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Abstract: The paper is devoted to studying the behavior of solutions of the Cauchy problem for large
values of time—more precisely, obtaining an asymptotic expansion characterizing the behavior of
the solution of the Cauchy problem for a one-dimensional second-order hyperbolic equation with
periodic coefficients for large values of the time parameter t. To obtain this asymptotic expansion as
t→ ∞, methods of the spectral theory of differential operators are used, as well as the properties of
the spectrum of a non-positive Hill operator with periodic coefficients.
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1. Introduction

The paper is a continuation of the paper by the authors [1], where to obtain the
asymptotics of the solution of the Cauchy problem (1) and (2), the positive Hill operator
(H0 > 0) and the properties of the spectrum σ(H0) of this operator were studied.

Here, we will consider the case when the Hill operator is non-positive (H0 ≤ 0), which
means that the left end of the spectrum σ(H0) of the Hill operator H0 on the complex plane
of the variable λ coincides with zero or negative.

This paper also studies the behavior of the solution for |x| < b and t → ∞ of the
following Cauchy:

utt(x, t)− (p(x) ux(x, t))x + q(x) u(x, t) = 0, (x, t) ∈ R× {t > 0}, (1)

u(x, t)|t=0 = 0, ut(x, t)|t=0 = f (x), x ∈ R, (2)

where the functions p(x) and q(x) are periodic with period 1,

p(x + 1) = p(x) ≥ const > 0, q(x + 1) = q(x) ≥ 0.

We also assume that the functions p(x) and q(x) are continuous or have a finite
number of discontinuities of the first kind on the period, f ∈ C∞

0 (R), supp f ⊂ [0, 1]; b is
an arbitrary fixed constant.

For the completeness of the description of these problems, we note that the study of
the behavior as t → ∞ as a solution of the problems (1) and (2), and the corresponding
multidimensional problems, provided that the potential differs from a constant by a finite
function or is sufficient, rapidly tends to a constant at infinity; many papers and books are
devoted to this area (see, for ex. [1–9]).
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Let us point out some papers in which the problems are studied, similarly to the
problems (1) and (2), with different conditions on the potential and coefficients.

The behavior at large time t of the solution of the Cauchy problem for the hyper-
bolic equation

uxx − q(x)utt = 0, 0 < q0 ≤ q(x) ≤ q∞ < +∞, (x, t) ∈ R× {t > 0},

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), x ∈ R.

was studied in [3,4]. In [4], under the assumption that the function q(x) tends in a certain
way to the limit as x → ±∞, some estimates for the rate of decay of the solution as t→ ∞,
related to the stabilization rate q(x) at x → ±∞ were obtained; that is, the estimates
xq′(x) ≥ 0 and sup |x|s+1|q′(x)| < ∞ are satisfied for some s > 1 as x → ±∞.

Paper [5] studies that a perturbed Hill operator with an exponentially decreasing
impurity potential has a resonance (or an odd number of resonances) at each sufficiently
distant lacuna on the second (“non-physical”) sheet.

In [6], for the one-dimensional perturbed Hill operator H, whose impurity potential
has a finite first moment, the “Levinson series” is obtained. This series of relations gen-
eralize the well-known Levinson formula to the case when there is a periodic potential.
The “Levinson series” is an effective tool for studying the discrete spectrum in lacunae (gap
bands). In particular, it is shown that in the case of a reflectionless impurity potential with
a finite second moment, there are no eigenvalues of the operator H in the distant lacunae
of the spectrum.

In [7], for the Hill operator with a 1-periodic potential q(x) with the condition∫ 1
0 q(x) dx = 0, estimates of the periodic potentials are established for gap lengths.

We also note paper [8], in which the one-dimensional stationary Schrödinger equation
with a quasi-periodic potential u(ω t) is studied. It is shown that if the frequency vector ω
is large enough, the Schrödinger equation admits two linear independent Floquet solutions
for a set of positive energy measure.

Note that in [9], the behavior of the solution of the Cauchy problem for a hyperbolic
equation with a periodic potential q(x) is also studied, that is, a problem similar to the
problems (1) and (2), which are considered in this paper with p(x) = 1.

In the case of periodic coefficients p(x) and q(x), the first results on the behavior of
solutions of the Cauchy problem and the initial-boundary value problem of both homoge-
neous and inhomogeneous hyperbolic equations were obtained in [10,11].

In addition to the papers and books mentioned above, we also note more important
literature, such as [12–16], which reflect the spectral properties of the Hill operator from
different points of view. In particular, the papers [12,13] were also devoted to the definition
of the Hill equation from its spectrum.

