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Abstract: Graph robustness or network robustness is the ability that a graph or a network preserves
its connectivity or other properties after the loss of vertices and edges, which has been a central
problem in the research of complex networks. In this paper, we introduce the Modified Zagreb index
and Modified Zagreb index centrality as novel measures to study graph robustness. We theoretically
find some relationships between these novel measures and some other graph measures. Then,
we use Modified Zagreb index centrality to analyze the robustness of BA scale-free networks, ER
random graphs and WS small world networks under deliberate or random vertex attacks. We also
study the correlations between this new measure and some other existed measures. Finally, we use
Modified Zagreb index centrality to study the robustness of two real world networks. All these results
demonstrate the efficiency of Modified Zagreb index centrality for assessing the graph robustness.

Keywords: modified Zagreb index; modified Zagreb index centrality; graph robustness; complex
network
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1. Introduction
1.1. Definitions

Let G = G(V, E) be an undirected graph, where V = {v1, . . . , vn} represents the set of
vertices and E ⊂ V ×V represents the set of edges. The order of a graph is |V| and the size
is |E|. A loop is an edge whose both end vertices are the same, and multi edges are two
or more edges that have common end vertices. In this paper, we study simple graphs, i.e.,
undirected graphs without multi edges and loops. A graph is called connected if for each
pair of vertices in this graph, there is at least one path connecting them.

In a graph G with n vertices, let A = (aij)n×n be its adjacency matrix, where aij =
aji = 1 if vi and vj are adjacent, otherwise aij = aji = 0. The maximum eigenvalue ρ
of the adjacency matrix A is called the spectral radius, which controls the speed of the
propagation of dynamic processes over a network [1,2]. It has been used to assess the
robustness of the networks in [3,4]. Let D be the degree matrix, which is a diagonal matrix,
and the elements on the diagonal are the degrees of each vertex. The Laplacian matrix L of
a connected graph G is defined as L = D− A, and its second smallest eigenvalue is called
the algebraic connectivity [5]. Larger values of algebraic connectivity imply that it is more
difficult for a graph to be broken into disconnected components, and it has been used to
assess graph robustness [6]. The normalized Laplacian matrix L of graph G is defined as
L = I − D−

1
2 AD−

1
2 . Here, I is the identity matrix and D−

1
2 is a diagonal matrix such that

the elements on the diagonal are 1/
√

di(i = 1, . . . , n), where di is the vertex degree of vi.
The normalized Laplacian matrix L has many important properties related to the structure
of G, such as L(G) is a positive semidefinite matrix, the sum of all eigenvalues is equal to n
and so on. We briefly summary the important properties in Theorem 1. In this paper, we
call the eigenvalues of the normalized Laplacian matrix L(G) as L-eigenvalues.
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For terminology and notation not defined here we refer to [7].
The first and second variable Zagreb indices ([8–10]) are defined as

Mα
1 (G) = ∑

u∈V
(du)

α,

and
Mα

2 (G) = ∑
uv∈E

(dudv)
α,

with α ∈ R, respectively. It is worth noting that when α = 1, Mα
1 (G) is twice the number of

edges of graph G, that is, M1(G) = 2|E|; M2(G) is called the second Zagreb index. M−1
1 is

called the inverse degree index

ID(G) = ∑
u∈V

1
du

= ∑
uv∈E

(
1
d2

u
+

1
d2

v
).

In addition, M2
1(G) is called the first Zagreb index, M3

1(G) is called the forgotten
topological index (or F-index)

M3
1(G) = F(G) = ∑

u∈V
d3

u = ∑
uv∈E

(d2
u + d2

v),

when α = −1/2, M−1/2
2 (G) is the Randić connectivity index. M−1

2 (G) is also known as the
Modified Zagreb index

MZ(G) = ∑
uv∈E

1
dudv

.

The Modified Zagreb index has been applied in the structural boiling point modeling
of benzenoid hydrocarbons [11], which will be studied in complex networks in this paper.

The resistance distance between vertices vi and vj in G, denoted by rij(G), is the
effective resistance between vertices vi and vj of the electrical network, for which each edge
of G is replaced by a resistor of unit resistance. The resistance distance was first introduced
by Klein and Randić [12], and they also defined the Kirchhoff index

K f (G) = ∑
1≤i<j≤n

rij(G),

as the sum of resistance distances between all pairs of vertices. The Kirchhoff index [13] of
a simple connected graph can also be written as

K f (G) = N
n−1

∑
i=1

1
λi

,

where λi(1 ≤ i ≤ n− 1) are all the non-zero Laplacian eigenvalues of G. The normalized
Kirchhoff index [14] is defined as

K f N(G) =
K f (G)

(n
2)

.

