
Citation: Wang, Y.; Tao, J.; Gao, H.

Corn Disease Recognition Based on

Attention Mechanism Network.

Axioms 2022, 11, 480. https://

doi.org/10.3390/axioms11090480

Academic Editor: Oscar Castillo

Received: 18 July 2022

Accepted: 13 September 2022

Published: 18 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Corn Disease Recognition Based on Attention
Mechanism Network
Yingying Wang 1, Jin Tao 2 and Haitao Gao 1,*

1 College of Electrical and Electronic Engineering, Anhui Science and Technology University,
Bengbu 233030, China

2 College of Artificial Intelligence, Nankai University, Tianjin 300350, China
* Correspondence: gaoht@ahstu.edu.cn; Tel.: +86-1822-667-0819

Abstract: To extract more accurate and abundant features of corn disease and solve the problems of
rough classification and low recognition accuracy, the attention mechanism is introduced into the field
of corn disease recognition. The corn disease recognition model (AT-AlexNet) is proposed based on
an attention mechanism. The network was based on AlexNet, and the new down-sampling attention
module was constructed to enhance the foreground response of the disease; the Mish activation
function was introduced to improve the nonlinear expression of the network; the new module of
the full connection layer was designed to reduce the network parameters. In the experiment of the
enhanced corn disease datasets, the average recognition accuracy of the attention-based network
model AT-AlexNet is 99.35%. The recognition accuracy of using the Mish activation function is 0.65%
higher than that of the ReLu activation function. The experiments show that compared with other
identification methods, the proposed method has better classification performance for corn diseases.

Keywords: CNN; attention mechanism; activate function; feature extraction; corn disease

1. Introduction

The accurate identification of diseases is the premise of scientific control and the basis
of effectively improving crop yield. Currently, traditional machine and deep-learning
methods are mainly used in crop disease detection [1–4]. Traditional machine-learning
techniques to detect crop diseases are usually divided into four stages: image preprocessing,
image segmentation, feature extraction, and classification [5–8]. There are some problems
in feature extraction, such as the artificial feature pattern setting, the stability of feature
extraction, and the significant influence of the environment, which lead to the traditional
algorithms being unable to detect disease accurately. Deep-learning technology builds
a disease recognition network by extracting the disease feature information on the crop
surface, which avoids the problem of time-consuming and laborious feature extraction, and
improves the recognition accuracy of crop diseases [9–11].

Related Work and Motivation

In recent years, deep learning [12–14] has shown good performance in fields such
as computer vision, due to its powerful feature of self-learning capability, providing a
new solution for pattern recognition, image processing, speech recognition, and other
fields [15–18]. It has become a reality to detect and recognize disease images in the complex
background by using this technology. Convolutional neural networks (CNN) [19–23] can
automatically extract the relevant features from input images independently of specific
features of images and have been widely used in the field of crop disease identification, such
as corn. For example, Sladojevic et al. [24] used AlexNet architecture to realize multi-plant
disease image recognition. Sun Jun et al. [25] combined batch normalization and global
pooling to improve the AlexNet classic network recognition model. The final average
test recognition accuracy on the PlantVillage plant disease dataset reached 99.56%. In
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the corn disease recognition, the traditional CNN network was improved by using the
combination of dilated convolution and multi-scale convolution to obtain higher accuracy
or a faster training speed [26–28]. Fan Xiang Peng et al. [29] optimized CNN using the L2
regularization method and Dropout algorithm, which improved the average recognition
accuracy by 9.02% compared to the pre-optimization, and achieved an accuracy of 83.3% in
the recognition of diseases in the corn field. An improved LeNet model was proposed by
changing the size and depth of the convolution kernel, and the classification test of three
corn diseases was carried out on the PlantVillage dataset, which improved the classification
accuracy [30]. On the basis of the DenseNet model, the structure was adjusted, and
migration learning was introduced, and a Mobile-DANet model was proposed, which
achieved an average accuracy of 95.86% in corn disease recognition [31]. Xu Jinghui
et al. [32] deleted the fully connected layer of the VGG16 network model and redesigned
it. Then, the pre-training parameters of the VGG16 model were directly transferred to
the newly synthesized model, and the datasets of corn leaf spot, rust, and healthy leaves
were used to continue training to obtain the recognition model of the two diseases, and
the average accuracy of 95.33% was obtained. Vision Transformer (ViT) [33] can use the
self-attention mechanism to obtain the global features of the image, not only to capture
the dependencies between adjacent elements. It has achieved excellent performance in
image classification tasks and requires fewer training resources. However, ViT has high
requirements of datasets and weak generalization ability. It needs to be pre-trained on
larger datasets (ImageNet, CIFAR-100, VTAB, etc.), and then the model is transferred to
small datasets for fine-tuning training. In order to improve the quality of model recognition,
more authors are no longer limited to the extension and stacking of the depth and width of
the convolutional blocks. The authors gradually integrate the attention mechanism into
the convolutional neural network, and conduct some exploratory research. For example,
Jia Zhaohong et al. [34] proposed a bilinear attention tomato disease period-recognition
method based on Res2Net, which improved the fine-grained representation ability of the
network through multi-scale features and attention mechanism. The classification accuracy
of the tomato leaf disease datasets of 7 different species and 14 disease degrees was 98.66%
and 86.89%, respectively. Huang Linsheng et al. [35] introduced the Inception module
into the residual network (ResNet18). They added the attention mechanism SE-Net to
obtain an average recognition accuracy of 95.62% on eight crop disease datasets in a real
field environment. Sun Wenbin et al. [36] introduced the attention module SMLP into the
ResNet network, which reduced the number of model layers and improved its recognition
rate. The accuracy rate in the Plant Village datasets reached 99.32%. Liu Bin et al. [37]
introduced the CBAM attention module into the Inception-ResNet V2 network to improve
the network’s feature extraction ability and the classification performance under the fine-
grained classification task of the model. Although CNN has achieved excellent results in
the identification of crop diseases and insect pests and made some breakthroughs in the
utilization of attention mechanism, it still has some problems.

