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Abstract: This paper considers an unknown functional estimation problem in a regression model
with multiplicative and additive noise. A linear wavelet estimator is first constructed by a wavelet
projection operator. The convergence rate under the pointwise error of linear wavelet estimators is
studied in local Holder space. A nonlinear wavelet estimator is provided by the hard thresholding
method in order to obtain an adaptive estimator. The convergence rate of the nonlinear estimator
is the same as the linear estimator up to a logarithmic term. Finally, it should be pointed out that
the convergence rates of two wavelet estimators are consistent with the optimal convergence rate
on pointwise nonparametric estimation.
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1. Introduction

The classical regression model plays an important role in many practical applications.
The definition of this model is shown by Y; = f(X;) +¢;,i € {1,...,n}. The aim of this
conventional regression model is to estimate the unknown regression function f(x) by observed
data (X1,Y1),..., (Xn, Ys). For this classical regression model, many important and interesting
results have been obtained by Hart [1], Kerkyacharian and Picard [2], Chesneau [3], Reif3 [4],
Yuan and Zhou [5], and Wang and Politis [6].

Recently, Chesneau et al. [7] studied the following regression model

Yi:f<Xi)ui+‘/i,i€ {1,...,1’1}, 1

where (X1,Y1),...,(Xn, Yu) are independent and identically distributed random variables,
f is an unknown function defined on A C R, Uy, ..., U, are n identically distributed
random vectors, X3,..., X, and Vi, ..., V, are identically distributed random variables.
Moreover, X; and U; are independent, U; and V; are independent for any i € {1,...,n}.
The aim of this model is to estimate the unknown function r(x)(r := f?) by the observed
data (X1,Y1),..., (Xu, Ya).

For the above model (1), it reduces to the classical regression model when U; = 1.
In other words, (1) can be viewed as an extension of the classical regression problem. In
addition, model (1) becomes the classical heteroscedastic regression model when V; is
a function of X; (V; = g(X;)). Then, the function r(x)(r := f?) is called a variance function
in a heteroscedastic regression model, which plays a crucial role in financial and economic
fields (Cai and Wang [8], Alharbi and Patili [9]). Furthermore, the regression model (1)
is also widely used in Global Positioning Systems (Huang et al. [10]), Image processing
(Kravchenko et al. [11], Cui [12]), and so on.
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For this regression model, Chesneau et al. [7] propose two wavelet estimators and
discuss convergence rates under the mean integrated square error over Besov space. How-
ever, this study only focuses on the global error of wavelet estimators. There is a lack
of pointwise risk estimation for this model. In this paper, two new wavelet estimators
are constructed, and the convergence rates over the pointwise error of wavelet estimators
in local Holder space are considered. More importantly, those wavelet estimators can all
obtain the optimal convergence rate under pointwise error.

2. Assumptions, Local Hélder Space and Wavelet

In this paper, we will consider model (1) with A = [0,1]. Additional technical
assumptions are formulated below.
e AlY;isbounded foranyi € {1,...,n}.
e A2:X; ~U(0,1).
e A3:U; ~ N(0,1).
*  A4:V; has a moment of order 2.
* Ab:X;and V; are independent forany i € {1,...,n}.
e A6V, = g(X;), where g: [0,1] — Ris known and bounded.

For the above assumptions, it is easy to see that A5 and A6 are reversed. Hence, we

will define the following two sets, H1 and H2, of the above assumptions
H1:={A1,A2,A3,A4,A5},
H2:={A1,A2,A3,A4,A6}.

Note that the difference between H1 and H2 is the relationship between V; and X;.
Since the above assumptions are separated into two sets, H1 and H2; the estimators
of the function r(x) should be constructed under different condition sets, respectively.

This paper will consider nonparametric pointwise estimation in local Holder space.
Now, we introduce the concept of local Holder space. Recall the classic Holder condition
H(R)(0 <6 < 1),

)~ f@)| < Cly—xP,xy e R

Let Oy, be a neighborhood of xp € R and a function space H°(Qy,)(0 < J < 1) be
defined as

HY Q) = {f+ If(y) = f()] < Cly = xI*,x,y € Ox, },

where C > 0 is a fixed constant. Clearly, f € H°(R) must be contained in H’(Qy,).
However, the converse does not hold.

