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Abstract: In this article, we introduce the neighborhood versions of two classical topological indices,
namely neighborhood geometric–arithmetic and neighborhood atom bond connectivity indices. We
study the graph-theoretic properties of these new topological indices for some known graphs, e.g.,
complete graph Kn, regular graph Rn, cycle graph Cn, star graph Sn, pendant graph, and irregular
graph and further establish their respective bounds. We note that the neighbourhood geometric–
arithmetic index of Kn, Rn, Cn, and Sn is equal to the number of edges. The neighborhood atom
bond connectivity index of an arbitrary simple graph G is strictly less than the number of edges. Our
results contribute to the literature in this direction.
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1. Introduction

Let G be an arbitrary graph, a topological index is a function f : G → R. Topological
indices (TI) are graph invariants and are employed to describe the topology of graphs.
Topological indices are very important in mathematical chemistry because they are used
to model physiochemical properties of molecules and compounds. The molecules are
illustrated as a simple connected graph; with atoms of chemical compound denoting
vertices and the chemical bonds between them as edges. In 1947, Harold Wiener [1]
introduced the first TI related to molecular branching, Wiener [1] showed that his TI is
closely related to the boiling points of alkane molecules, his QSPR and QSAR analysis
showed that it is also related with other quantities such as the parameters of its critical
point, the density, surface tension, viscosity of its liquid phase, and van der Waals surface
area of the molecule. The Wiener index is defined as

W =
1
2

n

∑
i=1

n

∑
j=1

(dij), (1)

where dij represents off-diagonal elements of d. The success of Wiener’s work influenced
the study of other TI of chemical graphs such as the Randic index which was introduced by
Milan Randic [2] in 1975. The Randic index is also called the connectivity index is given as

R(G) = ∑
uv∈E(G)

1√
dudv

(2)
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where du and dv are the degrees of vertices of the graph G. The Randic index R(G) was
used to determine the topology of linear and branched alkanes with eight or less carbon
atoms. Randic [2] further stated that the degree of branching of the molecular skeleton is
very important in determining some molecular parameter such as boiling points of hydro-
carbons. Computations from the R(G) showed that the numerical parameter obtained is in
satisfactory agreement with the kovats retention index whose purpose is to determine the
retention time interpolated between adjacent n-alkanes. This was a major success because
it showed the efficiency of the R(G) in its applications to physical properties of molecules
and compounds (see [2–5] for more details). For this reason, numerous researchers have
devoted attention to the development of several TI (for example, Zagreb index [6–8], sec-
ond Zagreb index [8], forgotten index [9], harmonic index [10], GA index [11], and ABC
index [12]) and their applications to model molecules of higher carbon atoms. In 2014,
Gutman et al. [13] studied the reciprocal of R(G) in (2). They defined the reciprocal form
as follows:

RR(G) = ∑
uv∈E(G)

√
dudv (3)

and applied it to physico-chemical properties of octane isomers such as the standard en-
thalpy of formation and boiling points. Although RR(G) has less computational advantage
to R(G). Furthermore, Vukičević and Furtula [11] introduced a new type of degree based
TI known as geometric–arithmetic GA(G) index which is given by

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
. (4)

They discovered that the GA index can be used as a predictive tool in quantity
structure–property relationship (QSPR) and quantity structure–activity relationship (QSAR)
analysis. The predictive power was further tested on some physicochemical properties of
octanes and the results obtained showed that the GA index gives a better predictive power
than the R(G) in (2) (see [14–21] for details). Estrada et al. [12] introduced an important TI
(which seems to be advantageous in applications) known as the Atom Bond Connectivity
index (ABC index for short). The ABC index is defined as:

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
. (5)

It was noted in [12] that unlike the R(G), the ABC index does not show the level of
branching of the molecule; rather, it described the heats of formation of alkanes, which
gave a good correlation coefficient in the QSPR model (r = 0.997) (see [12,17,22–26] for
more details).