• Different types of diseases have little difference in appearance at the initial stage of
growth. The diseases may overlap with light intensity changes, noise, background
interference, etc. The convolutional neural network can automatically extract image
features and overcome the defects of traditional methods, while the convolution kernel
performs feature fusion on the local area when extracting the feature map and captures
the local spatial relationship, resulting in classification errors;

• The attention mechanism is still in the exploratory stages of improving the image
feature extraction ability of CNN models. At present, the typical attention modules in
convolutional neural networks mainly include the SE attention mechanism [38] and
the CBAM attention mechanism [39], which use global pooling to extract high-level
features of disease images, decouple the channel correlation and spatial correlation
of features, and improve the ability of detailed disease-feature extraction to a certain
extent. However, these cannot capture the nonlinear relationship between channels,
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and the use of global pooling compresses the dimension of features, resulting in the
loss of detailed information.

In aiming at the shortcomings of the existing CNN network and attention mechanism
and in order to realize the accurate classification and recognition of corn common rust,
bipolar maydis, own spot, Curvularia lunata (wakker) Boed spot, Northern leaf blight,
and sheath blight, a new corn disease identification network AT-AlexNet is proposed in
this paper based on the AlexNet network, fusing the down-sampling attention module
(Down AM). The 1 × 1 convolution and 3 × 3 group-convolution are used to decouple the
channel correlation and spatial correlation of features, respectively [40], to find the critical
information in the features and then superimpose on the original down-sampling results.
This module can enhance the foreground response of the disease during the down-sampling
process, which is conducive to the retention of detailed characteristics of diseases, and
improve the ability of the network to detect multiple diseases. The main innovations or
contributions of this paper are as follows:

• In the field of crop diseases, the attention mechanism is introduced, and the down-
sampling attention module is designed and embedded into the AlexNet network to
reduce the loss of detailed disease-feature information and improve the network’s
ability to extract disease features;

• By using group convolution in the network, the recognition accuracy of the model is
improved while the parameters are reduced;

• The Mish function is used to improve the traditional ReLu activation function in
the convolutional neural network to enhance the non-linear expression ability of the
network;

• A new fully connected layer is constructed to reduce the model’s parameters. Finally,
the corn disease identification and the detection algorithm AT-AlexNet of attention
neural network are formed, which are trained and tested on the datasets of six corn
diseases and verify the feasibility and accuracy of the model proposed in this paper.

2. Materials and Methods
2.1. Data Sources

The experimental data came from the Anhui Academy of Agricultural Sciences and
were taken manually in the corn field with camera equipment. To ensure the diversity of
data, multi-angle photography was carried out. The image background contained straw, soil,
weeds, and other complex conditions. There are 470 images of common rust, 645 images of
bipolar maydis, 260 images of own spot, 546 images of Curvularia lunata (wakker) Boed spot,
356 images of Northern leaf blight, and 448 images of sheath blight; a total of 2725 images of
corn disease. The symptoms of six corn diseases are shown in Figure 1.
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2.2. Data Preprocessing
2.2.1. Data Augmentation

In the process of image acquisition, affected by factors such as changes in light intensity,
noise, mechanical vibration, etc., the poor imaging quality of a few images leads to the
formation of complex samples, resulting in the degradation of disease-detection performance.
In order to enhance the robustness of the network and improve the detection ability of the
network for difficult samples, the data enhancement technique is used to expand the training
data. One is to increase the number of disease image samples, and the other is to simulate
the different light and shooting angles in the actual field to increase the diversity of sample
characteristics and improve the data quality. The dataset of this paper adopts the following
six data augmentation methods: (1) random rotation; (2) horizontal shift; (3) vertical shift;
(4) random shear; (5) random zoom; (6) horizontal flip. By changing the position and
direction of the picture, it can simulate the shooting of different camera positions, shear and
zoom can select different positions of the image for training, and the final enhanced dataset
is 10,785. The original image and the enhanced image are shown in Table 1.

Table 1. Statistics of corn pests and diseases’ dataset.

Disease Name Number of Original
Samples/Piece

Number of Enhanced
Samples/Piece

Sample
Label

Common rust 470 1880 1
Bipolaris maydis 645 1835 2

Own spot 260 1660 3
Northern leaf blight 356 1780 4

Sheath blight 448 1792 5
Curvularia lunata

(wakker) Boed spot 546 1838 6

Total 2725 10,785 6

2.2.2. Sample Normalization

This paper adjusts the pictures in the dataset to the same size, 256 × 256 pixels; all
pictures are in JPG format. To reduce the amount of calculation, each channel pixel is
normalized to prevent the gradient explosion problem in the model training and accelerate
the convergence of the model.