Let us present a scheme for studying the Cauchy problem (1) and (2), for the case of a
non-positive Hill operator. To solve the Cauchy problem (1) and (2), in the case when the
left end of the spectrum of the Hill operator coincides with zero or is negative, it is necessary
to make a Fourier transform to reduce the Cauchy problem to a stationary problem. Then,
we write the solution of this problem in terms of the resolvent of the Hill operator and
apply the inverse Fourier transform. When the left end of the spectrum coincides with zero,
at the point k = λ0 = 0, the vertical cut in the lower half-plane of the variable k is not made.
At the negative left end of the spectrum, the approach to solving the problem is the same
as in [1].

Notations: L2(Ω) is the space of measurable functions in Ω for which

||u; L2(Ω)|| =
(∫

Ω
|u|2dx

)1/2
< ∞.

The Sobolev space H1(Ω) in Ω is defined as:

H1(Ω) = {u : u ∈ L2(Ω), ∇u ∈ L2(Ω)},
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provided with the norm

||u; H1(Ω)||2 = ||u; L2(Ω)||2 + ||∇u; L2(Ω)||2.

2. Preliminaries

Definition 1. A function u ∈ C2(R× {t ≥ 0}) is called a periodic (anti-periodic) solution of the
Cauchy problems (1) and (2) if it satisfies the relation

u(x + 1, t) = (−1)ju(x, t)

for any x ∈ R and t ≥ 0, with j = 0 and j = 1 in the case of periodic and anti-periodic
solutions, respectively.

2.1. Spectrum and Green’s Function of the Hill Operator

Continuing the function u(x, t) by zero in the region t < 0, and applying the Fourier
transform with respect to the variable t in the Cauchy problem (1) and (2), for the function

y(x, k) =
∫ ∞

0
u(x, t) eiktdt

we obtain the equation

(p(x) y′(x, k))′ + (k2 − q(x)) y(x, k) = − f (x) (3)

For any function g(x) from L2(−∞,+∞), we define its norm in the same space

||g; L2|| = ||g; L2(−∞,+∞)||.

If the function g(x) is defined on the entire axis (−∞,+∞), then by ĝ(x), we denote
the restriction of this function on the segment [0, 1].

Let us present some necessary facts from the spectral theory of differential equations.
For any function g(x, k), we denote by g′ the derivative with respect to x and by gk the
derivative with respect to k

Let {y = θ(x, k), y = ϕ(x, k)} be the fundamental system of solutions of the homoge-
neous (for f (x) ≡ 0) Equation (3) such that{

θ(0, k) = 1, θ′(0, k) = 0,
ϕ(0, k) = 0, ϕ′(0, k) = 1.

It is known [17] that θ(x, k) and ϕ(x, k) are entire functions in k real on the real axis,
and for |k| → ∞, we have the form θ(x, k) = cos kx + O(|k|−1e|τ|x),

ϕ(x, k) = 1
k sin kx + O(|k|−2e|τ|x), τ = Im k.

(4)

uniformly in x ∈ [−b, b]. These expansions can be differentiated with respect to x and with
respect to k.

Let us denote θ(k) = θ(1, k), θ′(k) = θ′(1, k), ϕ(k) = ϕ(1, k), ϕ′(k) = ϕ′(1, k) and
F(k) ≡ θ(k) + ϕ′(k). The functions θ(k), θ′(k), ϕ(k), ϕ′(k) and F(k) are even on the real
axis of the complex plane of the variable k.

The Hill operator is the differential operator

H0 := − d
dx

(
p(x)

d
dx

)
+ q(x),
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generated in the Hilbert space L2(R) by the operation

Λ0y := −(p(x) y′)′ + q(x) y,

where the functions p(x) and q(x) are periodic with period 1.
The spectrum σ(H0) of the Hill operator H0 is absolutely continuous and is a finite or

infinite sequence of isolated segments (zones) separated by lacunae going to infinity.
Note that the Hill operator has only a continuous spectrum, which lies on the real axis

and is left semi-bounded [17]. Let us replace the spectral parameter λ by k2 so that the
spectrum σ(H0) of the operator H0 on the complex plane of the variable k consists of points
for which H0 − k2 does not have a bounded inverse on an everywhere dense set in L2(R).

For a more detailed characterization of the spectrum σ(H0) of the Hill operator H0,
consider the following periodic (anti-periodic) Sturm–Liouville problems.

