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Abstract: In this paper, we present a high-order approximate solution with uniform accuracy for
nonlinear 3D Volterra integral equations. This numerical scheme is constructed based on the three-
dimensional block cubic Lagrangian interpolation method. At the same time, we give the local
truncation error analysis of the numerical scheme based on Taylor’s theorem. Through theoretical
analysis, we reach the conclusion that the optimal convergence order of this high-order numerical
scheme is 4. Finally, we verify the effectiveness and applicability of the method through four
numerical examples.
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1. Introduction

Nonlinear Volterra integral equations (VIEs) are widely used in many practical prob-
lems, such as electromagnetism and plasmon progeny physics, hydrodynamics, oscillation
theory, polymer rheology, chemical dynamics, biomechanics, and control theory, etc. [1].
However, nonlinear VIEs are equations with nonlinear and integral terms, and only a small
part of them can obtain accurate solutions directly. In the process of rapid development in
mathematical physics, engineering, medicine, and other fields, more and more researchers
have begun to study the numerical calculation methods of nonlinear VIEs [2].

In this paper, we will consider the following nonlinear 3D-VIEs of the form

µ(x, y, z) = g(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
K(x, y, z, w, t, ν, µ(w, t, ν))dνdtdw, (1)

where (x, y, z) ∈ Θ, g(x, y, z) and K(x, y, z, w, t, ν, µ(w, t, ν)) are given continuous functions
defined on Θ = [0, ḡ]3, Φ = Θ×Θ× (−∞,+∞), respectively, and µ(x, y, z) is unknown
on Θ.

The rigid-body collisions with friction can be described by a linear VIE considering
the impulses and sliding velocities as functions of the direction of the sliding velocity in [3].
The numerical solution for solving the system of VIEs without special starting procedures
was given by the block-by-block method (BLBM) in [4]. In [5], the authors give a numerical
solution for the second kind of VIE under rigorous error analysis by spectral methods.
In [6], the second kind of VIE, with smooth or weakly singular kernels, was solved by the
Taylor-series expansion method. In [7], the Laplace transform can be used to solve VIEs by
using a new transformation. In [8], the Urysohn-type nonlinear VIEs were solved by the
Euler and trapezoidal discretization methods. An ordinary method for constructing the
numerical schemes of the fractional ordinary differential equations (FODEs) was introduced
by using the idea of BLBM without solving the coupling unknown solutions at each block
step in [9]. In [10], they introduced a high-order numerical scheme for FODEs with the
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Caputo derivative. This numerical scheme is implemented by dividing the interval into
a great quantity of subintervals and using quadratic interpolation on them. At the same
time, it is shown that the numerical scheme is proved to be unconditionally stable for
general nonlinear equations with the uniform sharp convergence order. In [11], the authors
propose a high-order numerical scheme for an integro-differential equation with a fractional
Caputo derivative based on the shifted Legendre polynomials by coupling the idea of the
Gauss–Legendre quadrature rule and spectral collocation method. The second kind of VIE
was solved by the Bernstein’s approximation in [12]. Based on the row and column sweep
parallel algorithms, a parallel solution of the second kind of linear VIE was given with
the suitable quadrature technique in [13]. Some efficient numerical solutions for the linear
system of Volterra–Fredholm integral equations (VFIEs) were constructed based on the
collocation method with the help of the Bernstein polynomial in [14]. In [15], the numerical
solution for the separable kernels VIEs were given by the method of differential transform.
By the radial basis functions with scattered points, the VIEs were solved with the analysis
of the error estimation and the convergence rate estimation in [16]. In [17], the authors
studied the numerical solution of the nonlinear 2D VIE by using the collocation method
and iterated collocation method. In [18], the Euler-type numerical solution for the first kind
2D-VIEs was introduced with its convergence analysis. It gave a numerical scheme for
solving the 2D differential transform for double integrals in [19]. The numerical solution for
2D nonlinear fractional VFIEs was constructed based on the collocation method by using
the block-pulse functions of 2D and the shifted Legendre polynomials of two variables
in [20]. In [21], the second 2D nonlinear VIE was solved by the Galerkin method with the
help of the moving least squares method. The paper proposed a numerical method to solve
2D-VIEs with fractional order, weakly singular kernels based on 2D Euler polynomials
combined with the Gauss–Jacobi quadrature formula in [22]. In [23], an efficient method
was presented for solving the second kind of 3D-VFIEs based on 3D Bernstein polynomials.
The spectrally accurate collacation method was introduced to solve the second integral
equation of a weakly singular kernel by using multivarate Jacobi approximating in [24].
In [25], the results of 2D-VIE was extended to solve 3D-VIE by using the reduced differential
transform method. The dimensional differential transform method was applied for solving
nonlinear 3D-VIEs in [26]. The authors present an optimal homotopy asymptotic method
for solving 3D-VIEs of the second kind in [27]. A new numerical method for solving 3D
VFIEs was presented based upon 3D block-pulse functions approximation in [28].

The study of a numerical shceme for nonlinear 3D-VIEs is an essential research topic.
Thus far, scholars have limited research on higher-order numerical schemes for nonlinear
3D-VIEs with uniform accuracy, which further strengthens the significance of our research
on this topic. In this article, we divide the region into many subdomains and construct
a new numerical scheme for nonlinear 3D-VIE by using three-dimensional block cubic
Lagrangian interpolation. The scheme has a uniform accuracy and an optimal convergence
order of 4. At the same time, we can obtain the convergence analysis of the numerical
scheme based on the numerical analysis method, the Granwall inequality and the idea
of [18].