2.3. Experiment Method

The data used in this paper are corn disease data in the field environment, including
noise information such as background interference. With the increase in network depth,
the weight of noise information in the feature map is also increasing, which reduces the
accuracy of the disease identification. The feature maps obtained by image information
through convolution and pooling operations usually lack the distinction of the importance
of each channel. Assuming that the convolution kernel is an N-dimensional channel, a new
characteristic map of N channels will be generated after convolution. For each channel on
the feature map, a weight coefficient is used to represent the correlation between different
channels and the extracted disease features. The larger the weight coefficient, the higher
the correlation of the channel, and the greater the contribution of the extracted features.
The weight of each channel can be adjusted by using the attention mechanism, and the
importance of each channel can be obtained by assigning weights to different positions,
help the model to capture semantic information that is more helpful for the recognition
task, enhance the practical features, suppress the importance of interfering elements such
as noise, reduce its negative impact on model recognition, and increase the representation
of the network. Finally, the purpose of improving the recognition performance of the model
is achieved [41–43].

Due to the problem of information loss in the process of conventional channel attention
acquisition, the disease information is lost. An attention neural network AT-AlexNet based
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on down-sampling attention and AlexNet network is proposed to detect and identify 6
diseases of corn in this paper. The structure of the AT-AlexNet network model is mainly
divided into 3 parts, the feature extraction module, the feature fusion module, and the fully
connected classification module. The overall framework of the model is shown in Figure 2.
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The down-sampling attention module can increase the receptive field so that the
subsequent convolution kernels can learn more global information. The AT-AlexNet
feature-extraction module includes a down-sampling attention module and an ordinary
convolution layer; the batch normalization layer (BN) and nonlinear layer (Mish) are added
after convolution operation to accelerate the convergence speed of the model and improve
the stability of the network at the same time. The feature fusion module consists of 256
3 × 3 convolution kernels, BN layers, Mish layers, and maximum pooling, fully fused with
the image features extracted based on the attention mechanism to obtain the final corn
disease feature information. The fully connected classification module uses two layers of
fully connected and softmax layers to classify the extracted disease-feature images. The
fully connected layer is reconstructed and designed, and 2048 neurons are used to replace
4096 neurons in the fully connected layer of the AlexNet network, thereby reducing the
number of parameters in the model. A Mish activation function is used in each fully
connected layer to increase the nonlinearity of the network, and the dropout strategy is
used to suppress overfitting.

2.3.1. Basic Network

The recognition of corn disease proposed in this paper is based on the AlexNet
network. The entire network structure parameters of AlexNet are shown in Figure 3.
The AlexNet network consists of 5 convolutional layers (Conv), 3 pooling layers (Max
pool), 2 fully connected layers (FC), and the Softmax layer. The AlexNet network has
large parameters, the model is easy to over-fit, and the generalization ability in the other
datasets is weak. Introducing the down-sampling attention module enhances the disease-
feature information, thereby improving the network’s ability to detect multiple diseases.
This research mainly embeds the attention module in the first 4 convolution layers of the
network and reconstructs the full connection layer of the network.
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2.3.2. Down-Sampling Attention Module

The down-sampling layer has two functions, one is to reduce the amount of cal-
culation and prevent overfitting; the other is to increase the receptive field so that the
subsequent convolution kernels can learn more global information. Commonly used down-
sampling methods mainly use 3 × 3 convolution with stride 2 or 2 × 2 max pooling with
stride 2 [25,44]. However, these two methods will, to a certain extent, cause the loss of
useful information.

A down-sampling attention module (Down AM) with two parallel channels is con-
structed in this paper to obtain better representational power. Its structure is shown in
Figure 4. One is used for the 3 × 3 conventional convolution down-sampling with stride
2. Batch Normalization is used to bring each neuron closer to the saturated region in the
value interval. It is projected into the normal distribution with the mean value of 0 and
the variance of 1 to accelerate the convergence of the model. When combined with the
Mish nonlinear layer, the nonlinear characteristics are greatly increased on the premise
that the size of the feature map is unchanged, thereby improving the expression ability
of the network. The other is down-sampled by 2 × 2 max pooling to increase the recep-
tive field, and then decoupled with two consecutive 1 × 1 convolutions and 3 × 3 group
convolutions, respectively, the channel correlation and spatial correlation of features. To
enhance the feature information and reduce the loss of disease feature information, then the
dimension of the image is changed by 1× 1 convolution, and Batch Normalization is added
while using the Mish activation function. Finally, the feature maps obtained from the two
channels are fused, and the final sparse feature map is output through 1 × 1 convolutional
dimension reduction.
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2.3.3. Mish Activation Function

