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Abstract: In this paper, we study the properties of ε-Kenmotsu manifolds if its metrics are ∗η-Ricci-
Yamabe solitons. It is proven that an ε-Kenmotsu manifold endowed with a ∗η-Ricci-Yamabe soliton
is η-Einstein. The necessary conditions for an ε-Kenmotsu manifold, whose metric is a ∗η-Ricci-
Yamabe soliton, to be an Einstein manifold are derived. Finally, we model an indefinite Kenmotsu
manifold example of dimension 5 to examine the existence ∗η-Ricci-Yamabe solitons.
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1. Introduction

In 1969, Takahashi [1] introduced an almost contact manifold equipped with an as-
sociated indefinite metric and explored some geometrical properties of almost contact
manifolds (particularly, Sasakian manifolds) with indefinite metrics [2]. Later on, in 1972,
Kenmotsu established a new class of almost contact manifold known as Kenmotsu mani-
folds [3]. A Kenmotsu manifold admitting an indefinite metric is termed as an ε-Kenmotsu
manifold, which was proposed by De and Sarkar [4] and its geometrical properties were
studied by several researchers, for instance [5–9]. Since the index of a metric generates
variety of vector fields such as space-like, time-like and light-like vector fields, therefore
the study of indefinite structures on manifolds becomes very interesting and of great
importance, which attracts the researchers from different research areas.

In response to his own work on Ricci flow, Hamilton [10] defined Yamabe flow on a
Riemannian manifold M as:

r g +
∂

∂t
g = 0,

where g(0) = g0; g, r and t denote the Riemannian metric, the scalar curvature of g
and the time, respectively. Notice that the Yamabe flow coincides with the Ricci flow
( ∂

∂t g + 2S = 0) for dim M = 2, where S is the Ricci tensor of M, but in case of dimM > 2
they differ. Extending the notion of Ricci flow to a nonlinear PDE which involves the
Riemann curvature tensor R, the Riemann flow ( ∂

∂t G + 2R = 0, where G = 1
2 g� g, for �

the Kulkarni–Nomizu product) has very similar properties to that of the Ricci flow [11]. If
n ≥ 3, then the Riemann flow of the type ∂G

∂t = αR + β ∂G
∂t G, where G be the determinant of

the metric g, with α = 2(n− 2) and β = 1
n−1 , determines a standard Ricci flow ∂

∂t g+ 2S = 0.
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The Ricci, Yamabe and Riemann solitons correspond to self-similar solutions of the
Ricci, Yamabe and Riemann flows and are given respectively by [12,13]

£V g + 2λg + 2S = 0,

£V g = 2(r− λ)g,

and
£V g� g + 2R = 2λG,

where £V represents the Lie derivative operator along the smooth vector field V (called
soliton vector field) on M, λ ∈ R (called soliton constant of M) and R represents the set of
real numbers. Recently, Blaga [14] studied almost-Riemann solitons (V, λ) in a Riemannian
manifold and stablished their relation to almost-Ricci solitons. For a solenoidal vector
field V, the Riemann soliton on an n-dimensional Riemannian manifold (M, g), n ≥ 3, the
soliton (V̄, λ̄), where V̄ = (n− 2)V and λ̄ = (n− 1)λ defines a Ricci soliton.

As a generalization of Ricci soliton, the notion of η-Ricci soliton was introduced by
Cho and Kimura [15]. This notion has also been studied in [16] for Hopf hypersurfaces in
complex space forms. An η-Ricci soliton is a tuple (g, V, λ, µ) satisfying the equation

(£V g)(F1, F2) + 2S(F1, F2) + 2λg(F1, F2) + 2µη(F1)⊗ η(F2) = 0,

∀ F1, F2 ∈ X(M), where λ, µ ∈ R. Here X(M) refers to the set of all smooth vector fields
of M.

In [17], authors defined the notion of Ricci–Yamabe flow of type (α, β) on M as:

∂

∂t
g(t) + βg(t)r(t) + 2αS(g(t)) = 0, g(0) = g0,

for some scalars α and β on M.
A solution to the Ricci–Yamabe flow is called Ricci–Yamabe soliton in case it depends

only on one parameter group of diffeomorphism and scaling. A Riemannian manifold M is
said to have a Ricci–Yamabe soliton [18] if g satisfies

(£V g)(F1, F2) + 2αS(F1, F2)− (βr− 2λ)g(F1, F2) = 0,

where α, β, λ ∈ R.
The Riemannian manifold M is said to have an η-Ricci–Yamabe soliton [19] if g satisfies

(£V g)(F1, F2) + 2αS(F1, F2)− (βr− 2λ)g(F1, F2) + 2µη(F1)η(F2) = 0,

where £V , α, β, λ, µ, r are defined earlier.
The above equation with µ = 0 infers that M has a Ricci–Yamabe soliton of type (α, β).