The arrangement of the paper is as follows. The existence and uniqueness of the
analytical solution is proposed based on the compressed mapping in Section 2. High-
order approximate solutions are constructed based on the idea of Lagrangian interpolation
methods in Section 3. In Section 4, the local truncation error of the constructed high-order
approximate solution is given based on Taylor’s theorem. In Section 5, the convergence
analysis of the high-order approximate solution is studied by using the Gronwall inequality.
Four numerical examples are given to verify the correctness of convergence theoretical
analysis in Section 6. In Section 7, some conclusions are given to discuss the computational
efficiency of the high-order approximate solution, and further studies are discussed.
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2. Existence and Uniqueness of Solution

For our numerical solution to be meaningful, we will first prove that Equation (1) has
a solution and only one solution. Given this condition, a numerical scheme constructed
based on Equation (1) makes sense. In this section, to prove this condition, we will establish
the existence and uniqueness of the solution in Equation (1) based on the compressive
mapping method, and give the corresponding theorem as follows. In this theorem, we
define the following symbols: X = (x, y, z) and W = (w, t, ν) for narrative convenience.

Theorem 1. Let K(X, W, µ) satisfy the following condition with respect to variable µ,

|K(X, W, µ1)− K(X, W, µ2)| ≤ L|µ1 − µ2|, L > 0, (2)

and then Equation (1) has a unique solution in Θ = [0, ḡ]3.

Proof. Set ‖ϕ‖∗ = max
X∈Θ

e−`(x+y+z)‖ϕ(X)‖2, where ‖·‖2 is the L2−norm. Suppose S is a

continuous space of function on [0, ḡ]3 → R3 is defined as S = {ψ(X) : ||ψ(X)||∗ < +∞,
∀ψ(X), X ∈ [0, ḡ]3}. Let A : S→ S be an operator as follows:

A(ϕ)(X) = g(X) +
∫ x

0

∫ y

0

∫ z

0
K(X, W, ϕ(W))dνdtdw.

In the following, we will prove that A is a compressed mapping. For ∀ϕ, ψ ∈ S, by a
directly calculate we can obtain

‖A(ϕ)− A(ψ)‖∗

=max
X∈Θ

e−`(x+y+z)
∥∥∥ ∫ x

0

∫ y

0

∫ z

0
K(X, W, ϕ(W))dνdtdw−

∫ x

0

∫ y

0

∫ z

0
K(X, W, ψ(W))dνdtdw

∥∥∥
2

≤max
X∈Θ

e−`(x+y+z)
∫ x

0

∫ y

0

∫ z

0
Le`(w+t+ν)

[
e−`(w+t+ν)‖ϕ(W)− ψ(W)‖2

]
dνdtdw

≤
(

max
X∈Θ

e−`(x+y+z)
∫ x

0

∫ y

0

∫ z

0
Le`(w+t+ν)dνdtdw

)
‖ϕ− ψ‖∗

≤max
X∈Θ

L(1− e−`x)(1− e−`y)(1− e−`z)

`3 ‖ϕ− ψ‖∗ ≤
L
`3 ‖ϕ− ψ‖∗.

Choosing ` > L1/3 > 0, it is easy to show that A is a compressed mapping. Therefore,
according to the principle of a compressed fixed point, there is a unique solution µ ∈ S that
satisfies Equation (1). The proof is then completed.

3. Construction of the High-Order Approximate Solution

Now we construct the higher-order approximate solution of (1). Let the domain [0, ḡ]3

be divided into N3 equal subdomains, and set xi = yi = zi = ih, i = 0, 1, · · · , N, here
h = ḡ

N . In the following, denoting by µ
q
i,j is the numerical solution at point (xi, yj, zq). Mean-

while, according to this definition and formula (1), we have µ0
i,0 = g(xi, 0, 0), µ0

0,j = g(0, yj, 0),

µ
q
0,0 = g(0, 0, zq), µ0

i,j = g(xi, yj, 0), µ
q
i,0 = g(xi, 0, zq) and µ

q
0,j = g(0, yj, zq), i, j, q =

0, 1, · · · , N. For the sake of simplicity, we set K(xi, yj, zq, w, t, ν, µ(w, t, ν)) = Ki,j,q(w, t, ν, µ(w,
t, ν)) and g(xi, yj, zq) = gi,j,q in the following parts.
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Let ψi,j(s), i = 0, 1, 2, 3; j ∈ N be the four basic functions of cubic interpolation at points
sj, sj+1, sj+2, sj+3, respectively, and sj = jh, the definition of ψi,j(s) is

ψ0,j(s) =
(s− (j + 1)h)(s− (j + 2)h)(s− (j + 3)h)

−6h3 ,

ψ1,j(s) =
(s− jh)(s− (j + 2)h)(s− (j + 3)h)

2h3 ,

ψ2,j(s) =
(s− jh)(s− (j + 1)h)(s− (j + 3)h)

−2h3 ,

ψ3,j(s) =
(s− jh)(s− (j + 1)h)(s− (j + 2)h)

6h3 . (3)