In order to avoid destroying the interest manifold of the network, an activation
function is introduced into the network to increase the nonlinearity of the neural network
model. The ReLu activation function is widely used in the convolutional neural network
because of its linear and unsaturated form, which overcomes the advantage of gradient
vanishing. The ReLu function is directly truncated when negative, and the gradient is not
smooth enough. Therefore, a new activation function, Mish function [45], is proposed to
optimize the network in this paper. The Mish activation function shown in Equation (1)
is used in the network’s convolution layer and full connection layer modules. Mish
is a smooth nonmonotonic activation function that successfully avoids the problem of
gradient saturation because of its boundless characteristics. When it is negative, it is not
completely truncated. Still, it does allow a relatively small negative gradient to flow to
ensure information flow and stabilize the network’s gradient flow. The expression of the
Mish activation function is:

Mish = x ∗ tanh(ln(1 + ex)) (1)

2.3.4. Group Convolution

Group convolution (GC) can be regarded as the sparse operation that improves the
model’s recognition accuracy while reducing the number of parameters. The method of
grouping convolution can increase the diagonal correlation between convolution kernels
of adjacent layers and reduce training parameters and overfitting, similar to the effect of
regularization. The calculation process of group convolution is shown in Figure 5. The
number of input feature channels C is divided into G groups, and the convolution kernels
are divided into G groups. The number of channels of each convolution kernel is C/G.
After group convolution, the output of the G group is spliced to obtain the feature map
with N channels. The parameter size of the grouped convolution is as Equation (2):

PGC = K× K× C
G
× N (2)

where G is the number of groups of input characteristic channels; it can be seen that the
group convolution reduces the parameters and the amount of calculation, the total amount
of parameters is reduced to 1/G of the original, and the amount of calculation is also 1/G
of the conventional convolution, thereby improving the efficiency of the network.
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2.3.5. Batch Normalization

Equations (3) and (4) are used to force the distribution of input values of any neuron
in each layer of the neural network to be pulled back to the standard normal distribution to
speed up network convergence and improve gradient vanishes [25].

µ =
1
n

n

∑
i=1

xi (3)

σ =
1
n

n

∑
i=1

(xi − µ)2 (4)

where µ and σ in Equations (3) and (4) represent the mean and variance of each training
batch data, respectively, which are substituted into Equation (5), normalize the training
data of this batch to obtain

_
x i, where ε is a small positive constant and the denominator is

avoided to be 0:
_
x i =

xi − µ√
σ2 + ε

(5)

In order to prevent the destruction of the feature distribution during the normalization
process, the transformation formula shown in Equation (6) is used to return to the original
feature distribution. Here, γi and βi represent the reconstruction parameters learned, which
are calculated by Equations (7) and (8):

yi = γixi + βi (6)

γi =
√

Var[xi] (7)

βi = E[xi] (8)

2.3.6. Dropout Strategy

By randomly resetting the weights of some neurons to 0 in each training process, the
inhibited neurons temporarily do not participate in the forward propagation of the network.
They still retain their weights to suppress the occurrence of overfitting effectively and then
to improve the model’s generalization ability. The regularization parameter in the model is
set to 0.3, and 30% of neurons are discarded [46]. The calculation method of the Dropout
strategy is shown in Equations (9)–(12):

rl
j∼ Bernoulli(p) (9)

ỹ(l) = r(l) ∗ y(l) (10)

z(l+1)
i = w(l+1)

i ỹ(l) + b(l+1)
i (11)

y(l+1)
i = f (z(l+1)

i ) (12)

where ỹ(l) represents the output of some neurons in this layer; w(l+1)
i , b(l+1)

i and z(l+1)
i

represent the (l + 1)-th weight value and bias in the i-th layer, respectively; f (·) represents
the activation function; Bernoulli(p) represents the binomial probability distribution.

2.3.7. Softmax Classification

This paper uses the softmax classifier to recognize and classify the diseases. Softmax
classification is a supervised learning method used to deal with multi-classification prob-
lems. Its basic principle is the ratio of the index of a neuron to the sum of the indices of
all neurons in the matrix, and the node with the most significant ratio is selected as the
classification result. The output results of the full connection layer are sent to the softmax
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logistic regression model for category judgment, and the probability distribution of each
category can be calculated by Equation (13):

Pi =
exi

c
∑

i=1
exi

, i = 1, 2, · · · , c (13)

where Pi is the probability of classification for each category; xi is the output of the fully
connected layer; c is the total number of categories in the dataset.

Label smoothing is performed before label input so that the overfitting phenomenon
can be effectively suppressed when calculating the loss value, as shown in Equation (14):

y′i = (1− ε)yi +
ε

c
(14)

where yi is the real predicted value, and the binary_crossentropy loss function is calcu-
lated using the obtained classification results and the regularized labels, as shown in
Equation (15). According to the obtained loss function value, the network weight parame-
ters are adjusted by backpropagation:

Loss = −1
c

c

∑
i=1

y′i log(Pi) + (1− y′i) log(1− Pi) (15)

2.3.8. Model Computation Flow

The specific implementation steps of the attention neural network model AT-AlexNet
proposed in this paper for corn disease recognition are shown in Figure 6.