Among plenty of complex network models, the Erdös−Rényi random graph model
(ER random graph), the Watts−Strogatz small−world network model and the
Barabási−Albert network model are the most representative. We briefly introduce these
three models.
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Erdös−Rényi random graph [15]:

We generate n isolated vertices and add an edge in each pair of vertices with the
probability p. In addition, when the edge density p exceeds the critical threshold function
lnN/N, the probability of the ER random graph being connected is infinitely close to 1 [16].

Watts−Strogatz small−world network model [17]:

We generate a ring lattice of N vertices, each vertex has an average degree of 2M,
and each vertex is connected to the nearest M neighbor vertices on both sides of it. Then,
we rewire each edge generated in the graph. Each edge reconnects to the target vertex
with probability p, and cannot be a multi edge or a loop. It has the properties of high
clustering coefficient and small shortest average path, which can well simulate the social
and ecological network structure.

Barabási−Albert scale−free network model [18]:

We generate m0 vertices, and then we add a new vertex every step, which will connect
the existing m(≤ m0) vertices in the network. The probability that a new vertex connects
to an existing vertex u is p = du

n
∑

i=1
di

, where di is the degree of vertex i and n is the number

of all vertices in this step. The BA model is a complex network whose degree distribution
conforms to a power law distribution.

1.2. Graph Robustness Measures

There are many measures of graph robustness, some of which are the classic graph
measures, including the connectivity of vertices and edges, average distance, average
vertices or edges betweenness, clustering coefficient etc. The clustering coefficient is a
measure of the degree to which vertices in a graph tend to cluster together, and the global
clustering coefficient [18] is based on triplets of vertices. The average distance traveled on
the shortest paths between any two vertices is known as the average path length, which is
a measure of the efficiency of information or mass transport on a network. The diameter is
defined as the maximum length among all the shortest paths connecting any two vertices in
the graph. Centrality is an important concept in social network analysis because it identifies
the most important (central) vertices in a network. The closeness centrality [19] of a vertex
is defined as the reciprocal of the sum of the shortest path lengths between that vertex
and all other vertices in the graph. Betweenness centrality [20] is a measure of centrality
based on the shortest path, which indicates the degree to which vertices are stood between
each other.

Another type of measure is based on the spectrum of the graph or the spectrum of its
Laplace matrix, including algebraic connectivity, the number of spanning trees, Kirchhoff
index and so on. Wang et al. [21] used the effective graph resistance (Kirchhoff index)
to improve the robustness of complex networks. De Meo et al. [22] proved that graph
robustness can be quickly estimated through the Randić index and experimentally tested it
in several complex networks. Martínez et al. [23] performed computational and analytical
studies of the Randić index in ER random graphs. Clemente and Cornaro [24] proposed
Effective Resistance centrality as a new graph measure for assessing robustness in complex
networks. Eigenvector centrality [25] is a measure of the influence of a vertex, and a high
eigenvector score indicates that the vertex is connected to many other vertices with high
scores. PageRank centrality [26] is to assign a score to vertex based on the edges incident to
the vertex and the ranks of its neighbors.

All the measures will be used in this paper are shown in Table 1. Chen et al. [27]
studied the relationships between different measures in several complex networks.
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Table 1. All graph measures considered in this paper.

Name Definition Abbreviation

Effective Graph Resistance K f (G) = N ∑n−1
i=1

1
λi

, where λi(1 ≤ i ≤ n− 1)
are all the non-zero Laplacian eigenvalues

Kf

Modified Zagreb index MZ(G) = ∑uv∈E(dudv)−1 MZ

Global Clustering Coefficient GCC(G) = 3×|triangles|
|connected triples| GCC

Average Path Length APL(G) = 1
n(n−1) ∑u,v∈V dist(u, v), where

dist(u, v) is the distance between u and v
APL

Diameter diam(G) = max{dist(v, w), v, w ∈ V} diam
Algebraic Connectivity AC(G) = the second smallest eigenvalue of the

Laplacian matrix

Density den(G) = 2|E|
|V|(|V|−1) den

Spectral Radius ρ(G) = the largest eigenvalue of the adjacency
matrix

ρ

Closeness Centrality CC(v) = n−1
∑u 6=v dist(u,v) Clos.