Recently, Mondal et al. [27] developed the concept of neighborhood TI. The neigh-
borhood TI summed the degree of a distinct vertex over a distinct neighbor set. This new
approach seems to be better in application especially for determining degeneration of TI
(see [27]). In the pioneer work on neigborhood topological indices by Mondal et al. [27],
they studied the neighborhood versions of forgotten index, Zagreb index, second Zagreb
index, and hyper Zagreb index. They further applied it to model the regression analysis of
n-octane isomers. Since then, neighborhood version of other classical TI have been studied
(reciprocal Randic index, sum connectivity index, redefined third Zagreb index, Randic
index, and symmetric division degree index. See [28] for more details).

Despite the rapid development of neighborhood versions of TI, we note that there
are some classical TI that their neighborhood versions are yet to be studied. Motivated by
this fact and the works of Vukičević et al. [11], Estrada et al. [12] and Mondal et al. [27], we
introduce the neighborhood geometric–arithmetic index and atom bond connectivity index.
We study the graph theoretic properties of the new TI and establish their respective bounds.
Our result compliment other results in the literature.
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2. Preliminaries

A graph G can be defined as a triple (V, E, f ) where V is a finite nonempty set called
set of vertices, E is a finite set (may be empty) called set of edges and f is the incidence
function that assigns to each edge e ∈ E a one-element subset {v} or two element subset
{u, v}. The degree of a vertex v on a graph G, denoted by dv is the total number of edges
associated with v. Let N(v) denotes the set of neighbors of v, the sum of the degrees of the
neighbors of v is called the neighbor degree sum, denoted by Dv and given by

Dv = ∑
u∈N(v)

Du. (6)

The order of a graph is the number of vertices contained in the graph while the size of
the graph is the number of edges contained in the graph, thus |V(G)| = n and |E(G)| = m.
A simple graph G is a graph that contains no multiple edges or loops. A connected graph is a
graph that has a path between every pair of vertices in the graph. A regular graph Rn is
a simple graph where every vertex has the same vertex degree. A complete graph Kn is a
simple graph in which every pair of distinct vertices is connected by a unique edge. A cycle
graph Cn is a simple graph that consists of a single cycle. A pendant vertex is a vertex that
has degree 1 i.e., dv = 1. An irregular graph is a graph in which all vertices have a unique
degree. A star graph Sn is a connected graph in which there exists at most one vertex with a
degree greater than one [29,30]. Henceforth, all graphs considered in this article are simple
and finite.

Definition 1. Let G be a graph,Du andDv be the neighbor degrees of vertices u and v, respectively. The

(i) neighborhood first Zagreb index [27] is given by

M∗1(G) = ∑
u∈V(G)

[Du +Dv], (7)

(ii) neighborhood hyper Zagreb index [27] is given by

M∗H(G) = ∑
u,v∈E(G)

[Du +Dv]
2, (8)

(iii) neighborhood second Zagreb index [27] is given by

M∗2(G) = ∑
uv∈E(G)

[DuDv], (9)

(iv) neighborhood forgotten topological index [27] is given by

F∗(G) = ∑
uv∈V(G)

D3
v, (10)

(v) neighborhood modified version of forgotten topological index [27] is given by

F∗M(G) = ∑
uv∈E(G)

[D2
u +D2

v], (11)

(vi) neighborhood harmonic index [28] is given by

H∗(G) = ∑
uv∈E(G)

2
Du +Dv

, (12)
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(vii) neighborhood Randic index [28] is given by

R∗(G) = ∑
uv∈E(G)

1√
DuDv

, (13)

(viii) neighborhood inverse Randic index [28] is given by

RR∗(G) = ∑
uv∈E(G)

√
DuDv. (14)

The following are important inequalities used in establishing our results.