Step 1: Read the disease image data, adjust the sample size uniformly to 256 × 256
pixels, and perform normalization processing on each channel pixel;

Step 2: Input the processed data into the down-sampling attention module, use 1 × 1
convolution and 3 × 3 group convolution to decouple the channel correlation and spatial
correlation of features, divide the importance of image features, and obtain feature maps
available attention information;

Step 3: Extract multi-dimensional image feature information through 96 × 11 × 11
convolution kernels to obtain a 32 × 32 × 96 feature map. Through the BN layer, each
neuron is projected into the normal distribution with the mean value of 0 and the variance
of 1 by Equations (3)–(8), and the Mish activation function is used to increase the nonlinear
relationship between the layers of the neural network;

Step 4: Same as above, after 4 consecutive feature extractions of attention modules
and convolution kernels of different sizes, a feature map of 4 × 4 × 384 is finally obtained;

Step 5: The final feature map is fused with the deep-level image feature information
extracted by 256 × 3 × 3 convolution kernels, and the data dimension of the feature map is
reduced by 3 × 3 max pooling, and the final 2 × 2 × 256 disease feature map is output;

Step 6: The flatten layer performs one-dimensional transformation of the multi-
dimensional characteristic matrix output from the last pooling layer, and converts it from a
2 × 2 × 256 matrix to a 1 × 1024 vector;

Step 7: The disease features output by the previous stage are weighted and summed by
two fully connected layers. The class-discriminative local information in the convolutional
and pooling layers is integrated, and the learned distributed features are mapped to the
sample label space. After the neuron is activated by the Mish activation function, the
dropout mechanism is added, and the weights of some hidden layer nodes are randomly
reset to zero using Equations (9)–(12) to reduce the amount of model parameters;

Step 8: The output result of the fully connected layer is sent to the softmax logistic
regression model to judge the category by Equation (13), and finally realize the recognition
and classification of the input disease image.



Axioms 2022, 11, 480 10 of 21Axioms 2022, 11, 480 11 of 22 
 

Input

Down AM

11×11 conv,96 filters

BN

Mish

Down AM

5×5 conv,256 filters

BN

Down AM

3×3 conv,384 filters

BN

Mish

3×3 conv,384 filters

BN

Mish

3×3 conv,256 filters

BN

Mish

Maxpooliing 

Fully connected
2048

Mish,Dropout=0.5

Fully connected
2048

Mish,Dropout=0.5

Output

Attention-Convolutional Layer 1
Feature extraction

Attention-Convolutional Layer 2
Feature extraction

Attention-Convolutional Layer 3
Feature extraction

Attention-Convolutional Layer 4
Feature extraction

Convolutional Layer 5
Feature fusion

Fully connected layer 1

Down AM

Mish

Fully connected layer 2 

 
Figure 6. Computation flow of AT-AlexNet model for corn disease identification. 

2.3.9. Model Evaluation Index 
In classification, there is usually a problem with imbalanced datasets. However, us-

ing training and testing accuracy to evaluate model performance is not comprehensive 
enough, resulting in high accuracy but the misclassification of minority samples. To eval-
uate the recognition performance of the network model AT-AlexNet proposed in this pa-
per, Accuracy, Precision, Recall, and F1 score are used as the evaluation indexes of the 
model. The expressions are shown as follows: 

Figure 6. Computation flow of AT-AlexNet model for corn disease identification.

2.3.9. Model Evaluation Index

In classification, there is usually a problem with imbalanced datasets. However, using
training and testing accuracy to evaluate model performance is not comprehensive enough,
resulting in high accuracy but the misclassification of minority samples. To evaluate
the recognition performance of the network model AT-AlexNet proposed in this paper,
Accuracy, Precision, Recall, and F1 score are used as the evaluation indexes of the model.
The expressions are shown as follows:
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Accuracy is the ratio of correctly identified samples to the total number of samples in
the classification task:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Precision is the proportion of correct predictions by the classification model in a given
test set:

Precision =
TP

TP + FP
(17)

Recall is the rate at which the classification model correctly predicts positive classes in
a given test set:

Recall =
TP

TP + FN
(18)

F1_score can comprehensively consider precision and recall;

F1_score =
2× Precision× Recall

Precision + Recall
(19)

where TP is the number of correctly classified positive samples; TN is the number of
correctly classified negative samples; FP is the number of incorrectly classified positive
samples; and FN is the number of incorrectly classified negative samples.

In addition, the loss value in the model training process is another indicator to judge
the model’s performance. The faster the value of the loss function decreases, the faster the
model converges; the smaller the value of the loss function, the stronger the robustness of
the model and the better the performance.

3. Results
3.1. Experimental Environment

The experiment is under the operating environment of the Windows 10 (64-bit) op-
erating system, the processor model is Intel(R) Core(TM) i5-10400F CPU@2.90 GHz, and
the computer memory is 16 GB. It is completed under the Python 3.6.2, Tensorflow-gpu
1.14 + Keras 2.2.4 deep learning framework environment, which was developed by Google.

3.2. Training Parameter Settings

As for the data training and testing preparation, 80% and 20% of the datasets (the
corn disease original and the enhanced datasets) were prepared for the training and testing
datasets, respectively. The training datasets were used as the model’s input data, and the
test datasets were used to evaluate the performance of the final model. Taking into account
the experimental equipment and the training effect of the model, the stochastic gradient
descent (SGD) was used to optimize the network weight during the training process. The
initial learning rate was set to 0.01, the momentum was set to 0.9, and the decay coefficient
was set to 0.0008. The batch-size was set to 32. The epoch is the number of iterations in
the model training process, all of the training samples are iterated once as 1 epoch, and
the number of training iteration epochs was set to 60 in this paper. The hyperparameter
settings in the model training process of this paper are shown in Table 2.