Fors = N+J > 0withé € (0,1] and N € N (the nonnegative integer set), we define
the local Holder space as

H*(Qy,) = {f: f(N) € Hé(QXO)}'

Furthermore, it follows from the definition of H*(Qy,) that H*(Qy,) C L2(R).
In order to construct wavelet estimators in later sections, we introduce some basic
theories of wavelets.

Definition 1. A multiresolution analysis (MRA) is a sequence of closed subspaces {V;}jcz,
of the square-integrable function space L?(R) satisfying the following properties:
(i) V] c Vj+1/
(i) Ujez Vi = L%(R)(the space UjezVj is dense in L2(R));
(iii) f(2-) € Viyrifand only if f(-) € V] for each j € Z;
(iv) There exists ¢ € L?(R) (scaling function) such that {¢(- — k), k € Z} forms an orthonormal
basis of Vo = span{¢(- —k)}.
Let ¢ be a scaling function, and  be a wavelet function such that

{Pj k0 Yjxj > ji k€ Z}
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constitutes an orthonormal basis of L*(R), where j, is a positive integer, §; i = 2% ¢ (2 x — k)

and i = 2%1,11(2]' x — k). In this paper, we choose the Daubechies wavelets. Then for any
h(x) € H*(Qy,), it has the following expansion

h(x) =) aj xdpjx(x)+ Y Y Bistj(x),

kez i>j k€L

where i = (h, §jx), Bjx = (h, ;). Further details can be found in Meyer [13] and Daubechies [14].
Let P; be the orthogonal projection operator from L%(R) onto the space V; with the orthonormal

basis {gbj,k(~) = 2£gb(2f -—k), ke Z}. Then for h(x) € H*(Qx,) and ajx = (h, $; ),

Pih(x) = ) ajxjj(x).

kez

In this position, we give an important lemma, which will be used in later discussions. Here
and after, we adopt the following symbol: A < B denotes A < ¢B for some constant ¢ > 0; A 2 B
means B S A; A ~ B stand for both A S Band B < A.

Lemma 1 (Liu and Wu [15]). If f € H*(Qy,), s > Owiths = N+6(0 < 6 < 1), then
for x € Oy, and j, €N,
(i) sup ¥ ’,Bj,kl/)j,k(x)‘ <27

feHs (Q"o) keZ

(ii)f(x) = kgz 0 kP k(X)+ X Bixik

J2jx kEZ
(iii) sup [f(x) =P f(x)| S 27
e ()

3. Linear Wavelet Estimator

In this section, a linear wavelet estimator is given by using the wavelet method,
and the order of pointwise convergence of this estimator is studied in local Holder space.
Now we define our linear wavelet estimator

i (x) = Y &g ki, k(x), 2)
k
where
A A
Bjx = Y Y k(Xi) — vk, 3)
i-1
E[VZ]277+/2, A5,
KT (20 L (x)dx. A6 4)
Jo 82 (X)), x(x)dx, :

According to the definition of v}, , it is clear that the structure of this linear wavelet
estimator depends on the reverse conditions of A5 and A6. Some of the lemmas needed
in this section and their proofs are given below.

Lemma 2. For model (1), if H1 or H2 hold,

E[&j ] = aj, k- ®)
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Proof. According to the definition of &;, ,

ap
E[&; ] =E = Y Y k(X)) — Uj*,k‘|
i3
=E :le‘Pj*,k(Xl)} — Vjk
=E :V(Xl)u%‘?j*,k(xl)} +2E[f(X1)Uh V1g, 1 (X1)] + E [Vlz(]bj*,k(xl)} — -

Since U; is independent from X; and V;, respectively,

E[f(X1)U1V1¢;, 1 (X1)] = E[WL]E[f (X1) Vaepj, x(X1)].

In addition, condition A3 implies that E[U;] = 0. Then one gets
E[f(X1)U1V1¢;, x(X1)] = 0.
It follows from A5, A2 and A4 that
_Ix
E[VZE[g;,(%1)] = E[V? / 9. (x)dx = E[VE2~ T = o, .

