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Abstract: The class of measure spaces which can be represented as unions of Lebesgue-Rohlin spaces
with continuous measures contains a lot of important examples, such as Rn for any n ∈ N with the
Lebesgue measure. In this work we consider symmetric functions on Banach spaces of all complex-
valued integrable essentially bounded functions on such unions. We construct countable algebraic
bases of algebras of continuous symmetric polynomials on these Banach spaces. The completions of
such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric functions
of bounded type on the abovementioned Banach spaces. We show that each such Fréchet algebra is
isomorphic to the Fréchet algebra of all complex-valued entire symmetric functions of bounded type
on the complex Banach space of all complex-valued essentially bounded functions on [0, 1].
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1. Introduction

The study of symmetric polynomials on infinite dimensional spaces started with
the work [1] (for classical results in the finite dimensional case, see, e.g., [2–4]). In [1],
the authors considered symmetric continuous polynomials on real Banach spaces `p and
Lp[0, 1], where p ∈ [1,+∞). In particular, in [1] the authors constructed algebraic bases of
algebras of the abovementioned polynomials. In [5], the authors considered symmetric
continuous polynomials on separable sequence real Banach spaces with a symmetric basis
(see [6] (Def. 3.a.1, p. 113)) and on a separable rearrangement invariant function the real
Banach spaces (see [7] (Definition 2.a.1, p. 117)). Topological algebras of symmetric holo-
morphic functions on `p were studied first in [8]. Symmetric polynomials and symmetric
holomorphic functions of bounded type on sequence Banach spaces were studied in [9–34]
(see also the survey [35]). Symmetric holomorphic functions of unbounded type on se-
quence Banach spaces were studied in [36–39]. Symmetric polynomials and symmetric
holomorphic functions on Banach spaces of Lebesgue measurable functions and on Carte-
sian powers of such spaces were studied in [40–49]. In [50–54], the authors used the most
general approach to the study of symmetric functions.

In [41], the authors constructed an algebraic basis of the algebra of symmetric continu-
ous complex-valued polynomials on the complex Banach space L∞[0, 1] of complex-valued
Lebesgue measurable essentially bounded functions on [0, 1] and described the spectrum of
the Fréchet algebra Hbs(L∞[0, 1]) of symmetric analytic entire functions, which are bounded
on bounded sets, on L∞[0, 1]. In [42], the authors showed that the algebra Hbs(L∞[0, 1])
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is isomorphic to the algebra of all analytic functions on the strong dual of the topological
vector space of entire functions on the complex plane C. In addition in [42], it was shown
that the algebra Hbs(L∞[0, 1]) is a test algebra for the famous Michael problem (see [55]).
In [49], the authors showed that the algebra Hbs(L∞[0, 1]) is isomorphic to the algebra of
symmetric entire functions on the complex Banach space of complex-valued Lebesgue
integrable essentially bounded functions on the semi-axis.

In this work, we generalize the results of the work [49], replacing the semi-axis with the
arbitrary union of Lebesgue-Rohlin spaces (which are also known as standard probability
spaces) with continuous measures. Note that there are a lot of important measure spaces
which can be represented as the abovementioned union. For example, Rn for any n ∈ N
with the Lebesgue measure is one such space. We consider symmetric functions on Banach
spaces of all complex-valued integrable essentially bounded functions on the unions of
Lebesgue-Rohlin spaces with continuous measures. We construct countable algebraic bases
of algebras of continuous symmetric polynomials on these Banach spaces. The completions
of such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric
functions of bounded type on the abovementioned Banach spaces. We show that every
such Fréchet algebra is isomorphic to the Fréchet algebra Hbs(L∞[0, 1]).

2. Preliminaries

Let us denote by N and Z+ the set of all positive integers and the set of all nonnegative
integers, respectively.

2.1. Polynomials

Let X be a complex Banach space.
Let N ∈ N. A mapping P : X → C, which is the restriction to the diagonal of some

N-linear mapping AP : XN → C, i.e.,

P(x) = AP
(

x, . . . , x︸ ︷︷ ︸
N

)
for every x ∈ X, is called an N-homogeneous polynomial.

A mapping P : X → C, which can be represented in the form

P = P0 + P1 + . . . + PN ,

where N ∈ N, P0 is a constant mapping, and Pn : X → C is an n-homogeneous polynomial
for every n ∈ {1, . . . , N}, is called a polynomial of a degree at most N.

It is known that a polynomial P : X → C is continuous if and only if its norm

‖P‖ = sup
‖x‖≤1

|P(x)|

is finite. Consequently, for every continuous N-homogeneous polynomial P : X → C and
for every x ∈ X we have the following inequality:

|P(x)| ≤ ‖P‖‖x‖N . (1)

2.2. Holomorphic Functions

Definition 1. ([56] (Def. 2.1, p. 53)) A subset U of a vector space E is said to be finitely open if
U ∩ F is an open subset of the Euclidean space F for each finite dimensional subspace F of E.