Table 2. Hyperparameter settings for model training.

Hyperparameters Setting

Optimizer types SGD
Momentum 0.9

Weight decay 0.0008
Learning rate 0.01

Batch size 32
Epoch 60
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3.3. Experimental Design

The experiment was divided into three parts: For exploring the effect of datasets
(original dataset A and enhanced dataset B), different batch sizes (8, 16, 32), and different
learning rates (0.1, 0.01, 0.001) on the disease detection results of the model, a total of
18 trials were conducted. The training and testing results of each group of experiments
are shown in Table 3; through the ablation experiment of the AT-AlexNet network
structure, the effect of the proposed module and improvement on the performance of
the corn disease detection network was verified; the performance differences between
AT-AlexNet and other network models in corn disease detection were compared under
the same experimental conditions.

Table 3. Accuracy and loss value of AT-AlexNet model training and testing.

Number Datasets Batch-Size Learning
Rate

Training
Accuracy

Test
Accuracy

Training
Loss Test Loss

1

A

8
0.1 72.24 71.56 4.4540 4.5635

2 0.01 96.42 97.09 0.0863 0.0815
3 0.001 96.23 97.19 0.0971 0.0745

4
16

0.1 70.86 71.01 4.6724 4.6491
5 0.01 98.84 98.17 0.0345 0.0536
6 0.001 96.66 97.31 0.0859 0.0664

7
32

0.1 91.97 91.47 0.2014 0.2222
8 0.01 98.94 98.20 0.0287 0.9820
9 0.001 95.97 96.94 0.1012 0.0759

10

B

8
0.1 72.33 72.42 4.4386 4.4242

11 0.01 97.79 98.91 0.0575 0.0298
12 0.001 96.19 98.03 0.0993 0.0521

13
16

0.1 72.33 72.42 4.4598 4.4454
14 0.01 99.31 99.30 0.0200 0.0210
15 0.001 97.41 98.63 0.0686 0.0386

16
32

0.1 97.55 97.75 0.0670 0.0653
17 0.01 99.52 99.78 0.0138 0.0067
18 0.001 97.82 98.53 0.0587 0.0404

3.4. Analysis and Comparison of Training Results

Table 3 shows that the different datasets, batch sizes, and learning rates significantly
impact the model’s performance during training and testing.

3.4.1. Analysis of the Impact of Data Enhancement

When the batch size is set to 32 and the learning rate is 0.01, the training and testing
accuracy and loss value curves using two datasets (A and B) are shown in Figure 5. The
recognition accuracy of the two models (AT-AlexNet-A and AT-AlexNet-B) for six diseases
is shown in Table 4.

Table 4. Model recognition accuracy before and after data augmentation.

Model Common
Rust

Bipolaris
maydis

Curvularia lunata (Wakker)
Boed Spot

Northern
Leaf Blight

Sheath
Blight Own Spot

AT-AlexNet-A 93.20% 91.06% 95.58% 92.96% 96.36% 100%
AT-AlexNet-B 99.46% 98.39% 99.18% 100% 99.06% 100%

It can be seen from Table 4 that the AT-AlexNet-B model has a higher accuracy rate
for disease identification, with the lowest accuracy of 98.39%. While the AT-AlexNet-A
model can recognize the disease types, its accuracy is not high, so the possibility exists
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of recognizing the disease as other disease types. For example, the accuracy rate of the
AT-AlexNet-A model in identifying Bipolaris maydis disease is 91.06%, so the probability of
identifying different disease types is 8.94%. It is shown that the data enhancement improves
the recognition accuracy of disease and the robustness of the model. Figure 7 shows that
the accuracy and loss value curves of the AT-AlexNet-A model on the training and test
datasets are both slow to converge, and the testing accuracy is 98.20%. The training and
testing accuracy of the AT-AlexNet-B model under the enhanced dataset is higher, and the
convergence speed is faster. The testing accuracy is 99.78%, 1.35% higher than the original
datasets, and no overfitting occurred.
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3.4.2. Analysis of the Impact of Batch-Size

When the training datasets are large, if the samples are input to the neural network
at one time, it may lead to overflow, and the error will fall into the local minimum. For
example, suppose that only one sample is read at a time. In that case, the training time will
be long and inefficient, the objective function value obtained on each training sample may
vary greatly, and the model’s generalization ability to the sample is poor. Therefore, it is
necessary to set an appropriate batch-size value and input the samples into the network in
batches for learning to make the model achieve the optimal final convergence accuracy.