On the other hand, we obtain

2 1 2
E[Vl ‘P]‘*,k(Xl)} =/0 (%) ¢j, k(x)dx = v}, k

with condition A6.
Finally, according to the assumption of A3 and A2,

B[t ] = E[UFJE[(6)91,400)] = [ r()fy () = i
O

. A P . s .
In order to estimate E Haj*'k — &, k }, we need the following Rosenthal’s inequality.

Rosenthal’s inequality Let X, ..., X, be independent random variables such that
E[X;] =0and |X;| < M(i=1,2,...,n),

n n n /2
oE||£ x p} < (Mﬂ £ B+ (£ E[X?])p )m >2;
= i=1 i=1
n p n p/2
(ii)]E[ Y X; } 5(2 E[X}]) ,0<p<2
= i=1

Lemma 3. Let &;, x be defined by (3). If HI or H2 hold and 2 <, thenfor1 < p < oo,

E Ha‘j*,k - “j*,k‘p] Snh (6)

Proof. By (5) and the definition of &;, ,

&,k —aj k|l =

1& .,
; XYZ' ¢j*,k(X1>

_1
n

1 n
El- YoV k(X)) — vj*,k‘|
i=1

n

Y (V7 x( E{Yichj*,k(xi)})‘ = %

i=1

n
Y. Zi

i=1

@)
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with Z; := Y?¢;, k(X;) — E[Y?¢;, x(X;)]. It is clear that E[Z;] = 0. Using the definition of Z;
and Al, there exists a constant ¢ > 0 such that

XX+ [E[YPg4(x)] | < 2 <27,

1Zi| = k(Xi) _E[Yizfpj*,k(xi)” <

When p > 2, according to Rosenthal’s inequality,

,s(MP-ZfE[Z?} (ZE )

i=1 i=1

n

37|

NS
\_/

<Ehy 2y E[Z]+ < ) ®)
i=1

Note that E[72] = Var[Z;] = Var [Y?qu #(X) —E[Y2¢; 1 (X } Var [Y24>] (X )} <
[Y44> a (X )} Furthermore, it follows from Al and the property of ¢;, x that

E[Z}] SE[Y/e? ((x)] S1
Then it can be easily seen that
n p/2
<ZE[Z}D <nt. )
i=1
By (8) and (9), we obtain

p
E ' ] < 25V 20 4 k. (10)

Whenl <p <2,

Hence,

p
; 1 < nk. (1)

e N1 e
sl SE| (312 | = || L2
i=1 i=1
Hence,
15 " ntab), pz2
E{|5‘j*,k_“j*,k|p} SR o P2 (12)
n-z, 1<p<2
This with 2/ < n implies that
B, 4 — a4l S %

O

Now the convergence rate of the linear wavelet estimator is proved in the following.
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Theorem 1. Let r € H*(Qy,) with s > 0. Then for each 1 < p < oo, the linear wavelet estimator
7l (x) defined in (2) with 2+ ~ N satisfies

re;;;gxo){ [#1(x0) — r(x0) ']} 5 751,

Remark 1. Note that n™ %+ is the optimal convergence rate over pointwise error for nonparametric
functional estimation (Brown and Low [16]). The above result yields that the linear wavelet estimator

can obtain the optimal convergence rate.

Proof. The triangular inequality gives
(8[| 0) - rx0) ]} < B[ (30) = Byrx0) ||+ [P r0) — rlxo) ]}

< (B[ 0o~ Bt ']}

+ | P, r(x0) *T(Xo)’~ (13)

==

e The bias term ‘Pj*r(xo) —r(x0)|. According to Lemma 1,

|Pj,r(x0) — r(x0)| S 277 (14)

1

e The stochastic term {E{ Pl (xg) — P;,r(x0) ‘p] } ’. Note that

r P

Sli P A

T’InZW(xO) — Pj*r(xo)’ } =K k; (D‘j*,k — Déj*,k> (Pj*,k(xO)

L[KEA

r P

1
~ 7/
kEA]'*

B[

with % + % = 1. According to the Holder inequality, Lemma 3 and }_ ’cpj*,k' < 272,
keA;,

the above inequality reduces to

: p

E[ 7 (xo) —Pj*r(xo)‘ }
1 1N
p ’ g
=E ) ‘ ik~ Ajk “Pj*,k(xo)’ Y }¢j*,k(x0)‘
kEA kEA]‘*
: iy