(See [56] (p. 53)). The finitely open subsets of E define a translation invariant topology
τf . The balanced τf -neighborhoods of zero form a basis for the τf -neighborhoods of zero.
On a topological vector space (E, τ), the topology τf is finer than τ, i.e., τf ≥ τ.
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Definition 2. (See [56] (Def. 2.2, p. 54)) The complex-valued function f , defined on a finitely
open subset U of a complex vector space E is said to be G-holomorphic if for each a ∈ U, b ∈ E the
complex-valued function of one complex variable

λ 7→ f (a + λb)

is holomorphic in some neighborhood of zero. We let HG(U) denote the set of all G-holomorphic
mappings from U into C.

The following proposition is a partial result of [56] (Prop. 2.4, p. 55).

Proposition 1. If U is a finitely open subset of a complex vector space E and f ∈ HG(U), then for
each a ∈ U there exists a unique sequence of homogeneous polynomials from E into C,

{
f (a)
m
}∞

m=0,
such that

f (a + y) =
∞

∑
m=0

f (a)
m (y)

for all y in some τf -neighborhood of zero. This series is called the Taylor series of f at a.

Definition 3. (See [56] (Def. 2.6, p. 57)) Let (E, τ) be a complex locally convex space, and let
U be a finitely open subset of E. A function f : U → C is called holomorphic or analytic if it is
G-holomorphic and for each a ∈ U the function

y 7→
∞

∑
m=0

f (a)
m (y)

converges and defines a continuous function on some τ-neighborhood of zero. We let H(U) denote
the algebra of all holomorphic functions from U into C endowed with the compact open topology (the
topology of uniform convergence on the compact subsets of U). A function, which is holomorphic on
E, is called entire.

The following proposition is a partial result of [56] (Lemma 2.8, p. 58).

Proposition 2. If U is an open subset of a complex locally convex space E and f : U → C is
G-holomorphic, then f ∈ H(U) if and only if f is locally bounded.

The following proposition is a partial result of [56] (Cor. 2.9, p. 59).

Proposition 3. Let E be a complex locally convex space. Let U be an open subset of E, and
suppose f ∈ H(U). Then for every a in U and every m ∈ N, the m-homogeneous polynomial f (a)

m
is continuous.

(See [56] (p. 166)). Let U be an open subset of a complex locally convex space E, and
let B be a balanced closed subset of E. We let

dB(a, U) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U

}
for every a ∈ U. If E is a complex normed linear space and B is the unit ball of E, then
dB(a, U) is the usual distance of a to the complement of U in E.

Let f ∈ H(U). The B-radius of boundedness of f at a ∈ U, is defined as

r f (a, B) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U, sup

y∈a+λB
| f (y)| < ∞

}
.

The B-radius of uniform convergence of f at a ∈ U is defined as
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R f (a, B) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U, and the Taylor series of f at a

converges to f uniformly on a + λB
}

.

The following proposition is a partial result of [56] (Prop. 4.7, p. 166).

Proposition 4. Let U be an open subset of a complex locally convex space E. Suppose f ∈ H(U).
If a ∈ U, B is a closed balanced subset of E and r f (a, B) > 0, then

r f (a, B) = R f (a, B) = min
{

dB(a, U),
(

lim sup
n→∞

sup
y∈B

∣∣ f (a)
n (y)

∣∣1/n
)−1}

.

Let E be a complex normed space. An entire function f : X → C, for which r f (0, B) =
+∞, where B is a closed unit ball in E, is called a function of bounded type. In other words,
f is called a function of bounded type if it is bounded on every bounded subset of E. By
Proposition 4, for every such a function f , its Taylor series at zero, ∑∞

m=0 fm, converges
uniformly to f on every bounded subset of E (we denote f (0)m by fm).

By [57] (Cor. 7.3, p. 47),

fm(y) =
1

2πi

∫
|ξ|=r

f (ξy)
ξm+1 dξ, (2)

where m ∈ Z+, y ∈ E and r > 0. Equation (2) is called the Cauchy Integral Formula.
Let E be a complex Banach space. Let Hb(E) be the Fréchet algebra of all entire func-

tions of bounded type f : E→ C endowed with the topology of the uniform convergence
on bounded subsets. Let

‖ f ‖r = sup
‖x‖≤r

| f (x)|

for f ∈ Hb(E) and r ∈ (0,+∞). The topology of the Fréchet algebra Hb(E) is generated by
any set of norms

{‖ · ‖r : r ∈ I},

where I is an arbitrary unbounded subset of (0,+∞).
For details on holomorphic functions on Banach spaces, we refer the reader to [57]

or [56,58] .