Let v̂(x, λn) be an eigenfunction of the periodic Sturm–Liouville problem:

−(p(x)y′)′ + q(x)y = λny, x ∈ [0, 1],

y(0) = y(1), y′(0) = y′(1),
(5)

and v̂(x, µn) is the eigenfunction of the anti-periodic Sturm–Liouville problem:

−(p(x)y′)′ + q(x)y = µny, x ∈ [0, 1],

y(0) = −y(1), y′(0) = −y′(1).
(6)

normalized by the condition ||v̂; L2([0, 1])|| = 1, where λn = λ2
n and µn = µ2

n, n = 0, 1, 2, . . .,
is the set of all eigenvalues of problems (5) and (6), respectively, numbered in ascending
order, taking into account the multiplicity.

Continuing the function v̂(x, λn) (or v̂(x, µn)) to the entire real axis, in a periodic (or
anti-periodic) way, we obtain a function, which we denote by v(x, λn) (or v(x, µn)).

Since Equation (3) contains the parameter k2, by replacing the spectral parameter λ by
k2, we can use the expression “complex plane of the variable k” instead of the expression
“complex plane of the variable λ”.

Denote by C′ the complex plane, as in [1], in which vertical cuts were made from the
points ±λ0 in the lower half-plane of the variable k.

In this article, the complex plane C′ will be defined separately, depending on the cases
λ0 = 0 and λ0 < 0.

2.2. Auxiliary Statements

For the convenience of reading this article, we present the formulations of some
Propositions and Lemmas from [1].

Proposition 1 ([1]). For the solution of the problems (1) and (2), the following representation
is valid:

u(x, t) =
1

2π
JL + v1(x, t),

where the function v1(x, t) for x ∈ [−b, b] and t > 0 satisfies the estimate

|v1(x, t)| ≤ C(b) e−td|| f ; L2||.

Proposition 2 ([1]). For any t > 0 and x ∈ [−b, b], we have the estimate

|JL3 | ≤ C(b) e−td|| f ; L2||.

As is known [17], if λn and µn are the ends of a lacuna, then λn = λ2
n is a simple

eigenvalue of the periodic Sturm–Liouville problem (5), and µn = µ2
n is a simple eigenvalue

of the anti-periodic Sturm–Liouville problem (6).
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For the eigenfunction of problem (5), corresponding to the eigenvalue λn = λ2
n, we

will search in the form
v̂(x, λn) = A θ̂(x, λn) + B ϕ̂(x, λn).

Therefore, we obtain the following system{
A (θ(λn)− 1) + B ϕ(λn) = 0,

A θ′(λn) + B (ϕ′(λn)− 1) = 0.
(7)

Since λn = λ2
n are simple eigenvalues of problem (5), then the determinant of the

system (7) is equal to zero, and all coefficients of the system do not vanish simultaneously.
Together with the equality F(k) ≡ θ(k) + ϕ′(k) = 2 for k = λn (this results from the fact
that k2 = λ2

n), which served as the definition of the numbers λn, this leads to the fact that at
the points, λn satisfies one of the following relations:

(A1) θ(λn) 6= 1, θ′(λn) 6= 0, ϕ(λn) 6= 0, ϕ′(λn) 6= 1;

(A2) θ(λn) = 1, θ′(λn) 6= 0, ϕ(λn) = 0, ϕ′(λn) = 1;

(A3) θ(λn) = 1, θ′(λn) = 0, ϕ(λn) 6= 0, ϕ′(λn) = 1.

Note that for any x, ξ ∈ R, the functions θ(x, k), ϕ(x, k), h(x, ξ, k) and F2(k)− 4 are
even on the real axis of the complex plane of variable k.

Lemma 1 ([1]). For points ±λn, n = 0, 1, 2, . . . , if λn are the ends of lacunae (that is, simple
zeros of the function F(k)− 2), then the equalities

h(x, ξ,±λn) = Cλn v(x, λn) v(ξ, λn), −b ≤ x, ξ ≤ b,

are satisfied, where the function v(x, λn) = v(x,−λn) is the eigenfunction of the periodic Sturm–
Liouville problem, and the numbers Cλn depending on the cases (A1)–(A3) have the form

A1 : Cλn = ϕ(λn)
∫ 1

0

(
θ(x, λn) +

1−θ(λn)
ϕ(λn)

ϕ(x, λn)
)2

dx;

A2 : Cλn = −θ′(λn)
∫ 1

0 (ϕ(x, λn))
2dx;

A3 : Cλn = ϕ(λn)
∫ 1

0 (θ(x, λn))
2dx.