Note that Ricci–Yamabe solitons of type (1, 0), (α, 0), (0, 1) and (0, β) are Ricci solitons,
α-Ricci solitons, Yamabe solitons and β-Yamabe solitons, respectively.

In 1959, Tachibana [20], proposed the concept of ∗-Ricci tensor on almost-Hermitian
manifolds, and this concept gained wide importance in the fields of mathematics and
physics. Further, in the non-flat complex space forms, Hamada [21] defined and studied
the ∗-Ricci tensor of real hypersurfaces, while in contact metric manifolds ∗-Ricci tensor
was defined by Blair [22].

M is said to have a ∗η-Ricci–Yamabe soliton (g, V, λ, µ, α, β) if the following equation
holds [23]:

(£V g)(F1, F2) + 2αS∗(F1, F2) + (2λ− βr)g(F1, F2) + 2µη(F1)η(F2) = 0, (1)

where
S∗(F1, F2) = g(Q∗F1, F2) = Trace{φ ◦ R(F1, φF2)}.
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Here φ is a tensor field of type (1, 1), S∗ is the ∗-Ricci tensor, Q∗ is the ∗-Ricci operator.
(g, V, λ, α, β) is expanding, steady or shrinking if λ > 0, =0 or < 0, respectively. For more
details (c.f., [24–36]).

In 1970, Pokhariyal and Mishra [37] first defined the W2-curvature tensor and they
studied its physical and geometrical properties. The W2-curvature tensor possesses prop-
erties almost similar to the Weyl projective curvature tensor. Thus we can very well use
W2-curvature tensor in various physical and geometrical spheres in place of the Weyl pro-
jective curvature tensor. The W2-curvature tensor has also been studied by various authors
in different structures such as Mallick and De [38], Pokhariyal [39,40], Shaikh, Matsuyama
and Jana [41], Zengin [42] and many others.

As a weaker notion of locally symmetric manifolds, Takahashi [43] introduced the
notion of locally φ-Symmetric Sasakian manifolds. In 2008, De [44] studied φ-Symmetric
Kenmotsu manifolds and obtained some interesting results of this manifold. Recently,
the notion of φ-Ricci Symmetry was studied by Shukla and Shukla [45] in the context of
Kenmotsu manifolds.

In this paper, we have studied the properties of ε-Kenmotsu manifolds with ∗η-Ricci–
Yamabe solitons. Throughout the manuscript, we denote an n-dimensional ε-Kenmotsu
manifold by Mn(ε). We arrange our work as follows: In Section 2, we have given some
preliminary results and basic definitions of Mn(ε). Section 3 is concerned with the study
∗η-Ricci–Yamabe solitons on Mn(ε), and derives some interesting results of Mn(ε). Also,
the study of ∗η-Ricci–Yamabe solitons in Mn(ε) admitting Codazzi-type and cyclic par-
allel Ricci tensors is illustrated in Section 3. Section 4 is concerned with the study of
W2-curvature tensor satisfying certain conditions on Mn(ε) admitting ∗η-Ricci–Yamabe
solitons. The geometrical properties of φ-Ricci symmetric ε-Kenmotsu manifolds admit-
ting ∗η-Ricci–Yamabe solitons are studied in Section 5. Finally, we construct a non-trivial
example of five-dimensional ε-Kenmotsu manifold to prove some of our results.

2. Preliminaries

An odd-dimensional manifold M of class C∞ is termed as an ε-almost contact metric
manifold [2] if there exist φ, ξ, η and g on M, respectively known as a tensor field of type
(1, 1), (1, 0)-type vector field, 1-form and an indefinite metric g, satisfying

η(ξ) = 1, φ2F1 = −F1 + η(F1)ξ, g(ξ, ξ) = ε, η(F1) = εg(F1, ξ), (2)

g(φF1, φF2) = g(F1, F2)− εη(F1)η(F2), ∀F1, F2 ∈ X(M). (3)

If the structure vector field ξ is timelike or spacelike, then ε = −1 or ε = 1, respectively.
If the exterior derivative operator d of g satisfies dη(F1, F2) = g(F1, φF2), then M becomes
an ε-contact metric manifold, then (2) implies that

φξ = 0, rank(φ) = n− 1, η(φF1) = 0, (4)

where n = dimM. Let

(∇F1 φ)(F2) = −g(F1, φF2)ξ − εη(F2)φF1, (5)

where ∇ refers to the Levi-Civita connection. Then the manifold M satisfying (5) is named
as ε-Kenmotsu manifold of dimension n [44]. From the last equation, we infer that

∇F1 ξ = ε(F1 − η(F1)ξ). (6)