First, we construct an approximate solution of µ(x1, y1, z1), which has

µ(x1, y1, z1) = g1,1,1 +
∫ x1

0

∫ y1

0

∫ z1

0
K1,1,1(w, t, ν, µ(w, t, ν))dνdtdw

≈ g1,1,1 +
∫ x1

0

∫ y1

0

∫ z1

0

3

∑
a,b,c=0

ψa,0(w)ψb,0(t)ψc,0(ν)K1,1,1(xa, yb, zc, µ(xa, yb, zc))dνdtdw

= g1,1,1 +
3

∑
a,b,c=0

λ1
a,0λ̃1

b,0λ̄1
c,0K1,1,1(xa, yb, zc, µ(xa, yb, zc)), (4)

where

λ1
a,0 =

∫ x1

0
ψa,0(w)dw, λ̃1

b,0 =
∫ y1

0
ψb,0(t)dt, λ̄1

c,0 =
∫ z1

0
ψc,0(ν)dν, a, b, c = 0, 1, 2, 3.

Secondly, we compute an approximate solution at point (x2, y1, z1).

µ(x2, y1, z1) = g2,1,1 +
∫ x2

0

∫ y1

0

∫ z1

0
K2,1,1(w, t, ν, µ(w, t, ν))dνdtdw

≈ g2,1,1 +
∫ x2

0

∫ y1

0

∫ z1

0

3

∑
a,b,c=0

ψa,0(w)ψb,0(t)ψc,0(ν)K2,1,1(xa, yb, zc, µ(xa, yb, zc))dνdtdw

= g2,1,1 +
3

∑
a,b,c=0

λ2
a,0λ̃1

b,0λ̄1
c,0K2,1,1(xa, yb, zc, µ(xa, yb, zc)), (5)

with
λ2

a,0 =
∫ x2

0
ψa,0(w)dw, a = 0, 1, 2, 3.

Because the approximate solution can be easily obtained by using the calculation
similar to (4) and (5) for the other cases, the calculation process is omitted here. Therefore,
the approximate solution for µ(xk, yl , zm), k, l, m = 1, 2, 3 is given as follows:

µ(xk, yl , zm) ≈ gk,l,m +
3

∑
a,b,c=0

λk
a,0λ̃l

b,0λ̄m
c,0Kk,l,m(xa, yb, zc, µ(xa, yb, zc)), k, l, m = 1, 2, 3, (6)

where

λk
a,0 =

∫ xk

0
ψa,0(w)dw, λ̃l

b,0 =
∫ yl

0
ψb,0(t)dt, λ̄m

c,0 =
∫ zm

0
ψc,0(ν)dν,

a, b, c = 0, 1, 2, 3; k, l, m = 1, 2, 3.
(7)
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From (6), we can get the high-order numerical scheme for µ(xk, yl , zm), k, l, m = 1, 2, 3
as follows:

µm
k,l = gk,l,m +

3

∑
a,b,c=0

λk
a,0λ̃l

b,0λ̄m
c,0Kk,l,m(xa, yb, zc, µc

a,b), k, l, m = 1, 2, 3. (8)

Finally, for µ(xk, yl , zm), k, l, m ≥ 4, we can obtain an approximate solution of the form

µ(xk, yl , zm) = gk,l,m +
∫ xk

0

∫ yl

0

∫ zm

0
Kk,l,m(w, t, ν, µ(w, t, ν))dνdtdw

=gk,l,m +
∫ x3

0

∫ y3

0

∫ z3

0
Kk,l,m(w, t, ν, µ(w, t, ν))dνdtdw

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

Kk,l,m(w, t, ν, µ(w, t, ν))dνdtdw

≈gk,l,m +
3

∑
a,b,c=0

∫ x3

0

∫ y3

0

∫ z3

0
ψa,0(w)ψb,0(t)ψc,0(ν)Kk,l,m(xa, yb, zc, µ(xa, yb, zc))dνdtdw

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

ψa,d−3(w)ψb,e−3(t)ψc, f−3(ν)dνdtdw

× Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ(xd−3+a, ye−3+b, z f−3+c))

=gk,l,m +
3

∑
a,b,c=0

λ3
a,0λ̃3

b,0λ̄3
c,0Kk,l,m(xa, yb, zc, µ(xa, yb, zc))

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

τd
a,d−3τ̃e

b,e−3τ̄
f

c, f−3Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ(xd−3+a, ye−3+b, z f−3+c)), (9)

where ψa,0(w), ψa,d−3(w), ψb,0(t), ψb,e−3(t), ψc,0(ν), ψc, f−3(ν), and λ3
a,0, λ̃3

b,0, λ̄3
c,0 are defined

in (3) and (7), respectively, and

τd
a,d−3 =

∫ xd

xd−1

ψa,d−3(w)dw, a = 0, 1, 2, 3; d = 4, 5, · · · , k,

τ̃e
b,e−3 =

∫ ye

ye−1

ψb,e−3(t)dt, b = 0, 1, 2, 3; e = 4, 5, · · · , l,

τ̄
f

c, f−3 =
∫ z f

z f−1

ψc, f−3(ν)dν, c = 0, 1, 2, 3; f = 4, 5, · · · , m.