2.3. Measure Spaces

A measure space is a triple (Ω,F , ν), where Ω is a set, F is a σ algebra of its subsets,
and ν : F → [0,+∞] is a measure. In addition, we assume ν to be a complete measure,
i.e., every subset of a measurable set with null measure (so called null set) is measurable too.
An isomorphism between two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) is an invertible
map f : Ω1 → Ω2 such that f and f−1 are both measurable and measure-preserving maps.
In the case (Ω1,F1, ν1) = (Ω2,F2, ν2), the mapping f is called a measurable automorphism.
Two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) are called isomorphic modulo zero if
there exist null sets M ⊂ Ω1 and N ⊂ Ω2 such that measure spaces Ω1 \M and Ω2 \ N are
isomorphic [59] (§1, No. 5).

Let a measure space (Ω,F , ν) be such that ν(Ω) = 1. The measure space (Ω,F , ν) is
called separable ([59] (§2, No. 1)), if there exists a countable system G of measurable sets
having the following two properties:

1. For every measurable set A ⊂ Ω, there exists a set B such that A ⊂ B ⊂ Ω, B is
identical with A modulo zero, and B is an element of the σ algebra generated by G.

2. For every pair of points x, y ∈ Ω, there exists a set G ⊂ G such that either x ∈ G, y 6∈ G,
or x 6∈ G, y ∈ G.
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Every countable system G of measurable sets satisfying conditions (1) and (2) is called
a basis of the space (Ω,F , ν).

Let (Ω,F , ν) be a separable measure space, and let B = {Bn}∞
n=1 be an arbitrary basis

in (Ω,F , ν). If all intersections of the form ∩∞
n=1 An, where An is one of the two sets Bn

and Ω \ Bn, are nonempty, then the space (Ω,F , ν) is called complete with respect to the
basis B. By [59] (§2, No. 2), if the space (Ω,F , ν) is complete modulo zero (i.e., isomorphic
modulo zero to some complete measure space) with respect to some basis, then it is
complete modulo zero with respect to every other basis. Separable measure spaces which
are complete modulo zero with respect to their bases are called Lebesgue-Rohlin spaces
or standard probability spaces. By [59] (§2, No. 4), every Lebesgue-Rohlin space with
continuous measure (i.e., there are no points of positive measure) is isomorphic modulo
zero to [0, 1] with Lebesgue measure. The following simple lemma shows that every
such space is isomorphic to [0, 1] with Lebesgue measure.

Lemma 1. Every Lebesgue-Rohlin measure space with continuous measure is isomorphic to [0, 1]
with Lebesgue measure.

Proof. Let (Ω,F , ν) be a Lebesgue-Rohlin measure space with continuous measure. By [59]
(§2, No. 4), (Ω,F , ν) is isomorphic modulo zero to [0, 1] with Lebesgue measure, i.e., there
exist null sets M ⊂ Ω and N ⊂ [0, 1] such that Ω \ M is isomorphic to [0, 1] \ N. Let
f : Ω \M → [0, 1] \ N be the isomorphism. Let K be an arbitrary null subset of [0, 1] \ N
with the cardinality of the continuum. Then f−1(K) is a null subset of Ω \ M with the
cardinality of the continuum. Consequently, both sets C1 = M ∪ f−1(K) and C2 = N ∪ K
are null sets of the cardinality of the continuum. Let h : C1 → C2 be a bijection. Let
g : Ω→ [0, 1] be defined by

g(t) =
{

h(t), if t ∈ C1,
f (t), if t ∈ [0, 1] \ C1.

Evidently, g is an isomorphism between (Ω,F , ν) and [0, 1] with Lebesgue measure.

2.4. Symmetric Functions

In general, symmetric functions are defined in the following way.

Definition 4. Let A be an arbitrary nonempty set, and let S be a nonempty set of mappings
acting from A to itself. A function f , defined on A, is called symmetric with respect to the set S if
f (s(a)) = f (a) for every s ∈ S and a ∈ A.

Let us describe the partial case of Definition 4, which we will use in this work. The set
of all measurable automorphisms of some measure space (Ω,F , ν) we will denote by ΞΩ.
A complex Banach space X of measurable functions x : Ω→ C such that x ◦ σ belongs to X
for every x ∈ X and σ ∈ ΞΩ will be in the role of the set A from Definition 4. The set of
operators

{x ∈ X 7→ x ◦ σ ∈ X : σ ∈ ΞΩ}

will be in the role of the set S from Definition 4. So, a function f , defined on X, is called
symmetric if

f (x ◦ σ) = f (x)

for every x ∈ X and σ ∈ ΞΩ.

2.5. Algebraic Combinations

A mapping
t ∈ T 7→ Q( f1(t), . . . , fk(t)) ∈ C,
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where T is a nonempty set, k ∈ N, f1, . . . , fk are mappings acting from T to C and Q is a
polynomial acting from Ck to C, is called an algebraic combination of mappings f1, . . . , fk.

Let A be some algebra of complex-valued mappings. Let B ⊂ A be such that every
element of A can be uniquely represented as an algebraic combination of some elements of
B. Then B is called an algebraic basis of A.

2.6. Entire Symmetric Functions on L∞[0, 1]

Let L∞[0, 1] be the complex Banach space of all Lebesgue measurable essentially
bounded complex-valued functions x on [0, 1] with norm

‖x‖∞ = ess supt∈[0,1]|x(t)|.