From the above equations, we can easily conclude that Mn(ε) satisfies the following:

(∇F1 η)F2 = g(F1, F2)− εη(F1)η(F2), (7)

R(F1, F2)ξ = η(F1)F2 − η(F2)F1, (8)
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R(ξ, F1)F2 = η(F2)F1 − εg(F1, F2)ξ, (9)

R(F1, ξ)ξ + F1 − η(F1)ξ = 0, (10)

which after contraction gives

S(F1, ξ) + (n− 1)η(F1) = 0, (11)

where R, S and Q represent the curvature tensor, the Ricci tensor and the Ricci operator,
respectively. For ε = 1, Mn(ε) reduces to a usual Kenmotsu manifold. Throughout the
manuscript, we denote an n-dimensional ε-Kenmotsu manifold endowed with a ∗η-Ricci–
Yamabe soliton (g, V, λ, µ, α, β) by (Mn(ε), g, V, λ, µ, α, β).

From (6) and the definition of Lie derivative, we get

(£ξ g)(F1, F2) = 2ε{g(F1, F2)− εη(F1)η(F2)} (12)

for any F1, F2 on Mn(ε).

Definition 1. If the Ricci operator Q of Mn(ε) is non-zero and satisfies

g(QF1, F2) = lg(F1, F2) + mη(F1)η(F2),

where l and m are smooth functions on Mn(ε), then Mn(ε) is termed as an η-Einstein manifold. If
m = 0, then Mn(ε) becomes Einstein manifold.

Lemma 1 ([5]). S∗ in Mn(ε) satisfies

S∗(F1, F2) = S(F1, F2) + η(F1)η(F2) + ε(n− 2)g(F1, F2), (13)

for any F1, F2 on Mn(ε).

3. ε-Kenmotsu Manifolds Admitting ∗η-Ricci–Yamabe Solitons

Let the metric g of Mn(ε) be a ∗η-Ricci–Yamabe soliton (g, ξ, λ, µ, α, β). Then (1)
and (12) lead to

αS∗(F1, F2) = (ε + λ− βr
2
)g(F1, F2)− (µ− 1)η(F1)η(F2), (14)

provided α 6= 0.
By employing (13), (14) leads to

S(F1, F2) = A1g(F1, F2) + A2η(F1)η(F2), (15)

where A1 = −[ε(n− 2) + 1
α (ε + λ− βr

2 )] and A2 = −[1− 1
α (1− µ)].

Putting F2 = ξ in (15) and using (2) and (3), we find

S(F1, ξ) = A3η(F1), (16)

where A3 = εA1 + A2 = −n + 1− ε
α (λ + εµ− βr

2 ) and α 6= 0.
From (15) we also have

QF1 = A1F1 + εA2η(F1)ξ =⇒ Qξ = εA3ξ. (17)

In view of (11) and (16), it follows that

λ + εµ =
βr
2

. (18)
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On contracting (15) and using the values of A1, A2, we obtain

r = −ε(n− 1)
[
n− 1 +

1− µ

α

]
, (19)

where µ and α( 6= 0) are constants. Thus, by virtue of (15), (18) and (19), we conclude:

Theorem 1. (Mn(ε), g, ξ, λ, µ, α, β) is an η-Einstein manifold. Furthermore, the scalar curvature
of Mn(ε) is constant and λ + εµ = βr

2 .

Particularly, if we take µ = 0 and α( 6= 0) ∈ R, then the ∗η-Ricci–Yamabe soliton
reduces to the ∗-Ricci–Yamabe soliton. From Equations (15), (18) and (19), we find that
S + [ε(n− 2) + ε

α ]g + (1− 1
α )η ⊗ η = 0 and λ = βr

2 = − εβ(n−1)[1+α(n−1)]
2α . Thus, we have

Corollary 1. An Mn(ε) admitting a soliton (g, ξ, λ, α, β) is an η-Einstein manifold and the soliton
(g, ξ, λ, α, β) on Mn(ε) is concluded as follows:

Values of ε Values of α Conditions for soliton to be expanding, shrinking or steady

ε = 1
(i) α > 0

(ii) α < 0

(i) soliton is expanding, shrinking or steady if β <, > or
= 0, respectively.
(ii) soliton is expanding, shrinking or steady if β >, < or
= 0, respectively

ε = −1
(i) α > 0

(ii) α < 0

(i) soliton is expanding, shrinking or steady if β >, < or
= 0, respectively.
(ii) soliton is expanding, shrinking or steady if β <, > or
= 0, respectively

For β = 0, Corollary 1 shows that the soliton (g, ξ, λ, α, β) becomes ∗-Ricci soliton
(g, ξ, λ, α) of type α( 6= 0) and Mn(ε) is η-Einstein. Moreover, λ = 0. Thus, we conclude
our result as:

Corollary 2. Let the metric of Mn(ε) be a soliton (g, ξ, λ, α). Then Mn(ε) is an η-Einstein
manifold and the soliton (g, ξ, λ, α) is steady.