According to the estimated formula of (9), we can easily obtain the numerical scheme
at point (xk, yl , zm), k, l, m = 4, 5, · · · , N as follows:

µm
k,l = gk,l,m +

3

∑
a,b,c=0

λ3
a,0λ̃3

b,0λ̄3
c,0Kk,l,m(xa, yb, zc, µc

a,b)

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

τd
a,d−3τ̃e

b,e−3τ̄
f

c, f−3Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ
f−3+c
d−3+a,e−3+b). (10)
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To summarize, by combining (8) and (10), we can get the higher-order numerical
scheme of problem (1) as follows:

µm
k,l = gk,l,m +

3

∑
a,b,c=0

λk
a,0λ̃l

b,0λ̄m
c,0Kk,l,m(xa, yb, zc, µc

a,b), k, l, m = 1, 2, 3.

µm
k,l = gk,l,m +

3

∑
a,b,c=0

λ3
a,0λ̃3

b,0λ̄3
c,0Kk,l,m(xa, yb, zc, µc

a,b)

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

τd
a,d−3τ̃e

b,e−3τ̄
f

c, f−3Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ
f−3+c
d−3+a,e−3+b),

k, l, m = 4, 5, · · · , N.

(11)

4. Estimation of the Truncation Error

This section mainly deals with the truncation error analysis of the numerical scheme
(11) of problem (1). Here we give the following definition:

Ek,l,m
.
= µ(xk, yl , zm)− µ̄(xk, yl , zm), (12)

where Ek,l,m represents the truncation error at point (xk, yl , zm) produced by the numerical
scheme proposed in Section 3, µ(xk, yl , zm) is the exact solution of problem (1) in this paper
at point (xk, yl , zm), and µ̄(xk, yl , zm) is an approximate value. We replace the numerical so-
lution µm

k,l on the right side of Equation (11) with the value obtained after the corresponding
exact solution µ(xk, yl , zm), which is expressed as µ̄(xk, yl , zm); for example,

µ̄(xk, yl , zm) = gk,l,m +
3

∑
a,b,c=0

λk
a,0λ̃l

b,0λ̄m
c,0Kk,l,m(xa, yb, zc, µ(xa, yb, zc)), k, l, m = 1, 2, 3.

µ̄(xk, yl , zm) = gk,l,m +
3

∑
a,b,c=0

λ3
a,0λ̃3

b,0λ̄3
c,0Kk,l,m(xa, yb, zc, µ(xa, yb, zc))

+
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

τd
a,d−3τ̃e

b,e−3τ̄
f

c, f−3Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ(xd−3+a, ye−3+b, z f−3+c)),

k, l, m = 4, 5, · · · , N.

(13)

Based on Taylor’s theorem, we will introduce the following lemma to estimate the
truncation error of the numerical scheme (11) proposed in Section 3. For the convenience of
description, we set ∂4K

∂s4 = ∂4
s K.

Lemma 1. Suppose the function K ∈ C4([0, ḡ]3), and Ek,l,m represents the truncation error defined
in (12), and then it holds that

|Ek,l,m| ≤ Ch4, k, l, m = 1, 2, · · · , N, (14)

where C is a positive constant that only depends on ḡ, M, with

M = max
[0,ḡ]3

(|∂4
wK(x, y, z, w, t, ν, µ(w, t, ν))|, |∂4

t K(x, y, z, w, t, ν, µ(w, t, ν))|,

|∂4
νK(x, y, z, w, t, ν, µ(w, t, ν))|).

(15)
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Proof. We first estimate Ek,l,m, k, l, m = 1, 2, 3 and according to the definition of truncation
error, we bring (1) and (13) into (12) to obtain

Ek,l,m =
∫ xk

0

∫ yl

0

∫ zm

0
Kk,l,m(w, t, ν, µ(w, t, ν))dνdtdw

−
∫ xk

0

∫ yl

0

∫ zm

0

3

∑
a,b,c=0

ψa,0(w)ψb,0(t)ψc,0(ν)Kk,l,m(xa, yb, zc, µ(xa, yb, zc))dνdtdw

=
∫ xk

0

∫ yl

0

∫ zm

0

(
Kk,l,m(w, t, ν, µ(w, t, ν))

−
3

∑
a,b,c=0

ψa,0(w)ψb,0(t)ψc,0(ν)Kk,l,m(xa, yb, zc, µ(xa, yb, zc))
)

dνdtdw

.
=
∫ xk

0

∫ yl

0

∫ zm

0
γ1dνdtdw. (16)

According to Taylor’s theorem, we can know that for all (w, t, ν) ∈ [0, xk]× [0, yl ]×
[0, zm], k, l, m = 1, 2, 3, there exists (ξk(w), ϑl(t), $m(ν)) ∈ [0, xk] × [0, yl ] × [0, zm],
which satisfies

γ1 =
1
4!

∂4
wKk,l,m(ξk(w), t, ν, µ(ξk(w), t, ν))

3

∏
a=0

(w− xa)

+
3

∑
a=0

ψa,0(w)
1
4!

∂4
t Kk,l,m(xa, ϑl(t), ν, µ(xa, ϑl(t), ν))

3

∏
b=0

(t− yb)

+
3

∑
a=0

3

∑
b=0

ψa,0(w)ψb,0(t)
1
4!

∂4
νKk,l,m(xa, yb, $m(ν), µ(xa, yb, $m(ν)))

3

∏
c=0

(ν− zc). (17)

Through the definition of the interpolation basis functions ψa,0(w), ψb,0(t), with w ∈
(0, xk), t ∈ (0, yl), a, b = 0, 1, 2, 3; k, l = 1, 2, 3, we can know that |ψa,0(w)| ≤ 1, |ψb,0(t)| ≤ 1.