For every n ∈ N, let Rn : L∞[0, 1]→ C be defined by

Rn(x) =
∫
[0,1]

(x(t))n dt.

Note that Rn is a symmetric continuous n-homogeneous polynomial such that ‖Rn‖ = 1
for every n ∈ N.

Theorem 1. ([41] (Theorem 4.3)) Every symmetric continuous n-homogeneous polynomial P :
L∞[0, 1]→ C can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x),

where k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C. In other words, {Rn} forms an algebraic basis in the
algebra of symmetric continuous polynomials on L∞[0, 1].

Theorem 2. ([41] (Theorem 3.1)) For every sequence ξ = {ξn}∞
n=1 ⊂ C such that the sequence{

n
√
|ξn|

}∞
n=1 is bounded, there exists xξ ∈ L∞[0, 1] such that Rn

(
xξ

)
= ξn for every n ∈ N and

‖xξ‖∞ ≤
2
M

sup
n∈N

n
√
|ξn|,

where

M =
∞

∏
k=1

cos
(

π

2
· 1

k + 1

)
. (3)

Let Hbs(L∞[0, 1]) be the subalgebra of the Fréchet algebra Hb(L∞[0, 1]), which consists
of all symmetric elements of Hb(L∞[0, 1]). It can be checked that Hbs(L∞[0, 1]) is closed in
Hb(L∞[0, 1]).

For every function f ∈ Hbs(L∞[0, 1]), its Taylor series converges uniformly to f on
every bounded set. The nth term, where n ∈ N, of the Taylor series is a continuous n-
homogeneous polynomial, which is symmetric by the symmetry of f and by the Cauchy
Integral Equation (2). Therefore, by Theorem 1, every f ∈ Hbs(L∞[0, 1]) can be repre-
sented as

f (x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x) (4)

where αk1,...,kn ∈ C, x ∈ L∞[0, 1], and the series converges uniformly on every bounded
subset of L∞[0, 1].
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2.7. Entire Symmetric Functions on (L1 ∩ L∞)[0,+∞)

Let L1[0,+∞) be the complex Banach space of all Lebesgue integrable functions
x : [0,+∞)→ C with norm ‖x‖1 =

∫
[0,+∞) |x(t)| dt. Let L∞[0,+∞) be the complex Banach

space of all Lebesgue measurable essentially bounded functions x : [0,+∞)→ C with norm

‖x‖∞ = ess supt∈[0,+∞)|x(t)|.

Let us consider the space (L1 ∩ L∞)[0,+∞) := L1[0,+∞) ∩ L∞[0,+∞) with norm
‖x‖ = max{‖x‖1, ‖x‖∞}. By [60] (p. 97, Thm. 1.3), this space is complete. For n ∈ N, let us
define R̂n : (L1 ∩ L∞)[0,+∞)→ C by

R̂n(x) =
∫
[0,+∞)

(x(t))n dt.

For every n ∈ N, R̂n is a symmetric n-homogeneous polynomial and ‖R̂n‖ = 1.

Theorem 3. ([48] (Theorem 2)) Every symmetric continuous n-homogeneous polynomial P :
(L1 ∩ L∞)[0,+∞)→ C can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̂k1
1 (x) · · · R̂kn

n (x),

where αk1,...,kn ∈ C.

By [49] (Thm. 2), Fréchet algebras Hbs((L1 ∩ L∞)[0,+∞)) and Hbs(L∞[0, 1])
are isomorphic.

3. The Main Result

Let (Ωγ,Fγ, νγ) be a Lebesgue-Rohlin measure space with continuous measure for
every γ ∈ Γ, where Γ is an arbitrary index set. Let (Ω,F , ν) be the disjoint union of all the
spaces belonging to the set

{
(Ωγ,Fγ, νγ) : γ ∈ Γ

}
, i.e.,

Ω =
⊔

γ∈Γ
Ωγ,

F =
{

A ∈ Ω : A ∩Ωγ ∈ Fγ for every γ ∈ Γ
}

and
ν(A) = ∑

γ∈Γ
νγ(A ∩Ωγ)

for A ∈ F . By Lemma 1, for every γ ∈ Γ there exists an isomorphism wγ between
(Ωγ,Fγ, νγ) and [0, 1] with Lebesgue measure. Therefore, for every γ ∈ Γ, the mapping
Wγ : L∞[0, 1]→ L∞(Ωγ), defined by

Wγ(x) = x ◦ wγ (5)

for x ∈ L∞[0, 1], is a linear isometrical bijection, where L∞(Ωγ) is the complex Banach
space of all complex-valued measurable essentially bounded functions on (Ωγ,Fγ, νγ).

Let (L1 ∩ L∞)(Ω) be the complex Banach space of all measurable integrable essentially
bounded functions x : Ω→ C with norm

‖x‖ = max{‖x‖1, ‖x‖∞},

where
‖x‖1 =

∫
Ω
|x(t)| dt
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and
‖x‖∞ = ess supt∈Ω|x(t)|.