Next, we consider that an Mn(ε) admits a soliton (g, V, λ, µ, α, β). If V = kξ for some
function k, then (1) gives

kg(∇F1 ξ, F2) + ε(F1k)η(F2) + kg(F1,∇F2 ξ) + ε(F2k)η(F1)

+2αS∗(F1, F2) + (2λ− βr)g(F1, F2) + 2µη(F1)η(F2) = 0,

which in view of (6) and (13) takes the form

2αS(F1, F2) + {2εk + 2εα(n− 2) + 2λ− βr}g(F1, F2) + ε(F1k)η(F2) (20)

+ε(F2k)η(F1) + {2α + 2µ− 2k}η(F1)η(F2) = 0.

Taking F2 = ξ in (20), and then using (2) and (3) it follows that

(F1k) + {(ξk) + (2− α)(λ + εµ− βr
2
)}η(F1) = 0. (21)

Again putting F1 = ξ in (21) and using (2), we get

ξk = −(1− α

2
)(λ + εµ− βr

2
). (22)
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On combining (21) and (22), we get

dk = (1− α

2
)(λ + εµ− βr

2
)η. (23)

Now, by operating d on (23) and using the facts d2 = 0 and dη = 0, it follows that either
α = 2, or β = 0 or r = constant.

If α = 2, then (23) reveals that k = constant and the soliton vector field V of
(g, V, λ, µ, α, β) is a constant multiple of ξ. Moreover, from (20) we infer that

S = ag + bη ⊗ η,

where a = βr−2εk−4ε(n−2)−λ
4 and b = k−µ−2

2 . This shows that Mn(ε) is an η-Einstein
manifold.

If β = 0, then metric of Mn(ε) forces to be a ∗η-Ricci soliton, therefore (23) gives

dk = (1− α

2
)(λ + εµ)η ⇐⇒ grad k = (1− α

2
)(λ + εµ)ξ. (24)

This shows that the gradient of k is a constant multiple of the Reeb vector field of Mn(ε).
In view of (20) and (24), we find

αS + {εk + εα(n− 2) + λ}g + [ε(1− α

2
)(λ + εµ) + α + µ− k]η ⊗ η = 0,

which shows that the manifold Mn(ε) under consideration is an η-Einstein manifold,
provided α 6= 0. Similarly, we can prove that if r = constant then Mn(ε) is said to be an
η-Einstein manifold. Thus, we have

Theorem 2. Let the soliton vector field V on (Mn(ε), g, V, λ, µ, α, β) be pointwise collinear with
ξ. Then Mn(ε) is η-Einstein.

Theorem 3. Let V = kξ for some smooth function k on (Mn(ε), g, V, λ, µ, α, β). Then either

(i) the soliton vector field V is a constant multiple of ξ, or
(ii) the metric of Mn(ε) forces to be a ∗η-Ricci soliton and gradient of k is a constant multiple of

ξ, or
(iii) scalar curvature of Mn(ε) is constant.

Codazzi-type and cyclic parallel Ricci tensors are special types of Ricci tensors in-
troduced and extensively studied by Gray [46]. Now, we explore the properties of ∗η-
Ricci–Yamabe solitons on Mn(ε) if the Ricci tensors of Mn(ε) are of Codazzi and cyclic
parallel types.

Definition 2. An Mn(ε) possesses a Codazzi-type Ricci tensor S( 6= 0) if

(∇F1 S)(F2, F3) = (∇F2 S)(F1, F3) (25)

for all F1, F2, F3 on Mn(ε).

Let an Mn(ε) admitting a soliton (g, V = ξ, λ, µ, α, β) have Codazzi-type Ricci tensor,
then (25) holds. In view of (15), the expression (∇F1 S)(F2, F3) = F1S(F2, F3)−S(∇F1 F2, F3)−
S(F2,∇F1 F3) gives

(∇F1 S)(F2, F3) = A2[(∇F1 η)(F2)η(F3) + (∇F1 η)(F3)η(F2)],

which by using (7) takes the form

(∇F1 S)(F2, F3) = A2[g(F1, F2)η(F3) + g(F1, F3)η(F2)− 2εη(F1)η(F2)η(F3)]. (26)
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By virtue of (26), (25) leads to

A2[g(F1, F3)η(F2)− g(F2, F3)η(F1)] = 0. (27)

By putting F2 = ξ in (27) and using (2), we have

A2g(φF1, φF3) = 0,

from which it follows that A2 = 0 (as g(φF1, φF3) 6= 0). This implies that µ = 1− α, and
hence (18) infers that λ = βr

2 − ε(1− α). Now, we state our results as:

Theorem 4. Let an Mn(ε) admitting a soliton (g, ξ, λ, µ, α, β). If the Ricci tensor of Mn(ε) is of
Codazzi type, then α + µ = 1 and λ = βr

2 − ε(1− α).