Therefore, we can get the conclusion that
∣∣ 3

∑
a=0

ψa,0(w)
∣∣ ≤ 4 and

∣∣ 3
∑

a=0

3
∑

b=0
ψa,0(w)ψb,0(t)

∣∣ ≤ 16.

Combining (16) and (17) for k, l, m = 1, we directly get

|E1,1,1| ≤ |
∫ x1

0

∫ y1

0

∫ z1

0

1
4!

∂4
wK1,1,1(ξ1(w), t, ν, µ(ξ1(w), t, ν))

3

∏
a=0

(w− xa)dνdtdw|

+ |
∫ x1

0

∫ y1

0

∫ z1

0

3

∑
a=0

ψa,0(w)
1
4!

∂4
t K1,1,1(xa, ϑ1(t), ν, µ(xa, ϑ1(t), ν))

3

∏
b=0

(t− yb)dνdtdw|

+ |
∫ x1

0

∫ y1

0

∫ z1

0

3

∑
a=0

3

∑
b=0

ψa,0(w)ψb,0(t)
1
4!

∂4
νK1,1,1(xa, yb, $1(ν), µ(xa, yb, $1(ν)))

3

∏
c=0

(ν− zc)dνdtdw|

.
= γ1

1 + γ2
1 + γ3

1. (18)

Now, we analyze the terms on the right side of Equation (18) one by one, and we get

γ1
1 ≤

∫ x1

0

∫ y1

0

∫ z1

0

1
4!

M×
∣∣∣ 3

∏
a=0

(w− xa)
∣∣∣dνdtdw

≤ Mh4
∫ x1

0

∫ y1

0

∫ z1

0
1dνdtdw = Mh7, (19)

γ2
1 ≤

4
4!

Mh4
∫ x1

0

∫ y1

0

∫ z1

0
1dνdtdw ≤ Mh7, (20)

γ3
1 ≤

16
4!

Mh4
∫ x1

0

∫ y1

0

∫ z1

0
1dνdtdw ≤ Mh7, (21)

where M is defined in (15).
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Through (18)–(21), we can directly get the conclusion of

|E1,1,1| ≤ 3Mh7.

By using the same method, we can estimate the error as

|Ek,l,m| ≤ 3Mh7, k, l, m = 1, 2, 3. (22)

Next, we will analyze the case of k, l, m ≥ 4, combining (1), (12), and (13), we have

|Ek,l,m| = |
∫ xk

0

∫ yl

0

∫ zm

0
Kk,l,m(w, t, ν, µ(w, t, ν))dνdtdw−

3

∑
a,b,c=0

λ3
a,0λ̃3

b,0λ̄3
c,0Kk,l,m(xa, yb, zc, µ(xa, yb, zc))

−
k

∑
d=4

l

∑
e=4

m

∑
f=4

3

∑
a,b,c=0

τd
a,d−3τ̃e

b,e−3τ̄
f

c, f−3Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ(xd−3+a, ye−3+b, z f−3+c))|

≤ |
∫ x3

0

∫ y3

0

∫ z3

0

(
Kk,l,m(w, t, ν, µ(w, t, ν))

−
3

∑
a,b,c=0

ψa,0(w)ψb,0(t)ψc,0(ν)Kk,l,m(xa, yb, zc, µ(xa, yb, zc))
)

dνdtdw|

+ |
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

(
Kk,l,m(w, t, ν, µ(w, t, ν))

−
3

∑
a,b,c=0

ψa,d−3(w)ψb,e−3(t)ψc, f−3(ν)Kk,l,m(xd−3+a, ye−3+b, z f−3+c, µ(xd−3+a, ye−3+b, z f−3+c)
)

dνdtdw|

.
= |

∫ x3

0

∫ y3

0

∫ z3

0
γ2dνdtdw|+ |

k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

γ3dνdtdw|. (23)

First, we analyze the first term on the right side of (23). Similar to the estimation
of (18), we have

|
∫ x3

0

∫ y3

0

∫ z3

0
γ2dνdtdw| ≤ 3Mh7. (24)

Next, we estimate the second term on the right side of (23), and for all (w, t, ν) ∈
[xd−1, xd]× [ye−1, ye]× [z f−1, z f ], there are (ξd(w), ϑe(t), $ f (ν)) ∈ [xd−1, xd]× [ye−1, ye]×
[z f−1, z f ], which satisfies

γ3 =
1
4!

∂4
wKk,l,m(ξd(w), t, ν, µ(ξd(w), t, ν))

3

∏
a=0

(w− xd−3+a)

+
3

∑
a=0

ψa,d−3(w)
1
4!

∂4
t Kk,l,m(xd−3+a, ϑe(t), ν, µ(xd−3+a, ϑe(t), ν))

3

∏
b=0

(t− ye−3+b) (25)

+
3

∑
a=0

3

∑
b=0

ψa,d−3(w)ψb,e−3(t)
1
4!

∂4
νKk,l,m(xd−3+a, ye−3+b, $ f (ν), µ(xd−3+a, ye−3+b, $ f (ν)))

3

∏
c=0

(ν− z f−3+c).

Therefore, we obtain that
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|
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

γ3dνdtdw|

≤|
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

1
4!

∂4
wKk,l,m(ξd(w), t, ν, µ(ξd(w), t, ν))

3

∏
a=0

(w− xd−3+a)dνdtdw|

+ |
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

3

∑
a=0

ψa,d−3(w)
1
4!