Betweenness Centrality CB(v) = ∑s,t∈V
σ(s,t|v)
σ(s,t) , where σ(s, t) is the total

number of shortest paths between vertex s and t
and σ(s, t | v) is the number of shortest paths
between s and t going through v

Betw.

Eigenvector Centrality Cei(vi) = the i-th entry in the normalized
eigenvector belonging to the largest eigenvalue
of the adjacency matrix

Eig.Centr

PageRank Centrality PR(v) = 1− d + d ∑u∈N(v)
PR(u)

du
, where PR(v)

is the PageRank score of vertex v and d is a value
between 0 and 1, which determines the damping
factor and is usually set to 0.85.

PageR

1.3. Motivations and Plan of This Paper

The robustness of a network (or a graph) is to evaluate the ability of a network to maintain
its original functions in the event of an attack or failure. When a measure is established, we
can rely on it to improve the existing network to be more stable and efficient. How to better
and quickly evaluate the robustness of a complex network, and how its robustness changes
when some vertices or edges are attacked, are issues worth investigating.

Clemente and Cornaro [24] demonstrated that Effective Resistance centrality is a
quite useful graph robustness measure. However, the calculations of Effective Resistance
centrality for large networks take a long time. Aiming at assessing the graph robustness
efficiently and quickly, we propose the Modified Zagreb index as the measure and propose
a novel measure for assessing robustness in complex networks. The robustness of the ER
random graph model, the WS small−world network model and the BA network model
will be studied by this novel measure, and some other real world networks (European Road
Network and U.S. Power Grid network) will also be studied.

The plan of this paper is as follows. We start by introducing Modified Zagreb index
and Modified Zagreb index centrality in Section 2. In Section 3, we make experimental
analysis in the ER random graph model, the WS small−world network model, the BA
network model and two real world networks. Section 3 is also devoted to explore the
relationships between these new measures and other measures mentioned in Table 1.
Finally, in Section 4, we draw the conclusion.

2. Modified Zagreb Index and Modified Zagreb Index Centrality

We arrange the eigenvalues of the normalized Laplace matrix into λ1, . . . , λn in as-
cending order. The average square difference S(G) ([22]) between the eigenvalues of the
normalized Laplacian matrix L(G) and its average eigenvalues is defined as

S(G) =
1
n

n

∑
i=1

(
λi − λ

)2
,
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where λ = 1
n

n
∑

i=1
λi. From a certain point of view, the average square difference is also a

good way to measure the robustness of the graph.

Theorem 1 ([28–30]). Let G be a connected graph, then the eigenvalues of its normalized Laplacian
matrix L(G) have the following properties:

(1) L(G) is a positive semidefinite matrix.
(2) Let the eigenvalues of L(G) be sorted ascending as λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2, where λ1 = 0,

which is the lower bound of its eigenvalues, and corresponds to the eigenvector 1.
(3) ∑n

i=1 λi = n, that is, the sum of all eigenvalues is equal to n, where n is the order of the graph
G.

(4) λ2 = λ3 = ... = λn if and only if G is a complete graph Kn.

Theorem 2. Let G be a connected graph of order n, then the bounds of S(G) are as follows:

1
n− 1

≤ S(G) ≤ 1. (1)

The equality on the left is attained if and only if G is a complete graph.

Proof. We first prove that the right side of the inequality S(G) ≤ 1. From Theorem 1, we
know that λ1 = 0 and 0 ≤ λi ≤ 2, obviously we can obtain (λi − 1)2 ≤ 1. Then, we can
deduce the upper bound,

S(G) =
1
n

n

∑
i=1

(λi − 1)2 =
1
n
+

1
n

n

∑
i=2

(λi − 1)2 ≤ 1
n
+

n− 1
n

= 1.

Next, we prove that the left side of the inequality 1
n−1 ≤ S(G).

S(G) =
1
n

n

∑
i=1

(λi − 1)2 =
1
n

n

∑
i=1

(λ2
i − 2λi + 1)

=
1
n
(

n

∑
i=1

λ2
i − 2

n

∑
i=1

λi + n)

=
1
n
(

n

∑
i=1

λ2
i − 2n + n)

=
1
n

n

∑
i=1

λ2
i − 1.

When n is fixed, the original problem is equivalent to finding the lower bound of
∑n

i=1 λ2
i , and since f (x) = x2 is a convex function on (−∞, +∞), we have:

f (∑n
2 |λi|

n− 1
) ≤ 1

n− 1

n

∑
i=2

f (|λi|)

(
∑n

i=2|λi|
n− 1

)2 ≤ 1
n− 1

n

∑
i=2

λ2
i

n2

n− 1
≤

n

∑
i=2

λ2
i .