Next, by using the values λ = −ε(1 − α) + βr
2 and µ = 1 − α in (15), we obtain

S(F1, F2) = −ε(n− 1)g(F1, F2). Conversely, if (Mn(ε), g, ξ, λ, µ, α, β) is Einstein, then we
can easily verify that S is of Codazzi type. Thus, we have

Theorem 5. Let the metric of an Mn(ε) be a soliton (g, ξ, λ, µ, α, β). Then the Ricci tensor of
Mn(ε) is of Codazzi type if and only if Mn(ε) is an Einstein manifold.

Let the Ricci tensor of (Mn(ε), g, ξ, λ, µ, α, β) be of Codazzi type, then from Theorem 4
A2 = 0, and hence from (26) we have ∇S = 0. A Riemannian (semi-Riemannian) manifold
is said to be Ricci symmetric if ∇S = 0. This definition with the above results lead to

Corollary 3. (Mn(ε), g, ξ, λ, µ, α, β) with Codazzi-type Ricci tensor is Ricci symmetric.

In particular, if we take α = 1, then the above values of µ and λ reduces to 0 and βr
2 ,

respectively. Moreover, from (19) we find r = −εn(n− 1). Thus, we have

Corollary 4. Let the Ricci tensor of Mn(ε) be of Codazzi type. Then the ∗η-Ricci–Yamabe soliton
(g, ξ, λ, µ, 1, β) on Mn(ε) forces to be ∗-Ricci–Yamabe soliton (g, ξ, λ, 1, β).

Corollary 5. Let (g, ξ, λ, 1, β) be a soliton on Mn(ε). If the Ricci tensor of Mn(ε) is of Codazzi
type, then (g, ξ, λ, 1, β) is concluded as follows:

(i) if ε = 1 (i.e., ξ is space-like), then the soliton is expanding, steady or shrinking according to
β < 0,= 0 or β > 0, respectively, and

(ii) if ε = −1 (i.e., ξ is time-like), then the soliton is expanding, steady or shrinking according to
β > 0,= 0 or β < 0, respectively.

Definition 3. If the Ricci tensor S( 6= 0) of Mn(ε) satisfies

(∇F1 S)(F2, F3) + (∇F2 S)(F3, F1) + (∇F3 S)(F1, F2) = 0, (28)

for all F1, F2, F3 on Mn(ε), then Mn(ε) possesses a cyclic parallel Ricci tensor.

Suppose that an Mn(ε) admits (g, V = ξ, λ, µ, α, β). If the Ricci tensor of Mn(ε) is
cyclic parallel, then (28) holds. By virtue of (26), we can write the following equations:

(∇F2 S)(F3, F1) = A2[g(F2, F3)η(F1) + g(F1, F2)η(F3)− 2εη(F1)η(F2)η(F3)], (29)

(∇F3 S)(F1, F2) = A2[g(F3, F1)η(F2) + g(F2, F3)η(F1)− 2εη(F1)η(F2)η(F3)]. (30)

By making use of (26), (29) and (30) in (28), we have

A2[g(F1, F2)η(F3) + g(F2, F3)η(F1) + g(F1, F3)η(F2)− 3εη(F1)η(F2)η(F3)] = 0,
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which by putting F3 = ξ and using (2) leads to A2g(φF1, φF2) = 0 =⇒ A2 = 0, as
g(φF1, φF2) 6= 0. Consequently, (15) reduces to an equation of Einstein manifold. Con-
versely, we can easily prove that the Ricci tensor of the Einstein manifold is cyclic parallel.
Thus we can write:

Theorem 6. Let the metric of an Mn(ε) be a soliton (g, ξ, λ, µ, α, β). Then Mn(ε) is an Einstein
manifold if and only if the Ricci tensor of Mn(ε) is cyclic parallel.

Remark 1. The conditions for the soliton (g, ξ, λ, µ, α, β) to be expanding, shrinking or steady on
an Mn(ε) admitting cyclic parallel Ricci tensor can be discussed as in Corollary 5.

