obtained by extension of the corresponding conditions for the multivariable H-function,

given by
1
larg z;| < Eﬂi 7T,
where
R <IN T S (i,
1 1 1 1
o-Fa- B oaefal- & ol (Ea- B
k=1 k—n(l’)+1 k=1 k=mi k=nr+1

0\ _ (& .0 G 0!
Z'X Z yy Zﬁzk+2ﬁsk+ +) B4 )
k=1 k=1 k=1

k=n,+1

wherei=1,---,r.

4)

Throughout the present paper, we assume the existence and absolute convergence

conditions of the multivariable I-function.

We may establish the asymptotic expansion in the following convenient form:

I(z1,0+z0) = O(|z1[, -+ 2| ), max(|z1], -+, |z7]) = 0
Iz, z) = 0|zl ), min(lzi], - [21]) — +eo

wherek=1,---,z a; = min[?)?(b](k)/ﬁ](.k))], j=1,---,m® and

Bi = max[éﬁ((a](.k) - 1)/oc](.k)>}, ji=1,---,n%,
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We use the following notations in this paper:

U=p2q2;p3,93 - i Pr-1,9r—1; V = 0,n2;0,n3;--- 50,11, ®)
W= (p0,00)ie s (p0,40); X = (00D (0, 00), o)
A= (”Zk/"‘gc)f“g)>1,p2? T (a(ffl)k’“Ei)—l)k'“éal)k" o '“Eijgk) Loy o @)
(B8, (B B, . ®
= s o), ()AL O
B= (b B, ,/351?)1,% (v, ’(‘1))1»/;'“ ; (blgr)'ﬁ’(‘r))l,q(f) (10)

2. Formulation of the Problem

The temperature 6(x, y, z, t) at any point of a rectangular parallelepiped of edges a, b, c,
can be represented by the following partial differential equation:

00 %0 2% 9%
5= <ax2+8y +azz>+lp(x Y,z,t)+cob(x,y,zt), (11)

where ¢ is the time, K; = 5 in which K is the thermal conductivity of the rectangular
parallelepiped, p is the density, c is the specific heat and 1 is the heat source within it; K, p, ¢
and ¢ are constants.

The initial and boundary conditions are taken as

0(x,y,2,0) = f(x,v,2), (12)
0(a,y,z,t) = &1(y,2), (13)
0(x,b,z,t) =h(x,z), (14)
0(x,y,c,t) =ri(x,y), (15)
0(0,y,z,t) = &(y,2), (16)
0(x,0,z,t) = hy(x,2), (17)
0(x,y,0,t) = r2(x,y), (18)

3. Solution of the Problem

Required Integral

We will need the following result:
Lemma 1. . )
(YN gy = T [ yntl b
/0 sm( 2 )e dy (20 + 22 [( )" e +1}. (19)

For the solution of (11) under the conditions (12)—(18), we take the triple finite Fourier
transform which is represented as follows:

(m,n,q,t) / / / X, Y,2z,t) sm( )ﬂn(mgy) sm(q )dxdydz (20)
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Now, multiplying both sides of (11) by sin(2Z%) sin (%) sin(%"), and integrating over
the whole rectangular parallelepiped, we get

///cae (") in("7Y) sin (72 el

Iy [3312 syt 53] an(*5) sm(*52)sin(157)
+/ // P(x,y,2,1t) sin< nx)sin(n—gy)sm(q ®) dxdydz
+c0/ // (5, ,2,1) sin( 25 ) sin ("2 ) sin (155 ) dxdy dz. 1)

By the application of results of (20), (13)-(18) and Sneddon [11], the equation (21) is trans-

formed to
dé S [m?  n? g?
a + Ky [ + 72 + 2 K1:| 0 =K [KgFl(i’l l]) + K3F2(71”l q) +K4F3(m Tl)]
+ K1[KsFy(n,q) + KeFs(m, q) + K7 Fs(m, n)] + ¢(m,n,q,t), (22)
where,
_ bore nmyN\ . [qnz
Fi(n,q) = /0 21y, z) sm(T) sm(T> dydz, (23)
a re mmx\ . (qnz
F(m,q) = ; hy(x,z) sm( p )sm(T) dxdz, (24)
a b
Es(m,n) = rl(x,y) sin(m:x) sin(?) dxdy, (25)
YN . (q7z
(n,q) / / 2y, z s1n(n—by) sm(%) dydz, (26)
(m,q) / / hy(x, z sm(m;'cx) sm(?) dxdz, (27)
/ / r2(x,y) sin m;tx) s1n(nbﬂ> dxdy, (28)
mr
Ky = (_)mHT: (29)
nm
K3 =(=)", (30)
T
K= (-, (1)
mr
Ks = 7 (32)
Ko =", (33)
b
K, =" (34)