Lemma 1 (Cauchy-Schwarz Inequality, [31]). Let xi and yi be real numbers for all 1 ≤ i ≤ n
then

(
n

∑
i=1

xiyi)
2 ≤ (

n

∑
i=1

x2
i )(

n

∑
i=1

y2
i ). (15)

Equality holds if and only if xi = kyi for some constant k for each 1 ≤ i ≤ n.

Lemma 2 (Chebyshev’s inequality, [31,32]). Let a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn
be real numbers then we have

n

∑
i=1

ai

n

∑
i=1

bi ≤ n
n

∑
i=1

aibi. (16)

or
n

∑
i=1

aibi ≥
1
n

n

∑
i=1

ai

n

∑
i=1

bi. (17)

Equality occurs if and only if a1 = a2 = . . . = an or b1 = b2 = . . . = bn.

Lemma 3 (Inequalities between Means, [31]). Let a, b ∈ R+ and let

QM =

√
a2 + b2

2
, AM =

a + b
2

, GM =
√

ab, HM =
2

1
a +

1
b

, (18)

then QM ≥ AM ≥ GM ≥ HM, equality occurs if and only if a = b where QM = quadratic
mean, AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean.

Lemma 4 ([31]). Let a1, a2, . . . , an and b1, b2, . . . , bn be two sequences of non-negative real num-
bers and ci > 0, i = 1, 2, . . . , n such that a1

c1
≥ a2

c2
≥ . . . ≥ an

cn
and b1

c1
≥ b2

c2
≥ . . . ≥ bn

cn
then

n

∑
i=1

aibi
ci
≥ ∑n

i=1 ai ∑n
i=1 bi

∑n
i=1 ci

. (19)

Lemma 5 (Diaz-Metcalf inequality, [24]). Let ai and bi be two sequences of real numbers with
ai 6= 0(i = 1, 2, . . . , n) and such that pai ≤ bi ≤ Pai then

n

∑
i=1

b2
i + pP

n

∑
i=1

a2
i ≤ (P + p)

n

∑
i=1

aibi. (20)

Equality holds if and only if either bi = pai or bi = Pai for every i = 1, 2, . . . , n.

3. Main Results

We begin this section by introducing neighborhood versions of two degree based
topological indices, namely the GA index and ABC index. We establish their bounds for
some graphs.
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Definition 2. Let G be a graph and let u, v ∈ V(G) and Du,Dv be the neighbor degree sums of
vertices u and v, respectively; then, the neighborhood GA index is given by

NGA(G) = ∑
u,v∈E(G)

2
√
DuDv

Du +Dv
, (21)

where Du = ∑v∈N(v) d(v).

Definition 3. Let G be a graph and let u, v ∈ V(G) and Du,Dv be the neighbor degree sums of
vertices u and v, respectively; then, the neighborhood ABC index is given by

NABC(G) = ∑
uv∈E(G)

√
Du +Dv − 2
DuDv

, (22)

where Du = ∑v∈N(v) d(v).

Using the above definitions, we compute the bounds of NGA(G) and NABC(G) for
some classical graphs such as Rn, Kn, Cn, Sn, irregular graphs and pendant graphs. The
following remarks will be important in establishing our result.

Remark 1. We denote max(Du) = ∆ and min(Du) = δ. If G is a complete, regular, cycle or star
graph then max(Du) = min(Du) i.e., ∆ = δ.

Remark 2. If G is a complete, regular or cycle graph then Du = Dv = d2
v.