4. ∗η-Ricci–Yamabe Solitons on ε-Kenmotsu Manifolds Satisfying the Conditions
W2(ξ, F1) · S = 0 and S(ξ, F1) ·W2 = 0

In this section, we characterize an Mn(ε) admitting (g, ξ, λ, µ, α, β), satisfying cer-
tain conditions on W2-curvature tensor. The W2-curvature tensor on an n-dimensional
Riemannian manifold M is defined as [37]

W2(F1, F2)F3 = R(F1, F2)F3 −
1

n− 1
[g(F2, F3)QF1 − g(F1, F3)QF2], (31)

for all F1, F2, F3 on Mn(ε).
First, let us consider that an Mn(ε) admitting (g, ξ, λ, µ, α, β) satisfies the condition

W2(ξ, F1) · S = 0. (32)

The condition (32) implies that

S(W2(ξ, F1)F2, F3) + S(F2,W2(ξ, F1)F3) = 0. (33)

From (2), (9), (16) and (31), we find

W2(ξ, F1)F2 =
ε

n− 1
η(F2)QF1 + η(F2)F1, (34)

η(W2(ξ, F1)F2) = (1 +
A3

n− 1
)η(F1)η(F2). (35)

Thus, in view of (15), (33) turns to

A1{η(F2)g(F1, F3) + η(F3)g(F1, F2) +
ε

n− 1
η(F2)S(F1, F3)} (36)

+
ε

n− 1
η(F3)S(F1, F2) + 2A2(1 +

A3

n− 1
)η(F1)η(F2)η(F3) = 0,

where (34) and (35) being used. Now, putting F2 = ξ in (36), then using (2), (3) and (16),
we obtain

S(F1, F3) = −ε(n− 1)g(F1, F3) +
1
α
(ε +

2A2

A1
)(λ + εµ− βr

2
)η(F1)η(F3). (37)

Since ∗η-Ricci–Yamabe soliton on Mn(ε) satisfies (18), therefore (37) reduces to

S(F1, F3) = −ε(n− 1)g(F1, F3).

Thus, we have

Theorem 7. Let an Mn(ε) admit a soliton (g, ξ, λ, µ, α, β). If Mn(ε) satisfies the condition
W2(ξ, F1) · S = 0, then it is an Einstein manifold.
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Next, suppose that an Mn(ε) admits a ∗η-Ricci–Yamabe soliton (g, ξ, λ, µ, α, β) and
S(ξ, F1) · W2 = 0, which infers that

S(F1,W2(F2, F3)F4)ξ − S(ξ,W2(F2, F3)F4)F1 + S(F1, F2)W2(ξ, F3)F4

−S(ξ, F2)W2(F1, F3)F4 + S(F1, F3)W2(F2, ξ)F4 − S(ξ, F3)W2(F2, F1)F4 (38)

+S(F1, F4)W2(F2, F3)ξ − S(ξ, F4)W2(F2, F3)F1 = 0,

for any for all F1, F2, F3 on Mn(ε). Taking the inner product of (38) with ξ and using (15)
and (16), we have

A1g(F1,W2(F2, F3)F4) + A2η(F1)η(W2(F2, F3)F4)− A3η(W2(F2, F3)F4)η(F1)

−A3{η(F4)η(W2(F2, F3)F1) + η(F3)η(W2(F2, F1)F4) + η(F2)η(W2(F1, F3)F4)}
+A1g(F1, F2)η(W2(ξ, F3)F4) + A2η(F1)η(F2)η(W2(ξ, F3)F4) (39)

+A1g(F1, F3)η(W2(F2, ξ)F4) + A2η(F1)η(F3)η(W2(F2, ξ)F4)

+A1g(F1, F4)η(W2(F2, F3)ξ) + A2η(F1)η(F4)η(W2(F2, F3)ξ) = 0.

From (2), (8), (9), (16), (18) and (31), we find

g(F1,W2(F2, F3)F4) = g(F1, R(F2, F3)F4)−
1

n− 1
{g(F3, F4)S(F1, F2) (40)

−g(F2, F4)S(F1, F3)},

η(W2(F2, F3)F4) = η(R(F2, F3)F4) (41)

− εA3

n− 1
{g(F3, F4)η(F2)− g(F2, F4)η(F3)},

η(W2(ξ, F3)F4) = (1 +
A3

n− 1
)η(F4)η(F3), (42)

η(W2(F2, F3)ξ) = 0. (43)

Now by making use of (40)–(43) in (39), we arrive at

A1g(F1,W2(F2, F3)F4) + A2η(W2(F2, F3)F4)η(F1)

+A1(1 +
A3

A1
){g(F1, F2)η(F4)η(F3)− g(F1, F3)η(F4)η(F2)}

−A3{η(W2(F2, F3)F4)η(F1) + η(W2(F1, F3)F4)η(F2)

+η(W2(F2, F1)F4)η(F3) + η(W2(F2, F3)F1)η(F4)} = 0,

which by substituting F4 = ξ and using (43) reduces to

A1g(F1,W2(F2, F3)ξ)− A3η(W2(F2, F3)F1)η(F4) (44)

+A1(1 +
A3

A1
){g(F1, F2)η(F3)− g(F1, F3)η(F2)} = 0.