Finally, we can obtain the lower bound of S(G). When λ2 = λ3 = ... = λn = n/(n− 1),
i.e., G is a complete graph, the equal sign holds.
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S(G) ≥ 1
n
· n2

n− 1
− 1 =

1
n− 1

.

Theorem 3 ([31]). Let G be an undirected, n−order, connected graph, and 0 = λ1 ≤ λ2... ≤ λn
be the ascending eigenvalue of L(G). The following equation holds between modified Zagreb index
MZ(G) and L-eigenvalues.

MZ(G) =
tr((I −L)2)

2
. (2)

By Theorem 3, we can calculate the Modified Zagreb index of the graph through the
normalized Laplacian matrix L(G).

Theorem 4. Let G be an undirected, n−order, connected graph; the following equation holds.

MZ(G) =
nS(G)

2
. (3)

Proof. For the sum of the eigenvalues λi of the matrix L , we have ∑n
i=1 λi = n , which

means that λ = 1 is a constant. Combined with Theorem 4, we can obtain its equation
deformation.

S(G) =
1
n

n

∑
i=1

(λi − λ)2 =
1
n

n

∑
i=1

(λi − 1)2 =
1
n

n

∑
i=1

(λi(L− I))2

=
1
n

tr(L− I))2 =
2MZ(G)

n
.

Theorem 5. If G is a simple graph, then

2
F(G)

≤ MZ(G) ≤ ID(G)

2
,

and the equality is attained if and only if G is regular.

Proof. By the inequality of arithmetic and geometric, we have

2
1

d2
u
+ 1

d2
v

≤ dudv ≤
d2

u + d2
v

2
,

2
ID(G)

≤ 1
MZ(G)

≤ F(G)

2
.

With the result of Theorem 4, we can obtain S(G) by calculating MZ(G) to know
whether the graph is robust or not, and its time complexity is O(|E|), which is much faster
than calculating the Kirchhoff Index of the graph.

Let G be a connected graph of n vertices and m edges and Gvi the graph obtained by
removing the vertex vi and all its incident edges from G. The Effective Resistance Central-

ity ([24]) RK(vi, G) of the vertex vi is defined as RK(vi, G) =
(∆K f N)vi
K f N(G)

=
K f N(Gvi )−K f N(G)

K f N(G)
.

Clemente and Cornaro [24] use The Effective Resistance Centrality as a robustness measure
for networks and demonstrated its efficiency by studying several well-known model net-
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works. Since the calculation of Kirchhoff index for large networks would cost much time,
we propose another robustness measure according to the Modified Zagreb index.

To better assess the robustness of the large graph, we consider the expander graph [32],
which has expansion properties closely related to the robustness of the large graph and
has been used for a rapid assessment in [33]. The ER random graph has good expansion
properties and we use it as a reference. We use GER to represent the ER random graph
generated with G (order n and size m) as the prototype, which has n vertices and p =
2m/n(n− 1). Let GER(vi)

denote the ER random graph generated with Gvi as the prototype.

Definition 1. The Modified Zagreb index centrality (MZC) RS(vi, G) of the vertex vi is defined as

RS(vi, G) =
MZ(Gvi )−MZ(G)

MZ(G)
·

MZ(GER(vi)
)

MZ(GER)
. (4)

Aguilar−Sánchez et al. [34] proved that the average value of Modified Zagreb index of
ER random graphs is n2

4m when np >> 1. Thus, for convenience, we suppose MZ(GER) =
n2

4m and MZ(GER(vi)) =
(n−1)2

4(m−di)
in the Modified Zagreb Index Centrality, where di is the

degree of vi in G. We need to mention that if we only use
MZ(Gvi )−MZ(G)

MZ(G)
to be a new

measure, it is highly related to the vertex degree, which is not a suitable robustness measure

for complex networks. Thus, we add the item
MZ(GER(vi)

)

MZ(GER)
, which will be demonstrated to

be efficient in the next section.

3. Experimental Analysis
3.1. Modified Zagreb Index in Erdös-Rényi Random Graphs

We use computational and statistical analysis to study the Modified Zagreb index in
the ER random graphs. In Figure 1a, we demonstrate the average Modified Zagreb index
〈MZ(G)〉 as a function of the probability p for ER random graphs with different orders.
We need to mention that all the average values 〈·〉 are calculated by generating ER random
graphs over 105 times. We observe that when p is small, 〈MZ(G)〉 increases rapidly as p in-
creases, and when the Modified Zagreb index reaches the maximum value Max[〈MZ(G)〉],
〈MZ(G)〉 decreases monotonously with the increase in p until it approaches 0 when p = 1.
At the same time, it can be clearly observed that when the order is larger, the maximum
value of the Modified Zagreb index is also larger, and can be reached at a smaller p. In
order to better observe the changing law of 〈MZ(G)〉 under different sizes of ER random
graphs, we normalize the Modified Zagreb index as

〈
MZ(G)

〉
=〈MZ(G)〉/max[〈MZ(G)〉].