The Equation (22) can be written as

4o _ _ _ _
it + K1B8 = Kj [KzFl (71, q) + K3F2(m, q) + K4F3(m, 1’1)]
+ K1[Ks5Fy(n,q) + Ke¢Fs(m, q) + KyFg(m, n)] + ¢(m,n,q,t), (35)
where, , ) )
_2lmm o 9 <
B=m TtpEta % | (36)
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here ¢ is chosen that B > 0.
Applying the boundary condition (12) on the linear differential equation (35), we get
the following result:

_ ) 1 ) ]
0(m,n,q,t) = f(m,n,q)e KB 4 E[KzFl(n,q) + KsF(m, q) + KyFs(m, n)]
+ K1[K5Fy(n,q) + KeFs(m, q) + K7Fg(m, n)] (1 _ e*KlBt)
t
+ / e_KlB(t—T)lp<m, n,q,7)dr, (37)
0

where,

f(m,n,q) / / / f(x,y,2) sm mnx> sin(n;[y> sm(qcﬂ) dxdydz.  (38)

Using the theorem for the finite sine transform and the result of Sneddon [11], we get the
following solution:

= 5 B om0 an() sin(“52) i 2)
: z<> (1-5) () in( 52) (1)
F E Snma(1- ) an() sn( ) n(1)
B E K (1) an(") sin( 5) an( )
Fo Ko (1) sin(") () n( 1)
b Ko (1) sin(") i) n( )
o S (1) an(") sin(5) an(°5)
Fo E () n(5) () [ o b 9

4. Particular Case

On taking ¢1(y,z) = $2(y,2z) = hi(x,z) = ha(x,z) = r1(x,y) = r2(x,y) = 0, the
six faces of the rectangular parallelepiped are kept at zero temperature, the solution (39)
reduces to

0(x,y,2,t) abc Z f m,m,q)e e sin(?) Sin<nby> n<q7crz>

mn,q=1

S (M) () (1) [ g e

abc g1

Example

Since the multivariable I-function defined by Prasad [10] is the generalized function
in the field of special functions, we are interested in obtaining a particular solution of the
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Equation (40) by assuming both the initial temperature distribution at any point (x,y, z)
and the heat source of general character in terms of the multivariable [-function.
For the first attempt, let us take (variables separation method)

f(xy,2) = A(x)f2(y) f3(2), (41)
where, f>(y) = e M, f3(z) = e %% and

cx™ | A A
filt) =1yl : (42)
Crxmr B; B

We obtain

f(m,n, p)
O rnghe
- oo @Dt (R0 +n2r2) (82 + g2 )

[(7)n+1e—yh+1] [(7)q+1e—50+1]

my
€14 A; (=21 —2;mq, - ,my), A
~ IV;O,n,+l:X

U;p-+1,9.+1:W . 4
cra B;(=2ry —1;myq,--- ,my),B

(43)

bt
provided that min{y,dé,m;} >0 (i=1,---,r), 2+ Y} ;m; min 8%</3](’>> > 0, and

1<j<m() ;
larg c;| < 37, where ) is defined by (4).

Proof of (43). Considering the relation (41) and applying Lemma 19, according to (39),
we have

[

f(m,n,q) = /: /Ob /(:f(x,y,z) sin(?) sin(?) sin(@)dxdydz

nznqbc o e
= (y2b2+n27(2)(5262—|—q27{2) [(_)n e H +1:| [(_)'7 e 0c+1}

X /Ou sin(mnx>f1 (x) dx. (44)

a

Now, replacing f1(x) by the multivariable I-function with the help of (42), we have

- rngbc

_ ntl —ub +1,-6
f(m,n,q) = (42b* 4+ n?12) (6%c? + ¢*1?) [<_) e’ +1} {(_)q ¢ C+1}
cix™ | A A
a4 rmrnx 011, . .
X /0 sm(T) IZSY’ZY}%\, : : dz, (45)
cx™ | B;B

using the integrals representation of the multivariable I-function with the help of (1), and
interchanging the order of integrations, which is justified under the conditions mentioned
above, then we arrive at

= r’ngbe
flm,n,q) = (1202 1 n272) (322 + 2 ri2)