3. Main Results
3.1. The Case When the Left End of the Spectrum σ(H0) of the Hill Operator H0 Coincides with
zero: λ0 = 0.

If on the complex plane of the variable λ, the left end of the spectrum σ(H0) of the Hill
operator H0 coincides with zero, then on the complex plane of the variable k, the spectrum
σ(H0) of the Hill operator H0 is merging segments:

[−µ2n+2,−λ2n+2], [−λ2n+1,−µ2n+1], [−µ0, µ0], [µ2n+1, λ2n+1], [λ2n+2, µ2n+2], n = 0, 1, 2 . . . .

The point k = 0 is a two-fold zero of the function F(k)2 − 4, and this means that the
simple zero of the function

√
G(k) =

√
F(k)2 − 4.

Denote by C′ and L the complex plane and contour, as in [1], for which vertical cuts
were made from the points ±λ0 in the lower half-plane of the variable k . In this case, no
vertical cut is drawn from the point k = λ0 = 0.

On the complex plane C′, we consider the contour L, which can be represented as

L = L1 ∪ L2 ∪ L3, L3 = L− ∩C′,

where L1 and L2 are defined in the same way as in [1], L− = {k : Im k = −d, d > 0}.
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For the integrals J1 and J2, which are defined in [1], estimates (17) and (18) remain
valid. The function

h(x, ξ, k) e−ikt√
(θ(k) + ϕ′(k))2 − 4

for x ∈ [−b, b] and t > 0 at the point k = 0 can have a first-order pole, since k = 0 is a
simple zero of the function

√
F(k)2 − 4.

Let δ be some finite contour in C′. Denote by Jδ the integral

Jδ =
∫

δ

∫ 1

0

h(x, ξ, k)√
(θ(k) + ϕ′(k))2 − 4

f (ξ) e−iktdξdk, x ∈ [−b, b].

Proposition 3. For the solution of problems (1) and (2), the following representation is

u(x, t) =
1

2π
JL + U(x) + v1(x, t),

where the function v1(x, t) for x ∈ [−b, b] and t > 0 satisfies the estimate:

|v1(x, t)| ≤ C(b) e−td|| f ; L2||,

and the function U(x) has the form

U(x) = −i
1∫

0

lim
k→0

k h(x, ξ, k) e−ikt√
(θ(k) + ϕ′(k))2 − 4

 f (ξ) d ξ. (8)

Proof. The proof of this statement is similar to the proof of Proposition 1 from [1]. Due
to the fact that in this case, no vertical cut is made from the point k = λ0 into the lower
half-plane of the variable k, the term U(x) is separated in the expansion of the solution of
the Cauchy problem (1) and (2). Furthermore, this term is also separated in the asymptotic
representation of the periodic solution of the Cauchy problem.

Theorem 1. If the left end of the spectrum σ(H0) of the Hill operator H0 on the complex plane of
the variable λ coincides with zero, p(x) ≥ const > 0, q(x) ≥ 0, q 6≡ 0, then the solution of the
Cauchy problem (1) and (2) for x ∈ [−b, b] and t > 0 has the form

u(x, t) = U(x) +
1√

t
{u1(x, t) + u2(x, t)}+ v(x, t),

where u1(x, t) is a periodic solution of the Cauchy problem, for which

u1(x, t) =
∞

∑
n=1

bλn aλn v(x, λn) sin(λnt + (−1)n π

4
),

u2(x, t) is a anti-periodic solution of the Cauchy problem, for which

u2(x, t) =
∞

∑
n=0

bµn aµn v(x, µn) sin(µnt + (−1)n+1 π

4
),

the function U(x) is defined as

U(x) = b0 f0 v(x, 0) with f0 =

1∫
0

v(ξ, 0) f (ξ) d ξ,

while the function v(x, t) for |x| < b and t > 0 satisfies the estimate

|v(x, t)| ≤ C(b)
t
|| f ; L2(R)||.
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The function v(x, 0) is obtained from the normalized eigenfunction v̂(x, 0) of the
periodic Sturm–Liouville problem (5) corresponding to the eigenvalue λ0 = λ2

0 = 0, if it
is continued along the entire axis in a periodic way, b0 is some constant defined by the
formula (10) below.

Here, the summation is carried out only over those n for which λn = λ2
n (or µn = µ2

n)
are simple eigenvalues of the periodic (or anti-periodic) Sturm–Liouville problem.

Proof. Denote by B(a) the circle B(a) = {k : |k− πa| ≤ π
4 } and B(0) = {k : |k| ≤ π

4 }.