S )L EH"‘]'*,k*“j*, ’4?;*, (Xo)HZ2

kEA]‘*

P N5
< <1> ) (2]*> (15)
n n

Combining (13), (14) and (15), one has

{E[ #lin (xo) — r(xo)"’] }l/” <o 4 (2;)2
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. 1
Furthermore, by the given choice 2/+ ~ nz+1,

|—

g (B[ =)l 7 7

O

4. Nonlinear Wavelet Estimator

According to the definition of the linear wavelet estimator, we can easily find that
the scale parameter j, of the linear wavelet estimator depends on the smooth parameter s
of the function r(x) to be estimated, so the linear estimator is not adaptive. In this section,
we will solve this problem by constructing a nonlinear wavelet estimator with the hard
thresholding method.

Now we define our nonlinear wavelet estimator

A (x) = Y ey (x) + Z Z Bkl (il zntyy Wi (x), x € 10,1], 16)

keA;, j=j k

where &;,; is defined by (3),
/3], Z YZU’; K(Xi) — Wik, (17)

A5,
w]',k = { (18)
fo xX)pix(x)dx, A6,

and t, = v/Inn/n, I denotes the indicator function over an event G. The positive integer
j«»j1, and x will be given in Theorem 2.

Remark 2. Compared with the structure of ﬁj,k in Chesneau et al. [7], the definition of .Bj,k in this
paper does not need a thresholding algorithm. In other words, this paper reduces the complexity
of the nonlinear wavelet estimator.

Lemma 4. For model (1), if H1 or H2 hold, then
E[ﬁ;k} = Bjx
Lemma 5. Let Bj,k be defined by (17). If H1 or H2 hold and 2/ < n, then for 1 < p < oo,
E“Bj,k - ,Bj,k|p} Snb
The proof methods of Lemmas 4 and 5 are similar to that of Lemmas 2 and 3, so
the proofs are omitted here. For nonlinear wavelet estimation, Bernstein’s inequality plays
a crucial role.

Bernstein’s inequality Let Xj, ..., X;; be independent random variables such that
E[X;] =0, |X;| < Mand E[X?| = ¢?, then for each v > 0

>0 <2 i
i _Z) >~ eXp _m .
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Lemma 6. Let ‘B]-,k be defined by (17), t, = 4/ % and 2 < - If H1 or H2 hold, then for each
w > 0, there exists a constant x > 1 such that

P(1Bix — Bjjl > xta) S 27

Proof. According to the definition of j ik

Bik — Bixl =

1 & 2 B 1
;l; FYik(Xi) —wix B

1 ¢ 1
~—|n Z Yizlpj,k(Xz) —E n Z Yizlp]k(Xz) ‘
i=1 i=1
1| 1]
=nZOmM&%EM%WMﬂ:n2a
i=1 i=1
with D; = Yizt,bjrk(X,-) - E[Yi2¢] (X;)]. Clearly, E[D;] = 0. Furthermore, by Al and the prop-
erty of ¢, E[D?] = Var[D;] < IE[Y41/12 (X;))] <1and |D;| < 2°.
Note that
5 1|
{|ﬁj,k - ,Bj,ul > Ktn} - {1’[ ZDi > Ktn}.
i=1
Hence,

<mk—@u>mn<P< Y. D,
=1

> Ktn>
Using Bernstein’s inequality, t, = 1/ " and 2/ < <

Ktn 2lnn
<
( > Ktn) ~ eXp{ Kt"z]/z } 1 NS )}

Then one chooses a large enough x > 1 such that

Lo

A 1
P(|Bjx — Bjxl = xtn) < P<n

i=1

O

Theorem 2. Let r € H(Qy,) with s > 0. Then for each 1 < p < oo, the nonlinear wavelet
estimator ?'°" (x) defined in (16) with 2/* ~ nzaeT (s < m)and 2" ~ I satisfies

s/(2s+1)
sup (B[ (v0) ~ )1} < () F(BE) (19)
reHs (Qy,) n

Remark 3. Compared with the linear wavelet estimator, the nonlinear wavelet estimator does not
depend on the smooth parameter of r(x). Hence, the nonlinear estimator is adaptive. More importantly,
the nonlinear estimator can also achieve the optimal convergence rate up to an In n factor.
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Proof. By the definition of 7/ (x) and #/°" (x), one has
Pu (x0) = r(x0) = [?li”(x ) = Pj,r(x0)] = [r(x0) — Py, 17(x0)]