X ﬁ/Ll.../Lrg(sll...’sr)gq)i(si)z?czsj/oﬂﬁn(

[(7)n+167;4b+1} {(7)q+1eﬂsc+1}

mrix

)xiz*:l sidxdsy---ds,.  (46)
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On the other hand, we have the following relation:
mrx oo ()2 ey 2n+
i = 47
sm( a ) rlzz:o (2r; +1)! ( a ) ’ 47

By using the above relation and interchanging the order of integration and summation,
which is permissible under the stated validity conditions, then we get

f(m,n,q) = AT n;;’;?;’zccz g {(_)nJrle_P‘h + 1} {(_)qﬂg—&c + 1}
x ;ioo <ma72r’>1231;£1 —1F 12r1+1 (2nw)" /Ll /, S1rmr s .:1 (P (Si)Z?iC?i
x /0 " YTl est2n 4 gy ds, - - - ds,. (48)
Evaluating the inner integral and using the relation 1 = r(ra(i)l) , then
) s [«vﬂew (e

(-t i+l
X ! / / (51,8
Z (2r1—|—1) (m7 (2nw)" Ji, A

r L(Xi_qcisi+2r1+2) yr oo
(o \SSi Si i=1"1°1 Yi_1CiSi dsq - - -ds,. 49
X ggbl(sl)zl Ty s1---ds, (49)

Now, interpreting the multiple integrals (49) in terms of the I-function of r-variables, we
obtain the required result (43). O

Again, for the heat source, let
Py zt) = ey (xy,2). (50)
For the first attempt, let us take (variables separation method)
Y (x,y,2) = P1(x)2(y) 3 (2), (51)

where, ¥, (y) = e #Y, 3(z) = e~9'% and

/Nt
cl x™ AV
V0l X! ! ALA

l)bl (x) Iu/ pr Elr 144 /. m/ ’ (52)
C;xmf, BB
where,
U' = py, a2 p3, 05 5 Pr1,Gr—1; V' = 0,n5;0,n5;---;0,m,_. (53)
W = (p/u),qf(l));. o (prm,q/m); X — (m/u),n/(l)); s (m/m,nr(r)). (54)
_ ) 2 . () ) @) ’(r-1)
Al = (azk/“zk ok )LP/Z"' ( A1) C -k Y-y f”‘(r—1)k)1/p/71' (55)

- 1) . (1) 1(2) /(r—1)
= (békf 2k usz )1, ’2'“ ’ (b(r 1)’ﬁ(r—1)k’ﬁ(r—1)k"“ ’IB(rr—l)k)Lq/il‘ (56)

¢! 12 1(r) . (1), (1) 1(r). 1(r)
A — (a;k,arg(),arg(),. el )1,;’4 : (ak ;0 )1,p’(1>’ (ak ;0 )1,10’(’)' (57)
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_ L pl(1) p1(2) /(r) (D), (1) a1, !
B (80, (), (),

Using the value of ¥(x,y,z,t) in the Equation (20) and integrating ¢ with respect to T
between the limits 0 and ¢, then we obtain

+oo (_\I 2r1+1 2nab
B 5o e = §F () 1) rnghe
/0 $(m,n,q,7) rlZ::O Qr+ 1)l (4202 + n2r2) (322 + 2 r2)
—K;Bt

< (et 1 [yt ] g (s 1)

/ /. . ! ! /
cpa™ | Al (=2r —2;ml, -+, mp), A

V',0n,4+1:X'

X Iy g 1w : : ’ (59)
ca™ | B;(=2r —Lm),---,m)),B
’(i)
provided that min{a, i/, &', m}} >0 (i = 1), 2+ Xiym; min R|{ L= | >0 and
1<]<m 1(0) ﬁj
|arg cl| < 3O, where
L T 20 B0
/ /! /! / /! /
Q=) "~ a ) B Z B =) ay
k=1 k=n() 1 k=1 k=m( 1 k=1 k=ny+1

ny . pr i) i) qr ,
+ (Z "‘;k(l) - ), ey ) (E .BZk = Z /33k et kZ 5lrk(l)> . (60)
=

The proof of (59) is similar to (43).
Now, putting the known values of f(m,n,p) and f e KB(t=T) (m,n,q,7)dT in
Equation (40), we obtain the solution of our problem, defined as