Lemma 2. Let γ ∈ Γ. The mapping Jγ : L∞(Ωγ)→ (L1 ∩ L∞)(Ω), defined by

Jγ(x)(t) =
{

x(t), if t ∈ Ωγ,
0, if t ∈ Ω \Ωγ

(6)

for x ∈ L∞(Ωγ), is a linear isometrical injective mapping. Consequently, L∞(Ωγ) can be consid-
ered as a subspace of (L1 ∩ L∞)(Ω).

Proof. Clearly, Jγ is linear and injective. Let us show that Jγ is isometrical. Let x ∈ L∞(Ωγ).
Note that ‖Jγ(x)‖∞ = ‖x‖∞. Since νγ(Ωγ) = 1, it follows that

‖Jγ(x)‖1 =
∫

Ω
|Jγ(x)(t)| dt =

∫
Ωγ

|x(t)| dt ≤ ‖x‖∞.

Therefore,
‖Jγ(x)‖ = max

{
‖Jγ(x)‖1, ‖Jγ(x)‖∞

}
= ‖x‖∞.

Hence, Jγ is an isometrical mapping.

For every E ⊂ Ω, let

1E(t) =
{

1, if t ∈ E,
0, if t ∈ Ω \ E.

For n ∈ N, let the polynomial R̃n : (L1 ∩ L∞)(Ω)→ C be defined by

R̃n(x) =
∫

Ω
(x(t))n dt.

The symmetry and the n-homogeneity of the polynomial R̃n, for every n ∈ N, can be
easily verified. Let us prove the continuity of R̃n.

Lemma 3. For every n ∈ N,
‖R̃n‖ = 1

and, consequently, R̃n is continuous.

Proof. Let us show that ‖R̃n‖ = 1. Let x ∈ (L1 ∩ L∞)(Ω) be such that ‖x‖ ≤ 1. Then
‖x‖1 ≤ 1 and ‖x‖∞ ≤ 1. Since ‖x‖∞ ≤ 1, it follows that |x(t)| ≤ 1 for almost all t ∈ Ω.
Consequently, |x(t)|n ≤ |x(t)| for almost all t ∈ Ω. Therefore,

|R̃n(x)| ≤
∫

Ω
|x(t)|n dt ≤

∫
Ω
|x(t)| dt = ‖x‖1 ≤ 1.

Hence,
‖R̃n‖ = sup

‖x‖≤1
|R̃n(x)| ≤ 1.

On the other hand, for an arbitrary fixed γ ∈ Γ, we have ‖1Ωγ
‖ = 1 and R̃n(1Ωγ

) = 1.
Therefore, ‖R̃n‖ = 1. Consequently, R̃n is continuous.

Theorem 4. Every symmetric continuous n-homogeneous polynomial P : (L1 ∩ L∞)(Ω) → C
can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

αk1,...,kn R̃k1
1 (x) · · · R̃kn

n (x),

where k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C.
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Proof. For γ ∈ Γ, let Qγ : L∞[0, 1]→ C be defined by

Qγ = P ◦ Jγ ◦Wγ, (7)

where Wγ and Jγ are defined by (5) and (6), respectively. We have the following diagram:

L∞[0, 1]
Wγ−→ L∞(Ωγ)

Jγ−→ (L1 ∩ L∞)(Ω)
P−→ C.

Since Wγ and Jγ are linear continuous mappings and P is a continuous n-homogeneous
polynomial, it follows that P ◦ Jγ and Qγ are continuous n-homogeneous polynomials.

Let us prove that P ◦ Jγ is a symmetric polynomial on L∞(Ωγ). Let x ∈ L∞(Ωγ) and
σ ∈ ΞΩγ

. Let us show that (P ◦ Jγ)(x ◦ σ) = (P ◦ Jγ)(x). Note that

Jγ(x ◦ σ) = Jγ(x) ◦ σ′,

where σ′ : Ω→ Ω is defined by

σ′(t) =
{

σ(t), if t ∈ Ωγ,
t, if t ∈ Ω \Ωγ.

It can be easily checked that σ′ ∈ ΞΩ. Since P is symmetric, it follows that

(P ◦ Jγ)(x ◦ σ) = P(Jγ(x) ◦ σ′) = P(Jγ(x)) = (P ◦ Jγ)(x).

Thus, P ◦ Jγ is symmetric.
Let us prove that Qγ is symmetric. Let x ∈ L∞[0, 1] and τ ∈ Ξ[0,1]. By (7),

Qγ(x ◦ τ) = (P ◦ Jγ)(Wγ(x ◦ τ)).

By (5), Wγ(x ◦ τ) = x ◦ τ ◦ wγ. Therefore

Qγ(x ◦ τ) = (P ◦ Jγ)(x ◦ τ ◦ wγ).