Since the function
√
(θ(k) + ϕ′(k))2 − 4 has a simple zero at the point k = 0, and in a

small neighborhood, B(0) of this point has no other zeros, then for k ∈ B(0), the following
equality holds: √

(θ(k) + ϕ′(k))2 − 4 = k G0(k),

and
|G0(k)| ≥ C > 0 for k ∈ B(0).

Taking into account the formula (8), we obtain

U(x) = −i
1∫

0

h(x, ξ, 0)
G0(0)

f (ξ) d ξ.

By Lemma 1 from [1] for x, ξ ∈ [−b, b]

h(x, ξ, 0) = C0v(x, 0) v(ξ, 0).

Consequently,

U(x) = −i
C0 v(x, 0)

G0(0)

1∫
0

v(ξ, 0) f (ξ) d ξ = b0 f0v(x, 0), (9)

where
b0 = −i

C0

G0(0)
. (10)

Proposition 3 together with the Formulas (9) and (10) implies the validity of the theo-
rem.

3.2. The Case When the Left End of the Spectrum σ(H0) of the Hill Operator H0 Is Negative

Let us now consider the case when the left end of the spectrum σ(H0) of the Hill
operator H0 is negative on the complex plane of the variable λ and coincides with the
point (−λ0).

It is known [17] that (−λ0) = (−λ2
0) is the smallest and simple eigenvalue of the

Sturm–Liouville problem (5).
If the left end of the spectrum σ(H0) of the Hill operator H0 coincides with the point

(−λ0), then a part of the spectrum of the Hill operator H0 on the complex plane of the vari-
able k is located on the imaginary axis. Then, the highest point of the spectrum on the imagi-

nary axis will be iλ0, λ0 > 0. At the point iλ0, the function
√

G(k) =
√
(θ(k) + ϕ′(k))2 − 4

has a branch point, since the point iλ0 is a simple zero of the function G(k) [17].
Let us cut the complex plane of the variable k along the vertical ray {k : Re k = 0,

Im k ≤ α0} and denote the resulting domain by C′.
Let us put

m1(k) =
ϕ′(k)− θ(k)

2ϕ(k)
+

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,
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m2(k) =
ϕ′(k)− θ(k)

2ϕ(k)
−

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,

where the branch of the root is determined by the condition
√

F(k)2 − 4 > 0 for k = 0.
Note that the function

√
F(k)2 − 4 has branching only at the ends of the lacuna [17],

so m1(k) and m2(k) are single-valued in C′. Then, for any k, Im k > 0

ψ1(x, k) ≡ θ(x, k) + m1(k) ϕ(x, k) ∈ L2(−∞, 0),

ψ2(x, k) ≡ θ(x, k) + m2(k) ϕ(x, k) ∈ L2(0,+∞).
(11)

We define Green’s function of Equation (3) for k from the upper half-plane

Γ(x, ξ, k) =


ψ1(ξ,k)ψ2(x,k)
m2(k)−m1(k)

for ξ < x,

ψ1(x,k)ψ2(ξ,k)
m2(k)−m1(k)

for ξ > x,

and, taking into account the identities (11) and the equality

θ(x, k) ϕ′(x, k)− θ′(x, k) ϕ(x, k) = 1, x ∈ R,

we obtain

Γ(x, ξ, k) =


− h(x,ξ,k)√

F(k)2−4
+ 1

2 (θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) for ξ < x,

− h(x,ξ,k)√
F(k)2−4

+ 1
2 (θ(x, k) ϕ(ξ, k)− θ(ξ, k) ϕ(x, k)) for ξ > x,

(12)

where
h(x, ξ, k) = ϕ(k) θ(x, k) θ(ξ, k)− θ′(k) ϕ(ξ, k)ϕ(x, k)+

+ ϕ′(k)−θ(k)
2 (θ(ξ, k) ϕ(x, k) + θ(x, k) ϕ(ξ, k)).

The solution to problems (1) and (2) has the form

u(x, t) = − 1
2π

∫
Im k=a

∫ 1

0
Γ(x, ξ, k) f (ξ) e−iktdξ dk, (13)

where a is some positive constant.
Note that Green’s function Γ(x, ξ, k) for every x, ξ ∈ [−b, b] continues analytically to C′.
To study the properties of the (13) integral, we introduce the following notation:

L+ = {k : Im k = a, a > λ0}, Lλ0−ε = {k : Im k = λ0 − ε}⋂C′, and ql is the segment
Re k = lπ + π

3 , λ0 − ε ≤ Im k ≤ a, l is any real number.
Consider the integral

J1 ≡ −
∫

L+

∫ x

0
(θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) f (ξ) e−iktdξ dk, x ∈ [−b, b]. (14)