∂4
t Kk,l,m(xd−3+a, ϑe(t), ν, µ(xd−3+a, ϑe(t), ν))

×
3

∏
b=0

(t− ye−3+b)dνdtdw|+ |
k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

3

∑
a=0

3

∑
b=0

ψa,d−3(w)ψb,e−3(t)

× 1
4!

∂4
νKk,l,m(xd−3+a, ye−3+b, $ f (ν), µ(xd−3+a, ye−3+b, $ f (ν)))×

3

∏
c=0

(ν− z f−3+c)dνdtdw|

.
= γ1

3 + γ2
3 + γ3

3. (26)

Next, we analyze each item in (26) one by one, and we have

γ1
3 ≤ Mh4

k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

1dνdtdw

= Mh4
∫ xk

x3

∫ yl

y3

∫ zm

z3

1dνdtdw ≤ ḡ3Mh4, (27)

γ2
3 ≤ Mh4

k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

1dνdtdw ≤ ḡ3Mh4, (28)

γ3
3 ≤ Mh4

k

∑
d=4

l

∑
e=4

m

∑
f=4

∫ xd

xd−1

∫ ye

ye−1

∫ z f

z f−1

1dνdtdw ≤ ḡ3Mh4. (29)

Consequently, combining (23), (24) and (26)–(29), we can get the following result

|Ek,l,m| ≤ 3Mh7 + 3ḡ3Mh4, k, l, m = 4, 5, · · · , N. (30)

From the conclusions of above (22) and (30), we can obtain the truncation error of the
proposed higher-order numerical scheme (11) as follows:

|Ek,l,m| ≤ Ch4, k, l, m = 1, 2, · · · , N, (31)

where C is a positive constant that only depends on ḡ, M.

5. Convergence Analysis

For the coefficients appearing in the higher-order numerical scheme (11) proposed in
Section 3, we can get the following conclusions through accurate calculation.

|λj
a,0| ≤ Ch, |λ̃j

a,0| ≤ Ch, |λ̄j
a,0| ≤ Ch, a = 0, 1, 2, 3; j = 1, 2, 3, (32)

|τ j
a,j−3| ≤ Ch, |τ̃ j

a,j−3| ≤ Ch, |τ̄ j
a,j−3| ≤ Ch, a = 0, 1, 2, 3; j = 4, 5, · · · , N, (33)

where C is a constant independent of h.

Theorem 2. Let the function K ∈ C4([0, ḡ]3) satisfy (2). Let µ(xk, yl , zm) and µm
k,l be the solutions

of (1) and (11) at points (xk, yl , zm), respectively. If h is small enough, then

|µ(xk, yl , zm)− µm
k,l | ≤ Ch4, k, l, m = 1, 2, · · · , N, (34)
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where C is independent of h.

Proof. We first define the error, let εk,l,m = µ(xk, yl , zm)− µm
k,l , k, l, m = 0, 1, · · · , N. Com-

bining the definitions of εk,l,m and Equation (1), we can easily get

εk,0,0 = ε0,l,0 = ε0,0,m = εk,l,0 = εk,0,m = ε0,l,m = 0, k, l, m = 0, 1, · · · , N. (35)

Now, we begin to analyze εk,l,m, k, l, m = 1, 2, 3, and εk,l,m satisfies

εk,l,m = µ(xk, yl , zm)− µm
k,l = µ(xk, yl , zm)− µ̄(xk, yl , zm) + µ̄(xk, yl , zm)− µm

k,l

= Ek,l,m + µ̄(xk, yl , zm)− µm
k,l .

According to (11), (13), Lemma 1 and (32), we have

|εk,l,m| ≤ |Ek,l,m|+ |Ch3
3

∑
a,b,c=0

[Kk,l,m(xa, yb, zc, µ(xa, yb, zc))− Kk,l,m(xa, yb, zc, µc
a,b)]|

≤ Ch4 + CLh3
3

∑
a,b,c=0

|µ(xa, yb, zc)− µc
a,b|

= Ch4 + CLh3
3

∑
a,b,c=0

|εa,b,c|, k, l, m = 1, 2, 3. (36)

Simultaneously with the inequality in (36), we easily get

|εk,l,m| ≤ Ch4, k, l, m = 1, 2, 3. (37)

Next, we analyze εk,l,m, k, l, m = 4, 5, · · · , N. According to the definition of εk,l,m,
combined with (32), (33), and Lemma 1, we can obtain

|εk,l,m| ≤ |Ch3
k

∑
a=0

l

∑
b=0

m

∑
c=0

(Kk,l,m(xa, yb, zc, µ(xa, yb, zc))− Kk,l,m(xa, yb, zc, µc
a,b))|+ |Ek,l,m|

≤ CLh3
k

∑
a=0

l

∑
b=0

m

∑
c=0
|εa,b,c|+ Ch4, k, l, m = 4, 5, · · · , N. (38)

At the same time, we can get

|εk,l,m| ≤CLh3
( k−1

∑
a=0

l−1

∑
b=0

m−1

∑
c=0
|εa,b,c|+

l−1

∑
b=0

m−1

∑
c=0
|εk,b,c|+

k−1

∑
a=0

m−1

∑
c=0
|εa,l,c|+

k−1

∑
a=0

l−1

∑
b=0
|εa,b,m|

+
m−1

∑
c=0
|εk,l,c|+

l−1

∑
b=0
|εk,b,m|+

k−1

∑
a=0
|εa,l,m|+ |εk,l,m|

)
+ Ch4. (39)