After employing (40) and (42) in (44), we lead to

A1{S(F1, F3)η(F2)− S(F1, F2)η(F3)} (45)

+A3(εA1 − A3 − (n− 1)){g(F1, F2)η(F3)− g(F1, F3)η(F2)} = 0.

Again putting F2 = ξ in (45) and using (2), (3) and (16), we find

S(F1, F3) =
A3

A1
{εA1 − A3 − n + 1}g(F1, F3) (46)

+
εA3

A1
(A3 + n− 1)η(F1)η(F3).
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Note that an Mn(ε) endowed with (g, ξ, λ, µ, α, β) satisfies (18). Thus, A3 = −n + 1.
Consequently, (46) reduces to

S(F1, F3) = ε(n− 1)g(F1, F3).

Thus, we have

Theorem 8. Let the metric of an Mn(ε) be a soliton (g, ξ, λ, µ, α, β) and S(ξ, F1) · W2 = 0. Then
Mn(ε) is an Einstein manifold.

5. ∗η-Ricci–Yamabe Solitons on φ-Ricci Symmetric ε-Kenmotsu Manifolds

Let an Mn(ε) admitting (g, ξ, λ, µ, α, β) be φ-Ricci-symmetric, i.e., φ2(∇F1 Q)F2 = 0.
Then by virtue of (2), we have

(∇F1 Q)F2 − η((∇F1 Q)F2)ξ = 0. (47)

The inner product of (47) with F4 leads to

g((∇F1 Q)F2, F4)− εη((∇F1 Q)F2)η(F4) = 0,

which can be written as

g(∇F1 QF2, F4)− S(∇F1 F2, F4)− εη((∇F1 Q)F2)η(F4) = 0. (48)

By putting F2 = ξ in (48) and using (17), we arrive at

S(F1, F4) = εA3g(F1, F4)− εη((∇F1 Q)ξ)η(F4). (49)

Replacing F1 = φF1, F4 = φF4 in (49) and using (15), we find A1 − εA3 = 0 (since
g(φF1, φF4) 6= 0), from which we have µ = 1− α and thus (18) gives λ = −ε(1− α) + βr

2 .
Thus, we have

Theorem 9. Let (Mn(ε), g, ξ, λ, µ, α, β) be φ-Ricci symmetric. Then λ = βr
2 − ε(1− α) and

µ = 1− α.

In particular, for α = 1 we have λ = βr
2 and µ = 0. Moreover, from (15) and (19) we

find S(F1, F2) = −ε(n− 1)g(F1, F2) and r = −εn(n− 1), respectively. Thus, we have

Corollary 6. An n-dimensional φ-Ricci symmetric ε-Kenmotsu manifold admitting a soliton
(g, ξ, λ, 1, β) is Einstein manifold. Furthermore, the soliton (g, ξ, λ, 1, β) on Mn(ε) is concluded
as follows:

(i) if ε = 1 (i.e., ξ is space-like), then the soliton is expanding, steady or shrinking according to
β < 0,= 0 or β > 0,

(ii) if ε = −1 (i.e., ξ is time-like), then the soliton is expanding, steady or shrinking according to
β > 0,= 0 or β < 0.

6. Example

We consider the manifold M = {(x1, x2, y1, y2, z) ∈ R5, z 6= 0} of dimension 5, where
(x1, x2, y1, y2, z) are the standard coordinates in R5. Let the vector fields ς1, ς2, ς3, ς4 and
ς5 be defined on M as:

ς1 = e−εz ∂

∂x1
, ς2 = e−εz ∂

∂x2
, ς3 = e−εz ∂

∂y1
, ς4 = e−εz ∂

∂y2
, ς5 = e−εz ∂

∂z
= ξ.
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Then they form a basis on M. Let g be the metric defined by

g(ςi, ς j) =

{
ε, 1 ≤ i = j ≤ 5,
0, 1 ≤ i 6= j ≤ 5.

Define the 1-form η and the (1, 1)-tensor φ on M as:

η(F1) = εg(F1, ς5) = εg(F1, ξ) ∀F1 ∈ X(M),

φς1 = ες2, φς2 = ες1, φς3 = ες4, φς4 = ες3, φς5 = 0.

The linearity property of φ and g yields

η(ς5) = 1, φ2F1 = −F1 + η(F1)ξ, g(φF1, φF2) = g(F1, F2)− εη(F1)η(F2),

for all F1, F2 ∈ X(M). Obvious that (φ, ξ, η, g, ε) is an almost contact structure on M for
ς5 = ξ. We list the components of Lie bracket as:

[ς1, ς2] = [ς1, ς3] = [ς1, ς4] = [ς2, ς3] = [ς2, ς4] = [ς3, ς4] = 0,

[ς1, ς5] = ες1, [ς2, ς5] = ες2, [ς3, ς5] = ες3, [ς4, ς5] = ες4.