In Figure 1b, we find that the
〈

MZ(G)
〉

curve shift to the left on the p−axis when the
order is increasing. This has to make us think that there is a scaling parameter associated
with the order n that affects the

〈
MZ(G)

〉
curve. In order to find this scaling parameter, we

choose the value of p when
〈

MZ(G)
〉
= 1 under the ER random graphs of different orders

n, and then mark it as p∗, as shown by the dashed line in Figure 1b.
In Figure 1c, we can observe that p∗ as a function of n has an obvious linear trend (in

log−log scale), which implies that there is a power−law relationship between them. In
addition, in the inset of Figure 1c, we observe that Max[〈MZ(G)〉] as a function of n also
characterizes an obvious linear trend.

In Figure 1d, we plot
〈

MZ(G)
〉

as a function of the parameter ξ = np on a semi−log
scale, and we find that the curves under ER random graphs of different orders all fall on
the same curve. Some lower bounds on the modified Zagreb index can be found in [35].
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Figure 1. (a) Average Modified Zagreb index 〈MZ(G)〉 as a function of the probability p of
Erdös−Rényi random graphs GP(N) of different order N ∈ [25, 1600]. (b) Average normalized modi-
fied Zagreb index

〈
MZ(G)

〉
as a function of the probability p. (c) p∗ as a function of n. (d)

〈
MZ(G)

〉
as a function of ξ = np.

3.2. Assessment of Robustness for Different Network Models

In order to show the effect of Modified Zagreb index centrality, we use it to assess the
robustness of three well-known network models and make several comparisons with the
effect of effective resistance centrality.

Extending the definition of RS(vi, G), we use RS(V, G) to denote the Modified Zagreb
index centrality after removing the vertices in V. Considering that the vertices of the net-
work are continuously removed, the subgraph obtained after the nth step vertex is removed
is GVn . For the subgraphs obtained by these steps, we use RS(V1, G), RS(V2, G), . . . , RS(V, G)
(RK(V1, G), RK(V2, G), . . . , RK(V, G)) to quantify the robustness of the network at each step.

In addition, we use two ways to remove vertices. One way is to remove the high degree
vertices, which form the vertex set Vattack. The purpose is to simulate a deliberate attack on
the strategic vertices of the network. The other way is to remove vertices randomly, which
form the vertex set Vrandom. It simulates the random attacks in the networks.

We simulate the BA scale-free network for 102 times (the order is 2500 and m0 = 5,
m = 4), and implement a deliberate attack and a random attack on each simulated network.
We find that when the BA scale-free network is under a random attack, the box plots in
Figure 2a,b demonstrate smooth and no significant changes, and both fluctuate slightly with
0 as the central axis. Under random attacks, except for some outliers, the absolute values of
the maximum and minimum values of RS(Vrandom, G) and RK(Vrandom, G) in Figure 2a,b
do not exceed 0.005, and their medians almost coincide with 0. At the same time, we find
that the trends of RS(Vrandom, G) and RK(Vrandom, G) are very consistent, and we know that
the efficiency of calculating RS(V, G) is much higher than that of RK(V, G).

On the contrary, we find that when the scale−free network is under a deliberate attack,
the box plots of Figure 2a,b have obvious changes. These all demonstrate the vulnerability
of scale−free networks when they are attacked deliberately. At the same time, we find that
the changing trends of RS(Vattack, G) and RK(Vattack, G) are also highly coincident, and the
numerical results are not much different.
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Deliberate attack (a)
Random attack
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The BA scale-free with N = 2500, m0 = 5 and m = 4.
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Figure 2. (a,b) respectively show the calculation and analysis of the RK(V, G) and RS(V, G) on
the simulated BA scale−free network. By selecting 20 high−degree vertices for deliberate attacks
and 20 random vertices for random attacks, they are all calculated by generating a 2500-order BA
scale−free network with m0 = 5 and m = 4 for 102 times, and the results are displayed in the form of
box plots.