Note that x ◦ τ ◦ wγ = x ◦ wγ ◦ w−1
γ ◦ τ ◦ wγ. We have the following diagram:

Ωγ
wγ−−→ [0, 1] τ−−→ [0, 1]

w−1
γ−−→ Ωγ

wγ−−→ [0, 1] x−−→ C.

Since wγ and τ are isomorphisms, it follows that w−1
γ ◦ τ ◦ wγ ∈ ΞΩγ

. Since P ◦ Jγ is
symmetric, it follows that

(P ◦ Jγ)(x ◦ τ ◦ wγ) =
(

P ◦ Jγ

)(
x ◦ wγ ◦ (w−1

γ ◦ τ ◦ wγ)
)
= (P ◦ Jγ)(x ◦ wγ).

By (5) and (7), (P ◦ Jγ)(x ◦ wγ) = Qγ(x). Therefore Qγ(x ◦ τ) = Qγ(x). Hence, Qγ

is symmetric.
Let us prove that Qγ does not depend on γ. Let γ1, γ2 ∈ Γ be such that γ1 6= γ2. Let

us show that Qγ1 ≡ Qγ2 . Let x ∈ L∞[0, 1]. By (5) and (7),

Qγ1(x) = P(Jγ1(x ◦ wγ1)). (8)

Let σγ1γ2 : Ω→ Ω be defined by

σγ1γ2(t) =


(w−1

γ2
◦ wγ1)(t), if t ∈ Ωγ1 ,

(w−1
γ1
◦ wγ2)(t), if t ∈ Ωγ2 ,

t, if t ∈ Ω \ (Ωγ1 ∩Ωγ2).
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Since wγ1 and wγ2 are isomorphisms, it follows that σγ1γ2 ∈ ΞΩ. Since P is symmetric,
it follows that

P(Jγ1(x ◦ wγ1)) = P(Jγ1(x ◦ wγ1) ◦ σγ1γ2). (9)

Let us show that
Jγ1(x ◦ wγ1) ◦ σγ1γ2 = Jγ2(x ◦ wγ2).

If t ∈ Ωγ2 , then σγ1γ2(t) = (w−1
γ1
◦ wγ2)(t). In this case, σγ1γ2(t) ∈ Ωγ1 ,; therefore,

by (6), (
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
=
(
x ◦ wγ1

)(
(w−1

γ1
◦ wγ2)(t)

)
= (x ◦ wγ2)(t).

If t ∈ Ω \Ωγ2 , then σγ1γ2(t) ∈ Ω \Ωγ1 ,; therefore, by (6),(
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
= 0.

Thus,

(
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
=

{
(x ◦ wγ2)(t), if t ∈ Ωγ2 ,
0, if t ∈ Ω \Ωγ2 ,

that is, (
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
= (Jγ2(x ◦ wγ2))(t)

for every t ∈ Ω. Therefore,

Jγ1(x ◦ wγ1) ◦ σγ1γ2 = Jγ2(x ◦ wγ2). (10)

Consequently, by (8)–(10),

Qγ1(x) = P(Jγ2(x ◦ wγ2)) = Qγ2(x).

Therefore, Qγ1 ≡ Qγ2 .
Since Qγ is a continuous n-homogeneous symmetric polynomial on L∞[0, 1], by

Theorem 1, Qγ can be uniquely represented as

Q(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x), (11)

where x ∈ L∞[0, 1] and αk1,...,kn ∈ C.
Recall that for every index γ ∈ Γ, the mapping wγ is an isomorphism between

(Ωγ,Fγ, νγ) and [0, 1] with Lebesgue measure µ. For every index γ ∈ Γ, let us construct
the isomorphism w′γ between (Ωγ,Fγ, νγ) and [0, 1) with Lebesgue measure. Choose a
countable set M ⊂ Ωγ such that w−1

γ (1) ∈ M. Let N = wγ(M) \ {1}. Since the mapping
wγ is a bijection, the set N is countable. Since measures νγ and µ are continuous, the sets
M and N are null sets. Let h : M→ N be an arbitrary bijection. Let us define the mapping
w′γ : Ωγ → [0, 1) by

w′γ(t) =
{

wγ(t), if t ∈ Ωγ \M,
h(t), if t ∈ M.

It can be checked that the mapping w′γ is an isomorphism between (Ωγ,Fγ, νγ) and
[0, 1) with Lebesgue measure.

Let {γn}∞
n=1 ∈ Γ be an arbitrary sequence of pairwise distinct indexes. Let us define

the mapping v{γn}∞
n=1

:
∞
t

n=1
Ωγn → [0,+∞) by

v{γn}∞
n=1

(t) = w′k(t) + k− 1
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for t ∈ Ωγk , k ∈ N. Note that the mapping v{γn}∞
n=1

is an isomorphism between
∞
t

n=1
Ωγn

and [0,+∞).

Let us define the mapping V{γn}∞
n=1

: (L1 ∩ L∞)[0,+∞)→ (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
by

V{γn}∞
n=1

(x) = x ◦ v{γn}∞
n=1

,

where x ∈ (L1 ∩ L∞)[0,+∞). Since the mapping v{γn}∞
n=1

is an isomorphism, it follows that
the mapping V{γn}∞

n=1
is a linear isometric bijection.