From Koszul’s formula, we can easily calculate

∇ς1 ς1 = −ες5, ∇ς1 ς2 = 0, ∇ς1 ς3 = 0, ∇ς1 ς4 = 0, ∇ς1 ς5 = ες1,

∇ς2 ς1 = 0, ∇ς2 ς2 = −ες5, ∇ς2 ς3 = 0, ∇ς2 ς4 = 0, ∇ς2 ς5 = ες2,

∇ς3 ς1 = 0, ∇ς3 ς2 = 0, ∇ς3 ς3 = −ες5, ∇ς3 ς4 = 0, ∇ς3 ς5 = ες3,

∇ς4 ς1 = 0, ∇ς4 ς2 = 0, ∇ς4 ς3 = 0, ∇ς4 ς4 = −ες5, ∇ς4 ς5 = ες4,

∇ς5 ς1 = 0, ∇ς5 ς2 = 0, ∇ς5 ς3 = 0, ∇ς5 ς4 = 0, ∇ς5 ς5 = 0,

which reflect that ∇ςi ξ = ε(ςi − η(ςi)ξ) for all ςi, i = 1, 2, 3, 4, 5. Thus, M is a five-
dimensional ε-Kenmotsu manifold M5(ε). We can easily obtain the following components
of R and S:

R(ς1, ς2)ς2 = R(ς1, ς3)ς3 = R(ς1, ς4)ς4 = R(ς1, ς5)ς5 = −ς1,

R(ς1, ς2)ς1 = ς2, R(ς1, ς3)ς1 = R(ς2, ς3)ς2 = R(ς5, ς3)ς5 = ς3,

R(ς2, ς3)ς3 = R(ς2, ς4)ς4 = R(ς2, ς5)ς5 = −ς2, R(ς3, ς4)ς4 = −ς3,

R(ς1, ς5)ς1 = R(ς2, ς5)ς2 = R(ς4, ς5)ς4 = R(ς3, ς5)ς3 = ς5,

R(ς1, ς4)ς1 = R(ς2, ς4)ς2 = R(ς3, ς4)ς3 = R(ς5, ς4)ς5 = ς4.

The components of the Ricci tensor can be easily obtained as follows:

S(ς1, ς1) = S(ς2, ς2) = S(ς3, ς3) = S(ς4, ς4) = S(ς5, ς5) = −4. (50)

Obviously, the scalar curvature of M5(ε) is −20.
Let F1 and F2 be the arbitrary vector fields of M5(ε). Then we can write F1 and F2 as:

F1 = F1
1 ς1 + F2

1 ς2 + F3
1 ς3 + F4

1 ς4 + F5
1 ξ and F2 = F1

2 ς1 + F2
2 ς2 + F3

2 ς3 + F4
2 ς4 + F5

2 ξ,

where Fj
i , j = 1, 2, 3, 4, 5, i = 1, 2 denotes the scalar on M5(ε). From straightforward calcula-

tions, we have

(£ξ g)(F1, F2) = g(∇F1 ξ, F2) + g(F1,∇F2 ξ) = 2(F1
1 F1

2 + F2
1 F2

2 + F3
1 F3

2 + F4
1 F4

2 ),
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S(F1, F2) = −4(F1
1 F1

2 + F2
1 F2

2 + F3
1 F3

2 + F4
1 F4

2 + F5
1 F5

2 ),

g(F1, F2) = ε(F1
1 F1

2 + F2
1 F2

2 + F3
1 F3

2 + F4
1 F4

2 + F5
1 F5

2 ),

η(F1) = F5
1

and
S∗(F1, F2) = −(F1

1 F1
2 + F2

1 F2
2 + F3

1 F3
2 + F4

1 F4
2 ).

Let us choose the set of values of λ, µ, α, β to satisfy the relation λ− α + 10β + 1 = 0. For
instance, choose α = 2, β = 1, λ = −9. It is obvious that the metric g of M5(ε) satisfies the
∗η-Ricci–Yamabe soliton Equation (1), that is,

(£ξ g)(F1, F2) + 2αS∗(F1, F2) + (2λ− βr)g(F1, F2) + 2µη(F1)η(F2) = 0,

and the relations λ + εµ = βr
2 and α = 1− µ, which verifies Theorem 1 and Theorem 4.

Also, we notice thatW2 · S = 0 holds on M5(ε) for all F1 and F2, and M5(ε) is Einstein.
Thus, the Theorem 7 is verified.
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