From the relations (4), it follows that∫
ql

∫ x

0
(θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) f (ξ) e−iktdξ dk→ 0 as |l| → ∞,

moreover, |l| can tend to infinity in any way, so in (14), one can replace the line L+ by Lλ0−ε.
In addition, according to (4), we have

θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k) = S1(x, ξ, k) + S2(x, ξ, k),

where
S1(x, ξ, k) =

1
k

cos kξ sin kx− 1
k

cos kx sin kξ
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is an entire function k ∈ C′ for each x, ξ ∈ [−b, b], and the function S2(x, ξ, k) for k → ∞
uniformly in x, ξ ∈ [−b, b] has the form

S2(x, ξ, k) = O
(
|k|−2e|τ|(x+ξ)

)
.

Thus,
J1 = J(1)1 + J(2)1 + J(3)1 ,

where
J(1)1 = −

∫
Lλ0−ε

∫ x

0

1
k

cos kξ sin kx f (ξ) e−iktdξ dk,

J(2)1 =
∫

Lλ0−ε

∫ x

0

1
k

cos kx sin kξ f (ξ) e−iktdξ dk,

J(3)1 = −
∫

Lλ0−ε

∫ x

0
S2(x, ξ, k) f (ξ) e−iktdξ dk.

Let us explore these integrals. Putting k = σ + i(λ0 − ε) with k ∈ Lλ0−ε, we obtain

J(1)1 = −
∫ +∞

−∞

1
σ + i(λ0 − ε)

sin(σ + i(λ0 − ε))x e−iσ te(λ0−ε)tΦ(σ, x) dσ, x ∈ [−b, b], (15)

where

Φ(σ, x) ≡
∫ x

0
cos(σ + i(λ0 − ε))ξ f (ξ) dξ =

1
2

∫ x

0
eiσξ e−(λ0−ε)ξ f (ξ) dξ +

1
2

∫ x

0
e−iσξe(λ0−ε)ξ f (ξ) dξ. (16)

Let us examine the first term in (16). Consider the function

w(x, ξ) =

{
e−(λ0−ε)ξ f (ξ) for ξ < x,

0 for ξ > x.

For any fixed x ∈ [−b, b], we have w ∈ L2(−∞,+∞) and

||w; L2|| =
(∫ x

0
e2(λ0−ε)ξ f 2(ξ) dξ

)1/2
≤
(∫ 1

0
e2(λ0−ε)ξ f 2(ξ) dξ

)1/2

≤ C1|| f ; L2||,

where C1 does not depend on f and x.
For all x ∈ [−b, b], due to the Parseval equality for the Fourier transform, we have

||
∫ x

0
eiσξ e−(λ0−ε)ξ f (ξ) dξ; L2(Rσ)|| =

√
2π||w; L2(Rξ)|| ≤ C1

√
2π|| f ; L2||.

The second term of the equality (16) is studied in a similar way. Therefore, for any
fixed x ∈ [−b, b],

||Φ(σ, x); L2(Rσ)|| ≤ C2|| f ; L2||,

where C2 does not depend on f and x.
In article [18], an elegant method is presented that allows, in the case of a periodic

potential q(x), to obtain a very simple Parseval formula for the problem in the entire space.
By the Cauchy–Schwartz inequality and the last inequality, from (15), we obtain

|J(1)1 | ≤ C3 e(λ0−ε)t|| f ; L2||,

where C3 depends only on b.
In the same way, we obtain

|J(2)1 | ≤ C4 e(λ0−ε)t|| f ; L2||,

where C4 depends only on b.
To investigate J(3)1 , we note that
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J(3)1 = −
∫

L−

∫ x

0
S2(x, ξ, k) f (ξ) e−iktdξ dk =

= −
∫ +∞

−∞

1
σ + i(λ0 − ε)

e−iσ te(λ0−ε)t

(∫ x

0
f (ξ)O

(
e(λ0−ε)(x+ξ)

|σ + i(λ0 − ε)|

)
dξ

)
dσ.

It is easy to show that∣∣∣∣∣
∫ x

0
f (ξ)O

(
e(λ0−ε)(x+ξ)

|σ + i(λ0 − ε)|

)
(λ0 − ε)ξ

∣∣∣∣∣
2

≤ C
|σ + i(λ0 − ε)|2 || f ; L2||.