3.1. Bounds for Neighborhood Geometric–Arithmetic (NGA) Index of Graphs

Theorem 1. Let G be a complete, regular, cycle or star graph with m-edges then

NGA(G) = m. (23)

Proof. From Remark 2, we have

NGA(G) = ∑
uv∈E(G)

2
√
DuDv

Du +Dv
= ∑

uv∈E(G)

2dv
2

2dv
2 = ∑

uv∈E(G)
1. (24)

Since G is a Kn, Rn, Cn or Sn graph then the neighborhood degree sum of a pair
u, v ∈ E(G) is 1. Therefore, if we take the summation of the neighborhood degree for all
uv ∈ E(G) we obtain

NGA(G) = m. (25)

Theorem 2. Let G be a star graph then

NGA(G) ≥ 2
√

n− 1
n

. (26)

Proof. Let G be a star graph and 1 ≤ Du ≤ n− 1 holds for u ∈ V(G). Since

NGA(G) = ∑
uv∈E(G)

2
√
DuDv

Du +Dv
, (27)

then it follows from Lemma 3 that

∑
uv∈E(G)

2
√
DuDv ≤ ∑

uv∈E(G)
(Du +Dv),
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which implies that

∑
uv∈E(G)

Du +Dv

2
≥ ∑

uv∈E(G)

√
DuDv. (28)

Let a = Du = 1 and b = Dv = n− 1, substituting these in (28) we obtain

∑
uv∈E(G)

1 + n− 1
2

≥ ∑
uv∈E(G)

√
1.(n− 1),

which implies

m ≥ 2
√

n− 1
n

, (29)

and therefore from Theorem (23) we obtain

NGA(G) ≥ 2
√

n− 1
n

. (30)

Theorem 3. Let G be a complete, regular or cycle graph with m-edges. Then,

NGA(G) ≥ 2m2

R∗(G)M∗1(G)
. (31)

Proof. From Definition 2, if a =
√
DuDv and b = 1

2 (Du +Dv) then

∑
uv∈E(G)

1 = ∑
uv∈E(G)

√ a
b
× 1√

a
b

. (32)

Squaring and applying Lemma 1 to (32)

( ∑
uv∈E(G)

1)2 ≤

 ∑
uv∈E(G)

√
a
b

2

×

 ∑
uv∈E(G)

1√
a
b

2

, (33)

which becomes

m2 ≤ ∑
uv∈E(G)

√
DuDv

1
2 (Du +Dv)

× ∑
uv∈E(G)

1
2 (Du +Dv)√
DuDv

≤ NGA(G)× ∑
uv∈E(G)

1
2

.
Du +Dv√
DuDv

, (34)

which implies

2m2 ≤ NGA(G)× ∑
uv∈E(G)

1√
DuDv

.(Du +Dv). (35)

From (13) and (7), we have

2m2 ≤ NGA(G)× R∗(G)M∗1(G). (36)

Therefore,

NGA(G) ≥ 2m2

R∗(G)M∗1(G)
. (37)

This completes the proof.
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Theorem 4. Let G be a pendant graph then

NGA(G) ≤
√

2∆δH∗(G)RR∗(G)√
∆2 + δ2

. (38)

Proof. Squaring (21) and applying Lemma 1, we have

[NGA(G)]2 =

 ∑
uv∈E(G)

2
√
DuDv

Du +Dv

2

≤
∑

uv∈E(G)
(DuDv) ∑

uv∈E(G)

4
(Du+Dv)2

1
2 (

∆
δ + δ

∆ )
, (39)

which implies that

NGA(G) ≤

√√√√ ∑
uv∈E(G)

DuDv. ∑
uv∈E(G)

4
(Du +Dv)2 ×

2∆δ

∆2 + δ2

= ∑
uv∈E(G)

2
Du +Dv

. ∑
uv∈E(G)

√
DuDv ×

√
2∆δ

∆2 + δ2 .

Hence,

NGA(G) ≤
√

2∆δH∗(G)RR∗(G)√
∆2 + δ2

. (40)

Theorem 5. Let G be a any graph

NGA(G) ≤ H∗(G)
√

M∗2(G). (41)

Proof. From Definition 2, let a = 2
Du+Dv

and b =
√
DuDv. Squaring (21) and applying

Lemma 1, we have

[NGA(G)]2 =

 ∑
uv∈E(G)

2
Du +Dv

.
√
DuDv

2

≤

 ∑
uv∈E(G)

2
Du +Dv

2 ∑
uv∈E(G)

√
DuDv

2

. (42)

which implies

[NGA(G)]2 ≤

 ∑
uv∈E(G)

2
Du +Dv

2 ∑
uv∈E(G)

DuDv

.