Take ||ε̂a,b|| = max
0≤c≤N

|εa,b,c|, a = 0, 1, · · · , k; b = 0, 1, 2 · · · , l; c = 0, 1, · · · , m. Then the

above inequality can be equivalent to

(1− CLḡh2 − CLh3)||ε̂k,l ||

≤(CLḡh2 + CLh3)
k−1

∑
a=0

l−1

∑
b=0
||ε̂a,b||+ (CLḡh2 + CLh3)

l−1

∑
b=0
||ε̂k,b||

+ (CLḡh2 + CLh3)
k−1

∑
a=0
||ε̂a,l ||+ Ch4. (40)

For the small-enough h and by using the Gronwall inequality [18], we have

||ε̂k,l || ≤ Ch4,
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and then

|εk,l,m| ≤ Ch4, k, l, m = 4, 5, · · · , N. (41)

Combining (37) and (41), we completed the proof of Theorem 2.

6. Numerical Examples

In this section, we use the higher-order numerical scheme (11) to solve the 3D-VIEs.
The following four numerical examples are used to demonstrate the convergence order of
the numerical solution. In the following numerical examples, we implement higher-order
numerical scheme with h = 1

N , N = 5, 10, 20, 40, 80 and error Eh = max
i,j,q
|µ(xi, yj, zq) −

µ
q
i,j|, i, j, q = 0, 1, · · · , N. The convergence order is calculated by log2

( E2h
Eh

)
. At the same

time, without losing generality, we all choose the ḡ = 1 to do the following analysis.

Example 1. We consider the linear 3D-VIEs as follows:

µ(x, y, z) = g(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
(xyzw2tν)µ(w, t, ν)dνdtdw, (x, y, z) ∈ [0, 1]3,

with the function g defined as

g(x, y, z) = x2y5z3 − 1
175

x6y8z6.

It is straightforward to show that µ(x, y, z) = x2y5z3 is the exact solution of the above equation.
First, we perform numerical example according to the higher-order numerical solution in

Section 3. According to different step lengths h, the calculated maximum absolute error and its
convergence order are shown in Table 1.

Table 1. Maximum errors and convergence rate as functions with h.

h Error Rate
1
5 1.629551910207194× 10−4 −
1
10 1.301070087844636× 10−5 3.646704724239447
1
20 9.126369742151752× 10−7 3.833513767270810
1
40 6.033795529880592× 10−8 3.918903390618973
1
80 3.877251630868273× 10−9 3.959959534894697

The theoretical analysis results of Theorem 2 in Section 5 show that our optimal convergence
order is 4 for our proposed higher-order numerical scheme. At the same time, through Table 1, we
can know that when the value of h = 1

5 , 1
10 , 1

20 , 1
40 , 1

80 gradually becomes smaller, the corresponding
maximum absolute error also becomes smaller from 10−4 to 10−9, and the reduction is extremely
obvious. In this process, we can know that our convergence order is gradually approaching 4.

Next, we show the distribution of function value for the numerical solution and the exact
solution. The function value distribution of N = 80 in the following Figure 1, where it is a
comparison of the numerical solution and the exact solution corresponding to the 3D-VIEs. Figure
1 is the three-dimensional surface mesh map of the corresponding µ(x, y, 1) = x2y5 when z = 1.
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Figure 1. Comparison of numerical and exact solutions.

As can be seen from Figure 1, the numerical solution obtained by our calculation according to
the numerical scheme is a good agreement with the exact solution of this example, and the values on
the corresponding nodes are almost identical. Combining the data in Table 1 and Figure 1 in this
example, we know that our proposed higher-order scheme has good convergence for linear 3D-VIE,
which is consistent with the theoretical results.

Example 2. Let us consider the following linear 3D-VIEs:

µ(x, y, z) = g(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
sin(x− w) sin2(y + t) cos(2z + ν)µ(w, t, ν)dνdtdw,

where (x, y, z) ∈ [0, 1]3, and the function g is defined as

g(x, y, z) = x5y2z2 −
(

x5 − 20x3 + 120x− 120 sin(x)
)(1

6
y3 − 1

4
y2 sin(4y)− 1

4
y cos(4y)

+
1
8

sin(4y)− 1
8

sin(2y)
)(

z2 sin(3z) + 2z cos(3z)− 2 sin(3z) + 2 sin(2z)
)

.

The exact solution to the above equation is as follows:

µ(x, y, z) = x5y2z2.

In this example, we implement this calculation process to calculate the maximum absolute
error and convergence order of the high-order numerical solution. According to different step sizes h,
the maximum absolute error, and the convergence order can be obtained as shown in Table 2.

Table 2. Maximum errors and convergence rate as functions with h.

h Error Rate
1
5 1.306204365916219× 10−4 −
1
10 1.122759745353363× 10−5 3.540259485877905
1
20 8.162257019161956× 10−7 3.781937294325425
1
40 5.490936638707922× 10−8 3.893843971083792
1
80 3.558625838451235× 10−9 3.947660105874005

As can be seen from Table 2, when our step size h is 1
5 , the maximum absolute error of this

numerical example is already very small, and the maximum absolute error at this time is about
1.3× 10−4. When h = 1

80 , the maximum absolute error is about 3.6× 10−9. At the same time, as h
gradually decreases, the maximum absolute error becomes smaller and smaller. From the definition of
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the maximum absolute error, we can also know that the numerical solution in this numerical problem
gradually approaches the exact solution when h becomes gradually smaller. From Table 2, we can
roughly get that our numerical method is gradually approaching theoretical convergence order.