400  +4o0 (mn)2r]+1 nznqbc
6(x.y,2,1) = abc m ’g 1 r; 2r1 + 1)1 (pPb% + n?m?)(62c2 + g2m?)
+1,—ub +1,-6 —K{Bt ;. (MTTXN . (NTTYN . (47Z
< (e [(T e+ 1] sin () sin (55 ) sin(15)

Claml A/ (_27’1 - 2/ mi, - - /mi’)/A
w [VOm+LX .
U;pr+1,9,+1:W .
camr B; (=2ry —1;my,--- ,m;), B
J“Z":" J“Z":" )1 (m)? 1+l m®ngbc
Comrminzo @i+l (W2 +n2r?)(6%c + g*?)
% |:(_)1’l+167],l b + 1:| [(_)q+1€—5’c 4 1:|
—Kq Bt
X g (e 1) sin(F ) sin(F5E ) sin (1)
cha™ . ) A7
1 AL (—2r—2,m5,-- -, S A
V0 +1:X (=21 ™ ;)

U;pr+1,g:+1:W : ’ / / / ’
clamr B;(-2r—Lm,---,m),B

x I (61)

provided that min{y, §, m;} > 0, min{w, p',8',m}} > Ofori=1,---,r,2+ Y7 _;m; min(_)
1<jgm!t

b\ p0
§R<ﬁ](1 ) >0,2+Y ;m; min §R<B -] >0, |argc;| < 17, and argcl| < 3Ol
]

1
1<j<m’ () !
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5. Special Cases

IfU,=V,=A=B=U, =V =A" =B =0, then the multivariable I-functions
reduce to multivariable H-functions as defined by Srivastava et al. [12-15]. We have the
following result:

Corollary 1.

o @ (L))t m®ngbc
vy zt) =0 L ]X_l @2r + 1)1 (4262 + n2n2)(62c2 + ¢2n2)

% {(7)n+le—ﬂb+1} {(7)‘7+16—5c +1} o—KiBt sin(?) sin(?%fy) sin(qcﬁ)
( c1a™ (=2r1 —2;mq, -+ ,my), A )

. my
- Crll (_271 - 1/ mi, .- rm}’)/B

0,n,4+1:X
X Hpr"!‘l/fh"rllw

N 8 Ji" oo () ()Pt m*ngbc
abc (2ri+ 1)t (W2b% + n2n2) (822 + g% n2)

m,n,q=1r;=0
% [(_)nJrlefy’b_i_l} {(_)q-‘rlefé’c_i_l}
—K;Bt
e X (KyB—a)t , (mnx . (MY . (@
% KlB—oc<e 1) s a )sm( b )sm c )
a™ | (=2 —2ml, - ml), A
y HO,V!;-‘,—l:X’ ( 1 UV ’ r)/

prLg+ LW : , P
cLam (=2r —L;my,--- ,m;),B

(62)

under the same conditions that (61) with U, =V, = A=B=U, =V =A"=B =0.

Corollary 2. The heat source (x,y, z, t) vanishes, and the formal solution is given by

8 —+o0 +oo (_ \In mm 271+1
G(X,y,Z,t):% Z ( ) ( )

mn,q=1r1=0
X {(—)”HEW7 + 1} {(—)‘7“[5” + 1} e KBt sin<m7m> sin
cpa™ | A; (=21 —L;mq, - ,my), A

m*ngbc
2r +1)t (§2b2 + n?72)(6%c2 4 g2 m2)

(75)sn(72)
% IV;O,ny+1:X

Uipy+1,4,+1:W : : / (63)
ca™ | B;(=2ry—2;myq, -+ ,m),B

under the conditions (43).

Corollary 3. Consider the above formula, if U, = V, = A = B = 0, then we have

400  +oo (_)7] (mn)2r1+l

8 n’ngbc
G(x'y'z't)_%mgzng @ri+ 1)1 (p202 + n272) (82c2 + g2 1i?)

X [(—)”He*”b + 1} [(—)qﬂff‘sc + 1} e~ KiBt sin(?) sin(@) sin(?)

cpa™ | (=2ry —1;mq, - ,my), A

0n+1:X . .
X Hy o giw : : , (64)

cea™ | (=2ry —2;my, - ,my), B

under the conditions (43)and U, =V, = A=B =0.
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6. Conclusions

The significance of our findings lies in its generality. By specializing the various
parameters and variables of the multivariable I-function in our results, we can obtain new
results in the form of various special functions of one and several variables. Thus, the
result obtained in this paper can yield a large number of results, involving a large variety
of special functions and polynomials, concerning the problem of temperature distribution
in a rectangular parallelepiped.
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