To verify the effect of batch sizes on model performance, this paper set the batch size
of the model to 8, 16, and 32 in turn and trained from scratch on the enhanced datasets. At
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the initial learning rate of 0.01, the accuracy and loss value curves of the training set and
the test set of different batch sizes in the training process are shown in Figure 8.
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With the increase in the batch size, the accuracy curves of the model on the training
set and test set increase faster, and the final accuracy rate also increases. At the same
time, the decrease rate of the loss value curve increases, the final loss value decreases, and
the oscillation amplitude of the accuracy rate curve and the loss value curve decreases
significantly. When the batch-size value is increased from 8 to 16, the training accuracy of
the model increases by 1.52%. When the batch-size value is increased from 16 to 32, the
training accuracy of the model increases by 0.21%, and the increase is decreased. Therefore,
the final batch size selected in this paper was 32 to train on the datasets so that the model
can achieve the optimal effect.

3.4.3. Analysis of the Impact of Learning Rate

The learning rate determines whether the model can converge on the optimal global
solution and the convergence time on the optimal solution. When the learning rate is too
small, the model will converge slowly, increase the time to find the optimal value, and
easily trap the network in the local minimum or saddle point. When the learning rate is too
large, the convergence speed of the model will be accelerated. The loss function will still,
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simultaneously, cross the optimal global value directly, and the model will oscillate around
the optimal value and cannot converge.

At the learning rate of 0.1, 0.01, and 0.001, the training and testing accuracy of the
model is shown in Table 3. When the learning rate is 0.1, the gradient oscillation amplitude
of the loss function is large, and the training and testing accuracy of the model is low.
When the learning rate is 0.01, the training and testing accuracy of the model is higher,
and the increase is more significant. When the learning rate is 0.001, the model gradually
deviates from the optimal global value, and overfitting occurs. Figure 9 shows the training,
testing accuracy, and loss value curves of different learning rates when the batch size of the
enhanced datasets is 32. Therefore, it can be seen that when the learning rate is set to 0.01,
the model is trained best.
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3.5. Network Structure Ablation Test

To verify the effectiveness of the model proposed in this paper in corn disease recogni-
tion, ablation experiments are performed on the model. Based on the AlexNet network,
the network model presented in this paper is called AT-AlexNet. Modifying the activation
function of AT-AlexNet to ReLu, the obtained network is called AT-AlexNet-R. The loss
function of AT-AlexNet is adjusted to the CrossEntropy Loss, and the obtained network is
called AT-AlexNet-C. The experiment results are shown in Table 5 and Figure 10.
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Table 5. AT-AlexNet network ablation test.

Network Model Precision Recall F1 Score Accuracy Test
Accuracy

AlexNet 98.06% 98.05% 98.06% 98.05% 98.05%
AT-AlexNet 99.35% 99.35% 99.35% 99.35% 99.78%

AT-AlexNet-R 98.71% 98.70% 98.70% 98.70% 99.59%
AT-AlexNet-C 99.14% 99.12% 99.13% 99.12% 99.12%
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The comparison of the AlexNet and AT-AlexNet results shows that the F1 score of the
AT-AlexNet model is increased by 1.29%, the recognition accuracy is increased by 1.3%,
and the test accuracy is increased by 1.73%. As seen in Figure 10, the AT-AlexNet network
has a faster convergence speed and smoother curve. While the convergence speed of the
AlexNet network is slow, an apparent overfitting phenomenon occurs. It shows that the
down-sampling attention module can enhance the foreground response of the disease
during the down-sampling process and improve the detection performance of the model.
From the comparison of the results of AT-AlexNet and AT-AlexNet-R, it can be seen that
the Mish activation function has a more vital nonlinear expression ability and a better effect
than the ReLu activation function, and the recognition accuracy is improved by 0.65%.
The test accuracy is improved by 0.19%. The comparison results of AT-AlexNet and AT-
AlexNet-C show that the Binary_crossentropy loss function is adjusted to the CrossEntropy
Loss function, the recognition accuracy decreases, and the convergence speed is slower.
Therefore, under careful consideration, this paper uses the AT-AlexNet network model to
detect corn diseases.

3.6. Model Effect Test

In classification problems, there is usually a problem with imbalanced datasets. It is
not comprehensive enough to evaluate model performance only by training and testing
accuracy. This will result in a high accuracy rate but misclassification of minority class
samples. In this paper, the recognition performance of the model is comprehensively
evaluated by calculating the Precision, Recall, F1 value, and Accuracy of the model. The
calculation results are shown in Table 6. The average accuracy of the model after testing is
99.35%. The best classification effect is Northern leaf blight and own spot disease, with a
recognition accuracy of 100%, and the lowest is Bipolaris maydis disease, with a recognition
accuracy of 98.39%.
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Table 6. The recognition accuracy of the model.

Disease Types Precision Recall F1 Score Accuracy

Common rust 100% 98% 99% 99%
Bipolaris maydis 98% 99% 99% 98%

Curvularia lunata
(wakker) Boed spot 98% 99% 99% 99%

Northern leaf blight 99% 100% 99% 100%
Sheath blight 99% 98% 98% 99%

Own spot 99% 100% 100% 100%
Average 99% 99% 99% 99%

3.7. Model Performance Comparison Test

To further verify the detection performance of the model in this paper, under the same
experimental conditions, the performance of the AT-AlexNet network was compared with
the classical networks of LeNet and GoogLeNet on the training set and test set after data
enhancement, and each model was iterated 60 times. The experiment results are shown in
Table 7 and Figure 11.

Table 7. The comparative experiment of corn disease detection networks.