Let us define the mapping I{γn}∞
n=1

: (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
→ (L1 ∩ L∞)(Ω) by

I{γn}∞
n=1

(x)(t) =


x(t), if t ∈

∞
t

n=1
Ωγn ,

0, if t ∈ Ω \
∞
t

n=1
Ωγn ,

where x ∈ (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
. It can be checked that the mapping I{γn}∞

n=1
is linear,

isometric and injective.
Since mappings V{γn}∞

n=1
and I{γn}∞

n=1
are linear and continuous, and the mapping P is

a continuous n-homogeneous polynomial, it follows that the mapping P ◦ I{γn}∞
n=1
◦V{γn}∞

n=1
is a continuous n-homogeneous polynomial. It can be checked that P ◦ I{γn}∞

n=1
◦V{γn}∞

n=1
is symmetric. Therefore, by Theorem 3, P ◦ I{γn}∞

n=1
◦V{γn}∞

n=1
can be uniquely represented

in the form(
P ◦ I{γn}∞

n=1
◦V{γn}∞

n=1

)
(x) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn R̂k1
1 (x) · · · R̂kn

n (x),

where x ∈ (L1 ∩ L∞)[0,+∞) and βk1,...,kn ∈ C. Since the mapping V{γn}∞
n=1

is an isomor-
phism, it follows that(

P ◦ I{γn}∞
n=1

)
(y) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1

)
(y)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1

)
(y)
)kn

(12)

for every y ∈ (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
. Let us show that coefficients βk1,...,kn coincide with

respective coefficients αk1,...,kn , obtained in (11). Let us define the mapping T : L∞(Ωγ1)→

(L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
by

T(x)(t) =

{
x(t), if t ∈ Ωγ1

0, if t ∈
∞
t

n=2
Ωγn ,

where x ∈ L∞(Ωγ1). It can be verified that the mapping T is linear, isometric and injective.
We have the following diagram:

L∞[0, 1]
Wγ1−−−−−→ L∞(Ωγ1)

T−−−−−→ (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

) I{γn}∞n=1−−−−−→

I{γn}∞n=1−−−−−→ (L1 ∩ L∞)(Ω)
P−−−−−→ C.
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By (12),(
P ◦ I{γn}∞

n=1
◦ T ◦Wγ1

)
(x) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1
◦ T ◦Wγ1

)
(x)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1
◦ T ◦Wγ1

)
(x)
)kn

(13)

for every x ∈ L∞[0, 1]. Taking into account that P ◦ I{γn}∞
n=1
◦ T ◦Wγ1 = Qγ1 and R̃j ◦

V−1
{γn}∞

n=1
◦ T ◦Wγ1 = Rj for every j ∈ N, by (13),

Qγ(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

βk1,...,kn Rk1
1 (x) · · · Rkn

n (x)

for every x ∈ L∞[0, 1]. By the uniqueness of the representation (11), we obtain the equality
βk1,...,kn = αk1,...,kn for every k1, . . . , kn ∈ Z+ such that k1 + 2k2 + . . . + nkn = n. Therefore,
by (12),(

P ◦ I{γn}∞
n=1

)
(y) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1

)
(y)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1

)
(y)
)kn

,

for every y ∈ (L1 ∩ L∞)

(
∞
t

n=1
Ωγn

)
. Consequently, for every z ∈ (L1 ∩ L∞)(Ω), which

belongs to I{γn}∞
n=1

(
(L1 ∩ L∞)

(
∞
t

n=1
Ωγn

))
,

P(z) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1
◦ I−1
{γn}∞

n=1

)
(z)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1
◦ I−1
{γn}∞

n=1

)
(z)
)kn

.

Taking into account that(
R̂j ◦V−1

{γn}∞
n=1
◦ I−1
{γn}∞

n=1

)
(z) = R̃j(z)

for every j ∈ N,

P(z) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn

(
R̃1(z)

)k1 · · ·
(

R̃n(z)
)k1 (14)

for every z ∈ (L1 ∩ L∞)(Ω), which belongs to I{γn}∞
n=1

(
(L1 ∩ L∞)

(
∞
t

n=1
Ωγn

))
. As we can

see, coefficients in this equality do not depend on the choice of the sequence of indexes
{γn}∞

n=1.
Let us show that the equality (14) holds for every z ∈ (L1 ∩ L∞)(Ω). Let z be an

arbitrary element of the space (L1 ∩ L∞)(Ω). Since

‖z‖1 =
∫

Ω
|z(t)| dt = ∑

γ∈Γ

∫
Ωγ

|z(t)| dt
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is finite, there exists not more than a countable set of indexes γ ∈ Γ such that
∫

Ωγ
|z(t)| dt >

0. So, there exists a sequence of pairwise distinct indexes {γn}∞
n=1 ⊂ Γ such that z = 0 a. e.

on the set Ωγ for every index γ ∈ Γ \ {γn}∞
n=1. Therefore, z ∈ I{γn}∞

n=1

(
(L1 ∩ L∞)

(
∞
t

n=1
Ωγn

))
.