From the simulation calculation of the BA scale−free network, we find that both
RS(V, G) and RK(V, G) have the same performance effect, and the changing trends when
the vertices are removed are highly coincident. Thus, Modified Zagreb index centrality is a
suitable replacement of effective resistance centrality in the assessment of the robustness.

We also simulate the experiments on the ER random graph. As shown in Figure 3,
when encountering a random attack, the box plot distribution of RS(Vrandom, G) fluctuates
slightly. When the number of vertices removed from the network increases, the probability
of outliers and larger boundaries is greater, but the maximum absolute value does not
exceed 0.001. By simple calculations, we know that at most 20 vertices randomly attacked
would not cause a significant increasing trend of the values of RS(V, G) as shown in Figure 3.
When encountering a deliberate attack, the distribution of the box plot of RS(Vattack, G)
shifts upward with the number of vertices deleted, which means that the more vertices
removed, the greater the impact on the robustness of the network. The distribution of
the box plot shows that when the ER random network encounters a deliberate attack, the
robustness of the network will be affected, but the impact will not be significant. This
indicates that the ER random network is stable, even after removing 20 vertices, and the
largest outlier does not exceed 0.0035. The robustness of the ER random network in the
face of deliberate attacks is closely related to its network structure.

On the other hand, using RK(V, G) as the measure, when the ER random network
encounters deliberate attacks and random attacks, the distribution of the box plot shifts
upwards with the number of removed vertices, but the upward trend of deliberate attacks
is faster than that of random attacks. Although RS(V, G) and RK(V, G) have different
trends in the results, we find that under deliberate attacks and random attacks, the gaps in
their box plot distribution are very similar, that is, we rotate the box plot of RS(V, G) after
a certain angle, and it is highly coincident with the box plot of RK(V, G). In addition, when
RS(V, G) is used as the measure, the maximum gap distance of the median of the box plot
is around 0.003, and when RK(V, G) is used as the measure, the maximum gap distance of
the median of the box plot is also around 0.003. Here, the maximum gap distance refers to
the value of RS(Vattack, G)− RS(Vrandom, G) (or RK(Vattack, G)− RK(Vrandom, G) ) when 20
vertices have been removed from the network.
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Figure 3. The figure shows the calculation and analysis of deliberate attacks and random attacks
of RS(V, G) and RK(V, G) on the ER random network. They are all calculated by generating a
2500-order ER random network with p = 0.08 for 102 times, and the results are displayed in the form
of box plots.

The trends of RS(V, G) and RK(V, G) in ER random graphs with respect to the vertices
when subjected to random attacks are significantly different due to the difference in mag-
nitude compared with Figure 2, which causes RS(V, G) to demonstrate a non-increasing
trend in the first 20 vertices. Actually, they are both essentially increasing upward (the
maximum value is trending upward), but the very small number of removed vertices
makes the rate of RS(V, G) slower and does not clearly demonstrate an increasing trend.

In Figure 4, we present the experimental results for both measures when the number
of vertices removed on the ER network reaches 200, where the data are normalized. In
Figure 4b, RS slowly increases as the number of vertices removed increases when subjected
to random attacks. In Figure 5, we present the experimental results for both measures
when the number of vertices removed on the ER network and the BA network reaches 200,
where the data are averaged for better observation. In Figure 5b, using the RS measure,
the average value of the ER random network when subjected to deliberate attacks is much
lower compared to the value of the BA network when subjected to deliberate attacks,
and then compared with the value of the ER random network when subjected to random
attacks, it can be demonstrated that the impact of the ER random network when subjected
to deliberate and random attacks does not differ much. Similarly, in Figures 5a and 4a,
using the RK measure, it can be observed that the impact of the ER random network when
subjected to a deliberate attack does not differ much from that of a random attack.

Figure 4. Experimental results for both measures when the number of removed vertices on the ER
network reaches 200. Both are normalized data. (a) Deliberate and random attacks under the use of
RK measures. (b) Deliberate and random attacks under the use of RS measures.
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Figure 5. Experimental results of the two measures on the BA network and the ER network. For
better presentation and observation of the data, the data here are averaged. (a) Deliberate and
random attacks under the use of RK measures. (b) Deliberate and random attacks under the use of
RS measures.

At last, we simulate the attack experiment on the WS small-world network. As shown
in Figure 6, the numerical results are similar as in ER random networks.
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10-3
The WS small-world network with N = 2500, m0 = 50 and p = 0.15
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Figure 6. The figure shows the calculation and analysis of deliberate attacks and random attacks of
RS(V, G) and RK(V, G) on the WS small−world network. They are all calculated by generating a
2500-order WS small−world network with m0 = 50 and p = 0.15 for 102 times, and the results are
displayed in the form of box plots.