Network
Structure Precision Recall F1 Score Training

Accuracy
Test

Accuracy

AT-AlexNet 99.35% 99.35% 99.35% 99.52% 99.78%
LeNet 95.99% 95.97% 95.98% 97.58% 95.97%

GoogLeNet 99.73% 99.72% 99.72% 99.52% 99.72%
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Table 7 shows that the training accuracy of each model has reached more than 95%,
indicating that the deep learning model has an excellent performance in classifying crop
diseases. The accuracy of the model AT-AlexNet proposed in this paper is 99.78% on
the testing set, which is 3.81% and 0.06% higher than the LeNet and GoogLeNet models,
respectively. Among them, the Precision, Recall, and F1 score of the GoogLeNet model are
slightly higher than those of the AT-AlexNet model.

As seen from Figure 11, during the training process, around the tenth iteration, the
accuracy and loss value of the AT-AlexNet model on the training set and the testing set
tend to converge, the curves are smooth, and higher accuracy and lower loss values are
obtained. At the 20th iteration of the GoogLeNet model, the training set’s accuracy and
loss value curves gradually converge. However, the testing set’s accuracy and loss value
curves still oscillate greatly, and the model is overfitting. The convergence rate of the LeNet
model is slow, it starts to converge when the model is iterated 50 times, and the effect on
the testing set is poor.

In comprehensive comparison, under the same experimental conditions, compared
with LeNet and GoogLeNet models, the model constructed in this paper has a higher
recognition accuracy, a faster convergence speed, and no overfitting phenomenon, so the
model has better performance in the recognition and detection of corn diseases.

4. Discussion

In the down-sampling attention module of the AT-AlexNet network, without adding
the BN layer and Mish layer, the obtained network is called AT-AlexNet-D. The comparative
test results of the two networks are shown in Table 8.

Table 8. A comparative test of AT-AlexNet and AT-AlexNet-D networks.

Network Model Precision Recall F1 Score Accuracy Training
Accuracy

Test
Accuracy

AT-AlexNet 99.35% 99.35% 99.35% 99.35% 99.52% 99.78%
AT-AlexNet-D 94.62% 94.58% 94.60% 94.58% 97.90% 98.23%

Through the comparison of the results of AT-AlexNet and AT-AlexNet-D, it can be seen
that in the process of decoupling channel attention and spatial attention, the use of batch
normalization (BN) and nonlinear activation function (Mish) increases the nonlinearity of
the network, the performance of the down-sampling attention module is improved, and
the recognition accuracy of the model is increased by 4.77%.

To solve the problem of information loss in the process of conventional channel atten-
tion acquisition, this paper adds the down-sampling attention module to make the model
pay more attention to the valuable information for disease classification and recognition
and to reduce the interference of the useless information, thereby avoiding the loss of
detailed features of the disease. The network has high recognition accuracy and provides a
new method for the recognition technology of crop diseases.

Model Application Guide

The ablation experiments of network structure show that the Mish activation function
has a stronger nonlinear expression ability, which makes the network easier to optimize.
The recognition accuracy of the model using the Mish activation function is 0.65% higher
than that of the ReLu function. Similar to general deep learning, the size of the learning rate
determines whether the model can converge to the global optimal solution and the time it
takes to converge to the optimal solution. In parameter fine-tuning, when the learning rate
is set to 0.1, the accuracy rate is generally low, and the loss value is also large. Moreover, a
large learning rate will lead to a slower convergence speed and cause the accuracy rate and
loss value curve to oscillate. Therefore, the learning rate of the model chosen in this paper
was 0.01, so that the model converged on the global optimal solution. The batch-size value
directly affects the recognition accuracy of AT-AlexNet, and the choice of the batch-size
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value is affected by the experimental environment and model factors. Through multiple
experiments, the batch size value of this paper was finally determined to be 32 for the
model training to ensure that the model was in the best state. In the analysis of the impact
of datasets on the model performance, it can be seen that the data expansion improves the
identification accuracy of the disease, can effectively alleviate the overfitting phenomenon,
and thus improve the generalization ability of the model.

The corn disease recognition model based on the attention mechanism in this paper
performed well in terms of disease detail-feature extraction, reduction in the feature infor-
mation loss and network parameter calculation, and high recognition accuracy. However,
at present, only six typical corn diseases were identified, and there are certain limitations
in the scale of training samples and disease types. In future research, the disease types
and sample size can be increased to make the model more generalizable and practical.
In addition, integrating convolution network models with better performance, such as
CoAtNet network [47], Efficientnet, etc., to study new, more practical and higher precision
corn disease recognition networks is also a direction that can be explored.

5. Conclusions

This paper proposes the down-sampling attention module to address the problems
of low recognition rate and poor accuracy of recognizing corn diseases. It constructs an
attention-based corn disease recognition model AT-AlexNet. The average recognition
accuracy of the model for 6 corn diseases is 99.35%. The results show that introducing
the attention mechanism and adding the down-sampling attention module can enhance
the ability to extract detailed features, reduce the loss of disease feature information, and
help improve the recognition performance of the model. The comparison test results
with other networks prove the effectiveness and accuracy of the proposed method,
with higher recognition accuracy, shorter training and testing time, which has practical
application value.
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