By the Cauchy–Schwartz inequality, we obtain the estimate

|J(3)1 | ≤ C5 e(λ0−ε)t|| f ; L2||,

where C5 depends only on b.
From the estimates for J(1)1 , J(2)1 , and J(3)1 , it follows that

|J1| ≤ C(b) e(λ0−ε)t|| f ; L2||.

Likewise, for the integral

J2 ≡ −
∫

L+

∫ 1

x
(θ(x, k) ϕ(ξ, k)− θ(ξ, k) ϕ(x, k)) f (ξ) e−iktdξ dk, x ∈ [−b, b],

we obtain the estimate
|J2| ≤ C(b) e(λ0−ε)t|| f ; L2||.

Thus, we learn that the integrals J1 and J2 decrease exponentially as t→ ∞.
Let us choose the number ε > 0 in two ways:

(i) ε = λ0
2 , if on the imaginary axis, except for the point iλ0, there are no other branch

points of the function
√

G(k) =
√
(θ(k) + ϕ′(k))2 − 4;

(ii) ε = d
2 , where d > 0 is the distance from the point iλ0 to the nearest branch point of the

function
√

G(k) =
√
(θ(k) + ϕ′(k))2 − 4 located on the imaginary axis.

Denote by lλ0 the contour going from the point i(λ0 − ε) along the left edge of this cut
to the point iλ0, and then from the point iλ0 along to the right edge of the cut up to the
point i(λ0 − ε).

Green’s function is defined by formula (12), where the single-valued branch of the

root
√

G(k) =
√
(θ(k) + ϕ′(k))2 − 4 is determined by the condition

√
G(k)

∣∣∣
i(λ0+ε)

> 0.

Let M ≡ Lλ0−ε
⋃

lλ0 .

Proposition 4. For the solution of the problems (1) and (2), the following representation is valid:

u(x, t) =
1

2π
JM + v2(x, t),

where the function v2(x, t) for x ∈ [−b, b] and t > 0 satisfies the estimate

|v2(x, t)| ≤ C(b) e(λ0−ε)t|| f ; L2||.

Proof. This statement is proved similarly to the proof of Proposition 1 from [1], where JM
is considered instead of JL from [1], and k = σ + i(λ0 − ε) with k ∈ Lλ0−ε.

Proposition 5. For any t > 0 and x ∈ [−b, b] we have the estimate

|JLλ0−ε
| ≤ C(b) e(λ0−ε)t|| f ; L2||.
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Proof. The proof of this statement is similar to the proof of Proposition 2 from [1], where
JLλ0−ε

is considered instead of JL3 from [1], and k = σ + i(λ0 − ε) with k ∈ Lλ0−ε.

Theorem 2. If the left end of the spectrum σ(H0) of the Hill operator H0 is negative on the
complex plane of the variable λ and coincides with the point (−λ0), then the solution of the Cauchy
problems (1) and (2) for x ∈ [−b, b] and t→ ∞ has the form

u(x, t) =
eλ0t
√

t
·
(
b0 fλ0 v(x, 0) + v(x, t)

)
,

where

fλ0 =

1∫
0

v(ξ, 0) f (ξ) d ξ and b0 = ie−
3
4 iπ C0

π g(iλ0)
· Γ
(

1
2

)
,

while the function v(x, t) for |x| < b and t→ ∞ satisfies the estimate

|v(x, t)| ≤ C(b) t−1|| f ; L2(R)||.

The function v(x, 0) is obtained from the normalized eigenfunction v̂(x, 0) of the
periodic Sturm–Liouville problem (5) corresponding to the eigenvalue λ0 = λ2

0, if it is
continued along the entire axis in a periodic way.

Proof. To complete the proof of the theorem, by virtue of Propositions 2 and 3, it remains
to study the following integral:

Jlλ0
=
∫

lλ0

1∫
0

h(x, ξ, k)√
(θ(k) + ϕ′(k))2 − 4

f (ξ) e−iktdξdk.

Let B(λ0) = {k : |k − iλ0| ≤ 3
2 ε}. It is easy to show that for k ∈ B(λ0) ∩ C′, the

following representation holds:√
G(k) =

√
k− iλ0 · g0(k), |g0(k)| ≥ c > 0,

and the branch of the root
√

k− iλ0 is selected from the condition of its positivity for
positive values of k− iλ0.

For k ∈ lλ0 we set k = iτ, where λ0 − ε ≤ τ ≤ λ0. It is easy to see that if k belongs to
the left side of the contour lλ0 , then the following equality holds√

k− iλ0 =
√

i(τ − λ0) = e
3
4 iπ
√

λ0 − τ,

and if k belongs to the right side of the contour lλ0 , then the root has the opposite sign. The
values of the function g0(k) coincide at the corresponding points of the left and right parts
of the contour lλ0 .