For the above experiments, we have simulated vertex attacks on BA scale−free net-
works, ER random networks, and WS small−world networks. We know that these two
local measures Modified Zagreb index centrality and effective resistance centrality are com-
puted in different ways, but their performances are similar and they have many common
characteristics. In BA scale−free networks, they are almost identical in trend and numerical
results. In the performance of ER random networks and WS small−world networks, their
gap distances are highly similar. Effective resistance centrality is obtained based on the
effective resistance distance of the graph, which requires the calculations of the Laplacian
eigenvalues of the network. However, the calculation of Modified Zagreb index centrality
mainly depends on the vertex degrees of the network. Thus, we confirm that Modified
Zagreb index centrality is a efficient measure for the assessment of network robustness.

3.3. Exploring Correlations between Different Measures

Actually, there exist plenty of graph measures which could be used for the assessment
of graph robustness. In this subsection, we aim to study the correlation between different
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graph measures, which are all listed in Table 1. We divide the graph measures into
two parts. One part includes the global measures of the graph, such as the Kirchhoff
index, Modified Zagreb index, global clustering coefficient, average path length, diameter,
algebraic connectivity, density, and spectral radius. The other part includes the local
measures, such as Modified Zagreb index centrality, efficient resistance centrality, closeness
centrality, betweenness centrality, eigenvector centrality, and Page Rank centrality.

First, we calculate the correlation between the eight global measures in Erdös−Rényi
random graphs with 2500 vertices and probability p ∈ [0.5, 0.001], as shown in Figure 7a.
We generate over 103 different Erdös−Rényi random graphs, and then perform Kendall
Tau correlation analysis. Moreover, we also calculate the correlation between the seven
local measures, as shown in Figure 7b.

Then, we also study the correlation between the global measures and local measures
in WS small−world networks and BA scale−free networks. The results are shown in
Figures 8 and 9, respectively.

-1 0 1

Figure 7. (a) The correlation between the global graph measures for more than 103 graphs generated
by the Erdös−Rényi model with 2500 vertices and p ∈ [0.5, 0.001]. (b) The correlation between the
local measures of each vertex of the graph generated by the Erdös−Rényi model with 2500 vertices
and p = 0.08.

-1 0 1

Figure 8. (a) The correlation between the global graph measures for more than 103 graphs generated
by the Barabási−Albert scale−free model with |V| ∈ [1500, 2500], m0 = 5 and m = 4. (b) The
correlation between the local measures of each vertex of the graph generated by the Barabási−Albert
scale−free model with |V| = 2500, m0 = 5 and m = 4.
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-1 0 1

Figure 9. (a) The correlation between the global graph measures for more than 103 graphs generated
by the Watts−Strogatz small−world model with |V| ∈ [1500, 2500], m0 = 50 and p = 0.15. (b) The
correlation between the local measures of each vertex of the graph generated by the Watts−Strogatz
small−world model with |V| = 2500, m0 = 50 and p = 0.15.

All these results demonstrate that Modified Zagreb index (resp. Modified Zagreb
index centrality) is quite similar as the Kirchhoff index (resp. efficient resistance centrality)
in their performance. Moreover, Modified Zagreb index centrality is a good measure for
the assessment of graph robustness as the other local measures.

3.4. Empirical Applications in Real World Networks

In this subsection, we explore the behaviour of Modified Zagreb index and Modified
Zagreb index centrality by applying the real−world networks. In our experiment, two
real-world network data sets are used for analysis (all datasets are accessed on 29 November
2021 from http://networkrepository.com). The first data set describes the European Road
Network: vertices of the network are the intersections between roads and road endpoints,
and the edges are road segments between intersections and road endpoints. The second
data set describes the U.S. Power Grid network: the vertices of the network represent
substations and the edges represent transmission lines.

Firstly, we study the European road network. We evaluate the effect of the removal
of vertices to better understand the performance of the European road network when
a specific road section is faulty or blocked. We use local graph measures to assess the
importance of each vertex of the European road network, as shown in Figures 10 and 11. In
the European road network, 26.49% of the vertices are cut vertices, as shown in Figure 11a,
some of which are suburban sections or hub nodes. When we use effective resistance
centrality to measure how the removed vertices affect the robustness of the network, for
any two cut vertices we cannot demonstrate which one is more destructive to the network.
For example, in Figure 11a, some cut vertices of degree 1 or 2 are located on the outermost
branch path of the European road network. Although removing these vertices can make
the network disconnected, they are less destructive than the cut vertices at the center of the
network transportation hub. Thus, the Modified Zagreb index centrality would be a better
measure in this sense. As shown in Figure 10, most vertices on the outermost branch path
of the network are blue or dark blue, which means that their removal has less impact than
the other cut vertices on the whole network.