In the following, we will apply two nonlinear numerical examples to further demon-
strate the conclusion of our Theorem 2.

Example 3. We consider the following 3D nonlinear VIEs:

µ(x, y, z) = g(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
(xyz + wt + ν2)µ2(w, t, ν)dνdtdw; (x, y, z) ∈ [0, 1]3,

with the function g defined as

g(x, y, z) = x3y5z3 − 1
539

x8y12z8 − 1
672

x8y12z7 − 1
693

x7y11z9.

It is easy to show that µ(x, y, z) = x3y5z3 is the corresponding exact solution of the above
equation.

In order to show the theoretical analysis results of Theorem 2 for the 3D nonlinear VIE with a
general kernel function, we choose a suitable h to indicate the corresponding maximum absolute error,
and the maximum absolute error gradually decreases from 10−4 to 10−8. Among them, the step size
h is the same as the selection of h in Example 1 and Example 2, and it gradually decreases from 1

5 to
1

80 . Through some of numerical calculations, we obtain the relevant data of the 3D nonlinear VIEs
as shown in the following Table 3.

Table 3. Maximum errors and decay rate as functions with h.

h Error Rate
1
5 9.194168478405818× 10−4 −
1
10 8.959147119291799× 10−5 3.359285798830145
1
20 7.183001882626883× 10−6 3.640702600341250
1
40 5.105040028485774× 10−7 3.814592715250178
1
80 3.399614900700954× 10−8 3.908479037192826

From Table 3, we have that the approximate solution of 3D nonlinear VIEs is convergent to
the exact solution. Through a large number of tests, we can see the corresponding convergence
order gradually approaches 4; that is to say, its optimal convergence order is 4. This is completely
consistent with the theoretical analysis.

Next, we show the distribution of function value for the numerical solution and the exact
solution. The function value distribution of N = 80 in the following Figure 2, where it is a
comparison of the numerical solution and the exact solution corresponding to the 3D-VIEs. Figure 2
shows the three-dimensional surface mesh map of the corresponding µ(x, y, 1) = x3y5 when z = 1.
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Figure 2. Comparison of numerical and exact solutions.

In Figure 2, we can hardly see the difference between the exact solution and the numerical
solution of this numerical example. Therefore, we can draw the conclusion that the numerical
solution of the nonlinear 3D-VIEs is very consistent with the exact solution, which also verifies the
correctness of our theoretical analysis.

Example 4. Let us consider the following 3D nonlinear VIEs with exponential form:

µ(x, y, z) = g(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
e(x−w)+(y−t)+(z−ν)µ2(w, t, ν)dνdtdw; (x, y, z) ∈ [0, 1]3,

with the function g defined as

g(x, y, z) =x3y4z4 − (−x6 − 6x5 − 30x4 − 120x3 − 360x2 − 720x− 720 + 720ex)(−y8

− 8y7 − 56y6 − 336y5 − 1680y4 − 6720y3 − 20160y2 − 40320y− 40320

+ 40320ey)(−z8 − 8z7 − 56z6 − 336z5 − 1680z4 − 6720z3 − 20160z2

− 40320z− 40320 + 40320ez),

and the exact solution is µ(x, y, z) = x3y4z4.
In order to show the constructed numerical scheme’s good convergence, we will verify this

example. The error Eh and the convergence order of the solution of this 3D-VIE with respect to
different h under the maximum norm of error are given in the following Table 4.

Table 4. Maximum errors and decay rate as functions with h.

h Error Rate
1
5 2.116544808936638× 10−4 −
1
10 1.715380950773060× 10−5 3.625110122038858
1
20 1.221438151288723× 10−6 3.811876286531620
1
40 8.137970008981199× 10−8 3.907768039330447
1
80 5.251625134761184× 10−9 3.953833119346601
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It can be seen from Table 4 that the corresponding error is gradually decreasing with respect to
h, and the convergence order of numerical scheme is 4.

Summarizing the linear and nonlinear 3D-VIEs described above, we know that the nu-
merical method is convergent with the optimal convergence order of 4. They are completely
consistent with the theoretical analysis results of Theorem 2.

7. Conclusions

A higher-order approximate solution for the nonlinear three-dimensional Volterra
integral equation is presented in this paper. This numerical scheme is constructed by
dividing the region into multiple subregions and applying cubic Lagrangian interpolation
on each subregion. The scheme has uniform accuracy with an optimal convergence order
of 4. We analyze the error generated by this numerical scheme through detailed steps, and
use four numerical examples to verify that the error is within a reasonable range. Then it
is concluded that this theoretical analysis is correct. In the future, we hope to construct a
high-order approximate solution for a peridynamics plate model based on the idea of [29].
In addition, we intend to construct an efficient high-order numerical solution with uniform
accuracy for 3D-VIEs with a generally weak nonlinear singular kernel function based on
the ideas of [30,31]. Finally, we will apply a fast algorithm to implement the high-order
numerical scheme for large-scale practical engineering problems based on the idea of [32].
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