[NGA(G)]2 ≤ [H∗(G)]2.M∗2(G).

Taking square root of both sides yields

NGA(G) ≤ H∗(G)
√

M∗2(G). (43)

Theorem 6. Let G be any graph then

NGA(G) ≥ H∗(G)2 + ∆δM∗2(G)
∆ + δ

. (44)



Axioms 2022, 11, 487 8 of 12

Proof. From Definition 2, let a =
√
DuDv, b = 2

Du+Dv
, p = δ, P = ∆. Applying Lemma 5

to (21), we have

∑
uv∈E(G)

(
2

Du +Dv

)2
+ δ∆ ∑

uv∈E(G)

(√
DuDv

)2
≤ (∆ + δ) ∑

uv∈E(G)

√
DuDv.

2
Du +Dv

. (45)

From (12) and (9), we have

H∗(G)2 + ∆δM∗2(G) ≤ (∆ + δ) ∑
uv∈E(G)

2
√
DuDv

Du +Dv
.

Hence,

H∗(G)2 + ∆δM∗2(G)
∆ + δ

≤ NGA(G). (46)

Theorem 7. Let G be a star graph with m-edges then

NGA(G) ≥ RR∗(G)H∗(G)
m

. (47)

Proof. From Definition 2, let a =
√
DuDv and b = 2

Du+Dv
. Applying Lemma 2 to (21),

we have ∑
uv∈E(G)

√
DuDv

.

 ∑
uv∈E(G)

2
Du +Dv

 ≤ m

 ∑
uv∈E(G)

2
Du +Dv

.
√
DuDv

. (48)

(
∑

uv∈E(G)

√
DuDv

)(
∑

uv∈E(G)

2
Du+Dv

)
m

≤

 ∑
uv∈E(G)

2
Du +Dv

.
√
DuDv

. (49)

It implies from (49) and by (14) and (12), we get

RR∗(G)H∗(G)
m

≤

 ∑
uv∈E(G)

2
√
DuDv

Du +Dv

. (50)

Therefore

RR∗(G)H∗(G)
m

≤ NGA(G). (51)

3.2. Bounds for Neighborhood Atom Bond Connectivity NABC Index of Graphs

The following remark is an analogue of the properties of the classical ABC index stud-
ied by Das et al. [24]. The properties also follows for neighborhood version of ABC index.

Remark 3. If G is a complete, regular, cycle or star graph then

DuDv(Du +Dv − 2) = 2∆2(∆− 1) (52)
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Theorem 8. Let G be any graph then

Du +Dv − 2 ≥ 2m∆2(∆− 1)
M∗2(G)

. (53)

Proof. From Remark 3, the following

Du +Dv − 2 =
2∆2(∆− 1)
DuDv

(54)

holds. Taking the summation of (54) we have

∑
uv∈E(G)

Du +Dv − 2 = ∑
uv∈E(G)

2∆2(∆− 1)
DuDv

. (55)

Using Lemma 4 on (55), let a = 2∆2(∆− 1) and let b = 1 and c = DuDv; then, we
have

∑
uv∈E(G)

2∆2(∆− 1).1
DuDv

≥
2 ∑

uv∈E(G)
∆2(∆− 1). ∑

uv∈E(G)
1

∑
uv∈E(G)

DuDv
≥ 2m∆2(∆− 1)

M∗2(G)
. (56)

We obtain from (54) and (56) that

∑
uv∈E(G)

Du +Dv − 2 ≥ 2m∆2(∆− 1)
M∗2(G)

. (57)

Theorem 9. Let G be a star graph then,

NABC(G) =
√

2(m− 1). (58)