Comparing Modified Zagreb index centrality with other different local measures,
Figure 11 shows the different results of these measures and Figure 12a shows the correlation
between these measures. As reported in Table 2, we observe that these local measures
rank the important vertices of the European Road network in different ways. The ∞ in
the effective resistance centrality ranking is because this vertex is a cut vertex. It is worth
noting that the vertex evaluated by Modified Zagreb index centrality as the most important
is also selected by the betweenness centrality (ranking 2nd), Page Rank centrality (ranking
1st), and degree (ranking 1st). This means that the road section represented by the most

http://networkrepository.com
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important vertex measured by the Modified Zagreb index centrality is the necessary place
for almost all important transportation in the European road network. Therefore, it is easy
to understand that this vertex is vital to the network, and its failure or destruction will
seriously affect the robustness and structure of the network, which shows the efficiency of
the Modified Zagreb index centrality again.
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10-3The Modified Zagreb Index Centrality of the European Road Network

Figure 10. It shows how each vertex affects the robustness of the European road network, where
these vertices are measured using Modified Zagreb Index Centrality and then colored depending on
the values. One of the vertices evaluated as important is enlarged in the inset.
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The Betweenness Centrality of the European Road Network
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Figure 11. (a–d) respectively report the use of Effective Resistance Centrality, Closeness Centrality,
Betweenness Centrality, and PageRank Centrality to measure the importance of each vertex of the
European road network.
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Figure 12. Kendall Tau correlation between Modified zagreb index centrality, Effective resistance
centrality, Closeness centrality, Betweenness centrality, Eigenvector centrality, Pagerank centrality,
and Degree. (a) European Road Network. (b) U.S. Power Grid Network.

Table 2. The most important vertices of European Road network are ordered in terms of Modified
Zagreb Index Centrality.

MZC ERC Betw. PageR Clos. Eig.Centr Degree

1 ∞ 2 1 10 241 1
2 71 96 3 111 225 6
3 807 120 44 379 607 97
4 ∞ 152 43 660 337 179
5 ∞ 379 97 989 1000 311
6 59 50 2 67 162 5
7 139 86 5 262 95 4
8 ∞ 66 23 97 199 25
9 ∞ 329 50 902 738 180

10 ∞ 122 75 953 746 120
11 244 301 4 322 5 3
12 ∞ 77 27 974 973 68
13 167 510 13 584 316 17
14 ∞ 186 64 624 610 164
15 30 222 25 692 793 56

We display only top 15 vertices. In each column, we show the ranking derived by using alternative local measures.

Then, we perform the same analysis on the U.S. Power Grid network, as shown
in Figure 13. In Figure 12b, we show the local measures correlation in the U.S. Power
Grid network. The numerical results are slightly different from those of the European
road network, but overall, effective resistance centrality, betweenness centrality and Page
Rank centrality are correlated with the Modified Zagreb index centrality. We visualize the
Modified Zagreb Index centrality for the U.S. Power Grid network, as shown in Figure 13,
with a global view on the left and a magnified view of some important vertices on the right.



Axioms 2022, 11, 484 16 of 17

Modified Zagreb Index Centrality of U.S. Power Grid Network
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Figure 13. It shows how each vertex affects the robustness of the U.S. Power Grid network, where
these vertices are measured using Modified Zagreb Index Centrality and then colored.

4. Conclusions

Network robustness represents some research focusing on complex networks, and
graph measures are quite useful for assessing the network robustness. In this paper, we the
introduce Modified Zagreb index and Modified Zagreb index centrality as the new network
robustness measures. Firstly, we theoretically study the relationship between the Modified
Zagreb index and other graph measures. Then, we use Modified Zagreb index centrality to
analyze the robustness of BA scale−free networks, Erdös−Rényi random networks and WS
small−world networks under deliberate or random attacks. We also study the correlations
between our new measure and some other existed measures. Finally, we use Modified
Zagreb index centrality to study the real world networks.

In conclusion, all these results demonstrate the efficiency of Modified Zagreb index
centrality for assessing the robustness of complex networks, which has the similar perfor-
mance as the effective resistance centrality and can be calculated faster than the effective
resistance centrality.
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