+ Z Z (51,k {1Bx|>xta} .Bj,k)lpj,k(xo)'

j=ixk

Hence,

==

{E[|72" (x0) — r(x0)|"]}

I = {E[ i (x0) — Pf*r<x0)’p} } ’

T = |Pjy4ar(x0) — r(x0)|,

J1 ’ %
:{ KZ = \(@fkf{ﬁ;,am}ﬁf”‘>1”"/k(x°)‘) ” |

e For Ty. It follows from (15) and 2+ ~ Iz (s < m) that

le{E[

e For T». Using Lemma 1 and 2! ~ L, one gets

ST+, +Q,

where

==

; 1/2
plin P % < 2" < T — =T
" (x0) — Pj*”(xo) ~\5 Snowmrl < st (20)

1 Inn\ =
= |Pj 117(x0) — r(x0)| S 27 ]1S<<nn> < (nn) o (21)

n n

Then equality (19) will be proven if we can show

s/(2s+1)
Qs ) H(BE)

According to Holder inequality,

i Y
Q§{<h—j*+1>*"1ZE[(Z\(ﬁfk{mkmn} 51/)%’(0)\)” -

J=Tx ke

It is obvious that

= Bk = Bial [ Ly ottt <0y + Ligatmtn s> 1]
+ 1Bjx

1Bl (1842t — Pik

[I{lﬁj,k\<xtn,|ﬁj,k\>zm} + I{\ﬁj,k|<«tn,\ﬁ,~,k\sz«tn}}~

Moreover,

{1B3al = Bl < b < {1Bia =Bl > 5,

Kty
il

{|Bj,k| < &ty |Bjxl > ZKtn} - {lﬁj,k —Bik

A Kt
Bik — Bixl = |Bixl — 1Bjxl = 2”
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Hence, one can obtain that

QS (h—jx+ 1)1_%((31 + Q2+ Qs3),

where
Jil p 1/p
Q= {]_Z]*E[(kg] ‘:Bj/k - ﬁ]}k 1{|B/,kﬁ/,k|>m2"}‘lpjfk(x0)‘> ] } ’
1 p1y /P
Q = E A-, - Bi I , xtn . (x )
2 {Jg [(kgj‘ﬁ]k 'Bjk’ {Bix|=% }’lp}k 0>‘) ] }
Jil
Qs = 2 2 ‘ﬁf/k’1{|ﬁ]-,k|§2mn} le,k(xo)]-
J=Jx k€A

e For Q;. By Holder inequality (% + % =1)and % ‘le,k(xo)‘ < 2072

E {( D ‘Bj,k —Bik
keA;

P
1{|/§j,k*,5]',k|>%} ’wj,k(xO) ‘) ]

4
R 1/p 1/p'
- <k§ ik = Bir 115,120y [0 50)| a0 )]
J

i p/p'
<; ‘le,k(xo) ‘)

JP

p By
W8> ‘l’bff"(x(’) ‘ 2% (22)

A p
=" kg. ‘ﬁj'k =Bk 118 pial >} “/’j,k(xo)
]

<E| Y

_kGAj

Bik— Bijk

Furthermore, using the Cauchy-Schwarz inequality, Lemmas 5 and 6, one has

EHBM ~ i pl{\ﬁf,k—ﬁf,kb%}}
1/2 ‘
< <E[ Bix —ﬁj,k‘zpD / (E[I{|ﬁj,kfﬁj,k|>’“7”}})1/z <nb2 ¥ (23)

This with (22) yields that

P
E[(Z "Bj'k_ﬁj'k‘l{|3j,k—ﬁj,k|>’%"}‘wfrk(xo)‘
keA;
Trllp i _po_wi
§22E[‘ﬁ]’k_13],k‘ I{|Bj,k7ﬁj,k|>%}:| 51’[ 22 222' (24)
Hence,
) 1 ‘ . 1
J1 i wi \ ¥ J1 . w P ‘ 1 i b
Qs (Zzlzl’n§221> = (ng 2 2](32)) < (f%%%)p _ <2n ) ’
I =

where « is chosen to be large enough such that w > p in Lemma 6. This with the choice
: 1
2+ ~ nti (s < m) shows that

QuSn T S, (25)
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e For ;. Let us first define

2j' N (ﬁ)l/(%-i-l).