Proof. From Definition 3, let Du = Dv = m and

NABC(G) = ∑
uv∈E(G)

√
Du +Dv − 2
DuDv

=

√
2(m− 1)

m
. (59)

Since G is a star graph then the neighborhood degree sum of a pair u, v ∈ E(G) is√
2(m−1)

m . Therefore, if we take the summation of the neighborhood degree for all uv ∈ E(G)
we obtain

∑
uv∈E(G)

√
2(m− 1)

m
×m =

√
2(m− 1). (60)

Theorem 10. Let G be any graph then

NABC(G) ≤ ∆R∗(G)
√

2m(∆− 1)
M∗2(G)

. (61)

Equality holds if and only if G is a regular, complete, or star graph.
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Proof. Squaring (22) and applying Lemma 1, let a =
√
Du +Dv − 2 and b = 1√

DuDv
then

 ∑
uv∈E(G)

√
Du +Dv − 2
DuDv

2

≤

 ∑
uv∈E(G)

√
Du +Dv − 2

2 ∑
uv∈E(G)

1√
DuDv

2

(62)

≤ ∑
uv∈E(G)

Du +Dv − 2 ∑
uv∈E(G)

(
1√
DuDv

)2
. (63)

From (53) and (13), (63) becomes ∑
uv∈E(G)

√
Du +Dv − 2
DuDv

2

≤ 2m∆2(∆− 1)
M∗2(G)

.[R∗(G)]2.

Taking square root of both sides,

∑
uv∈E(G)

√
Du +Dv − 2
DuDv

≤ ∆R∗(G)
√

2m(∆− 1)
M∗2(G)

. (64)

Hence,

NABC(G) ≤ ∆R∗(G)
√

2m(∆− 1)
M∗2(G)

. (65)

Theorem 11. Let G be any graph and m the number of edges in G. Then,

NABC(G) ≥ ∆R∗(G)
m

√
2m(∆− 1)

M∗2(G)
. (66)

Proof. From Lemma 2, let a =
√
Du +Dv − 2 and b = 1√

DuDv

∑
uv∈E(G)

(√
Du +Dv − 2.

1√
DuDv

)
≥

 1
m ∑

uv∈E(G)

√
Du +Dv − 2 ∑

uv∈E(G)

1√
DuDv

. (67)

From (53) and (13), we have

∑
uv∈E(G)

√
Du +Dv − 2
DuDv

≥ 1
m

√
2m∆2(∆− 1)

M∗2(G)
.R∗(G).

Hence

NABC(G) ≥ ∆R∗(G)
m

√
2m(∆− 1)

M∗2(G)
. (68)

We conclude this section with the following consequence from the classical and neigh-
borhood versions of ABC and GA indices.

Corollary 1. Let GA, ABC, NGA and NABC be geometric–arithmetic index, atom bond connec-
tivity index, neighborhood geometric–arithmetic index, and neighborhood atom bond connectivity
index; then, the following inequalities hold:

(i) If G is a star graph, then NGA(G) ≥ GA(G).
(ii) If G is a regular, cycle, or complete graph, then NGA(G) = GA(G).
(iii) If G is a pendant graph, then NGA(G) ≤ GA(G).
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(iv) If G is an irregular graph, then NGA(G) ≤ GA(G).
(v) If G is any graph, then NABC(G) ≥ ABC(G).

4. Conclusions

In this article, we have introduced and studied the neighborhood geometric–arithmetic
index and neighborhood atom bond connectivity index for some known graphs. We have
established the lower and upper bounds of NGA(G) and NABC(G) for some known
graphs. In our future studies, we are going to demonstrate the priority and usage of
our new neighborhood topological indices against other types of topological indices in
QSPR/QSAR analysis of drugs. Unlike the normal SPSS adopted for QSPR/QSAR, we
plan to adopt the support vector machine algorithm of machine learning.
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