Considering that τ ∈ [λ0 − ε, λ0] is on the left side of the contour, and τ ∈ [λ0, λ0 − ε]
on the right side of the contour, we learn that

Jlλ0
= 2ie−

3
4 iπ

1∫
0

λ0∫
λ0−ε

h(x,ξ,iτ)√
λ0−τ g0(iτ)

f (ξ) etτ dτ dξ

= 2ie−
3
4 iπ

1∫
0

f (ξ)

(
λ0∫

λ0−ε

h(x,ξ,τ)√
λ0−τ g0(iτ)

etτ dτ

)
dξ.

(17)

Making the change of variables λ0 − τ = y into the integral (17), we obtain

Jlλ0
= 2ie−

3
4 iπeλ0t

1∫
0

f (ξ)

 ε∫
0

h(x, ξ, i(λ0 − y))
√

y g0(i(λ0 − y))
e−ty dy

dξ. (18)
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To study the inner integral in (18), we use Watson’s lemma [19], then
ε∫

0

h(x,ξ,i(λ0−y))√
y g0(i(λ0−y)) e−ty dy =

= 1√
t
Γ
(

1
2

)
h(x,ξ,iλ0)

g0(iλ0)
+ O

(
1

t3/2 Γ
( 3

2
)( h(x,ξ,i(λ0−y))

g0(i(λ0−y))

)′
y

∣∣∣∣
y=0

)
as t→ ∞.

(19)

Now, substituting (19) into (18), we obtain

Jlλ0
= 2ie−

3
4 iπeλ0t

 1√
t
Γ
(

1
2

)
1

g0(iλ0)

1∫
0

f (ξ)h(x, ξ, iλ0) dξ +

1∫
0

O
(

t−3/2
)

f (ξ) dξ

 as t→ ∞. (20)

Arguing in the same way as in the proof of Lemma 1 from [1], we can show that

h(x, ξ, iλ0) = C0v(x, 0) v(ξ, 0), −b ≤ x, ξ ≤ b, (21)

where the constant C0 is determined depending on which of the conditions A1, A2, A3 is
satisfied at the point iλ0.

From (20) and (21), it follows

Jlλ0
= 2ie−

3
4 iπeλ0t 1√

t
Γ
(

1
2

)
C0

g0(iλ0)
fλ0 v(x, 0) +

1∫
0

O
(

t−3/2
)

f (ξ) dξ as t→ ∞. (22)

From Propositions 2 and 3, as well as from (22), the validity of Theorem 2 follows.

4. Applications

In [20], a numerical study of the one-dimensional Schrödinger operator with the
potential q(x) = cos(x) + ε cos(kx) is considered, where ε > 0 and k are irrational. This
governs the quantum wave function of an independent electron within a crystalline lattice
perturbed by some impurities whose dissemination induces long-range order only, which
is rendered by means of the quasi-periodic potential q. In the paper [21], a simple one-
dimensional model of an incommensurable “harmonic crystal” is studied in terms of the
spectrum of the corresponding Schrödinger equation.

We also note papers [22,23], in which the necessity of solving the equations of mathe-
matical physics with variable coefficients is due to the applied problems leading to them.
Such problems lead to topical issues of studying the nonstationary interaction of fields
of various nature, in which one-dimensional problems of the nonstationary interaction of
mechanical and electromagnetic fields are solved.

5. Conclusions

Boundary problems for the second-order hyperbolic equation with an irregular singu-
lar point at infinity were considered in papers [24,25].

Note paper [25], in which the problem of obtaining the asymptotics of solutions of
differential operators in a neighborhood of an irregular singular point is considered, where
we constructed a uniform asymptotics of solutions of linear differential equations with
second-order meromorphic coefficients in a neighborhood of a singular point. There, we
apply the obtained results to the equations of mathematical physics.

In what follows, it is in our interest to generalize the problems (1) and (2), where
instead of Equation (1), we consider the equation

a0(t) utt(x, t)− (p(x) ux(x, t))x + q(x) u(x, t) = 0, (x, t) ∈ R× [0; ∞),

while imposing some conditions on the coefficient a0(t).
In [24], a condition on the coefficient a0(t) is formulated, which is sufficient for the

convergence of power series entering into the quasi-classical asymptotics of solutions. To
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construct the asymptotics of this equation, we can use the method given in this article and
the methods of resurgent analysis, similar to how it was conducted in papers [24,25].
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