. 1 . .
Clearly, 2/ ~ nzm1 <2/ ~ ()" < 20t 1 Note that

i | A p1y 1P
Q= {ZE L ‘ﬁj,k*ﬁj,k I{ﬁjlk|>’f§"}‘4’j,k(x0)‘> ] }
= keAj

i : p7y V/p
< {Z El[ ) ‘Bj,k_ﬁj,k ‘le,k(Xo)‘) ] }
=i keA;

1 R ‘IB],‘ s
1 L ENL (B Bia i)

1/p

kEA]‘

Similar to the argument of (15), one gets

) p7 N /P ) 1

/ / ) ! 2/ 12

ZE 2 ‘;B]k /3]/ ‘%k X0 ‘ S Z n-z2 N <n> . (26)
j=jx keA; j=jx

1 =1)and Lemma 1

1y
Py

. ‘,Bj,k‘ ’
E({ Y |Bix—Bjx T‘#’j,k(xo)‘
kEAj n

[ 1/p 1/p P

B

——

On the other hand, by Hélder inequality (4 +

=E

ﬁjk“ n "/’J}k(xO)‘ ﬁ’%’,k(xo)
keA; /p tn/p

L i "
<E 5 ,Bj,k‘ T"Pj,k(xo)‘ Y T’lpj,k(xo)‘

_kEAj keA]

< rz’p/zf.n”"Z’j”S < (lnn)’%Z’”"s.
Hence,

. 1/p
J1 . )
[ y (1nn)52—1r751 < (Inn) 227", 27)
]

= +1

Combing (26), (27) and 2/ ~ ~ ( I:Zn)l/ (25+1) , one gets

g\ 1/2
j s/(2s+1)
Q< <zn> + (Inn) 22775 < (ln”) . (28)

n

e  For Q3. Note that

(E+ Z )ke,\ ‘ﬁ]k‘ {1Bjx| <2xtn }

=j  j=i"+1

¥jx(xo ‘ =: Q31 + Q2.
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It is easy to show that

i

j
Qa=Y Y ’,Bj,k

I{ |Bj|<2xtn } ‘lpj,k(xo) l

< / 2Kty < / i, < i /Inn
SY L B |eielxo)| S L 28t S 204/ 25. 29)

In addition,

Jil
Qn= Y ) ’.Bj,k

I{ || <2xctn } ‘le,k(xo) ’

j=7+1kEA;
J1 1 ) ,
—]s —71'Ss
<Y ) ‘,Bj,kl/’j,k(xo)‘ < ) 2 g2 (30)
j=f+1 ke, =711

Then according to (29), (30) and 2/ ~ () 1/(2s+1)/ one can obtain

, , s/(2s4+1)
Qggz’z\/h‘fjuz—fsg(h‘,jq) . (31)

Furthermore, together with (25) and (28), this yields

s s/(2s+1) s/(2s+1)
Q< (Inn)' 7 <n + (m) N <1nn> )

n
s/(2s+1)
< (lnn)l_% (lnn) ) (32)

Finally, it follows from (20), (21) and (32) that

=

7

sup  {E[[P2" (xp) — r(x0)[P] }7 < (Inm)' "7 (n

reH (Qx,)
which completes the proof of Theorem 2. [

5. Conclusions

This paper studies the pointwise estimations of an unknown function in a regression
model with multiplicative and additive noise. Under some different assumptions, linear
and nonlinear wavelet estimators are constructed. It is clear that those wavelet estimators
have diverse forms with different conditions. The convergence rates over the pointwise
risk of two wavelet estimators are proposed by Theorems 1 and 2. It should be pointed out
that the linear and nonlinear wavelet estimators can all obtain the optimal convergence rate
of pointwise nonparametric estimation. More importantly, the nonlinear wavelet estimator
is adaptive. In other words, the conclusions of asymptotic and theoretical performance are
clear in this paper. However, it is a difficult problem to give numerical experiments, which
need more investigations and new skills. We will study it in the future.
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