Consequently, for the element z the equality (14) holds. This completes the proof.

Theorem 4 and the Cauchy Integral Equation (2) imply the following corollary.

Corollary 1. Every function f ∈ Hbs((L1 ∩ L∞)(Ω)) can be uniquely represented in the form

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃

kn
n ,

where αk1k2 ...kn ∈ C, and the series converges uniformly on bounded sets.

Lemma 4. For every y ∈ (L1 ∩ L∞)(Ω), there exists xy ∈ L∞[0, 1] such that R̃n(y) = Rn(xy)
for every n ∈ N and the following estimate holds:

‖xy‖∞ ≤
2
M
‖y‖, (15)

where M is defined by (3).

Proof. Consider the sequence c = {cn}∞
n=1, where cn = R̃n(y) for n ∈ N. Since R̃n is an

n-homogeneous polynomial and ‖R̃n‖ = 1, by (1),

|R̃n(y)| ≤ ‖y‖n

for every n ∈ N. Consequently,

sup
n∈N

n
√
|cn| ≤ ‖y‖ < ∞.

Therefore, by Theorem 2, there exists xc ∈ L∞[0, 1] such that Rn(xc) = cn for every
n ∈ N and

‖xc‖∞ ≤
2
M

sup
n∈N

n
√
|cn| ≤

2
M
‖y‖,

where M is defined by (3). We set xy := xc. This completes the proof.

Let us define the mapping J : Hbs(L∞[0, 1]) → Hbs((L1 ∩ L∞)(Ω)) in the following
way. Let f ∈ Hbs(L∞[0, 1]). Then f can be uniquely represented in the form (4), that is,

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · R

kn
n . (16)

Let

J( f ) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃

kn
n . (17)

Let us show that J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)).

Proposition 5. J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)) for every f ∈ Hbs(L∞[0, 1]) and

‖J( f )‖r ≤ ‖ f ‖ 2
M r (18)
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for every r > 0, where M is defined by (3).

Proof. By Lemma 4, for every y ∈ (L1 ∩ L∞)(Ω) there exists xy ∈ L∞[0, 1] such that

R̃n(y) = Rn(xy) (19)

for every n ∈ N and the inequality (15) holds. By (16), (17) and (19),

J( f )(y) = f (xy) (20)

for every f ∈ Hbs(L∞[0, 1]) and y ∈ (L1 ∩ L∞)(Ω). By (15) and (20),

‖J( f )‖r = sup
{
|J( f )(y)| : y ∈ (L1 ∩ L∞)(Ω) such that ‖y‖ ≤ r

}
= sup

{
| f (xy)| : y ∈ (L1 ∩ L∞)(Ω) such that ‖y‖ ≤ r

}
≤ sup

{
| f (x)| : x ∈ L∞[0, 1] such that ‖x‖∞ ≤

2
M

r
}

≤ ‖ f ‖ 2
M r

(21)

for every f ∈ Hbs(L∞[0, 1]) and r > 0. Thus, we have proved (18).
Let f ∈ Hbs(L∞[0, 1]). Let us show that J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)). The inequality (21)

and the fact that f is the function of bounded type imply the fact that J( f ) is the function of
bounded type. By (17) and by the symmetry of R̃n, the function J( f ) is symmetric. Let us
show that J( f ) is entire. By Proposition 4,

lim sup
n→∞

‖Pn‖1/n
1 = 0, (22)

where P0 = α0 and
Pn = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · R

kn
n

for n ∈ N. Consider the series
∞

∑
n=0

P̃n, (23)

where P̃0 = α0 and
P̃n = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃

kn
n

for n ∈ N. Note that P̃n = J(Pn); therefore, by (21),

‖P̃n‖1 ≤ ‖Pn‖ 2
M

for every n ∈ N. By the n-homogeneity of the polynomial Pn,

‖Pn‖ 2
M

= sup
‖x‖≤ 2

M

|Pn(x)| = sup
‖x‖≤1

∣∣∣Pn

( 2
M

x
)∣∣∣ = ( 2

M

)n
sup
‖x‖≤1

|Pn(x)| =
( 2

M

)n
‖Pn‖1.

Therefore,

‖P̃n‖1 ≤
( 2

M

)n
‖Pn‖1. (24)

By (22) and (24),

0 ≤ lim sup
n→∞

‖P̃n‖1/n
1 ≤ 2

M
lim sup

n→∞
‖Pn‖1/n

1 = 0.
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Therefore,
lim sup

n→∞
‖P̃n‖1/n

1 = 0

and, consequently, by Proposition 4, the series (23) converges to some entire function on
the space (L1 ∩ L∞)(Ω) with the infinite radius of boundedness. By (17), this function is
J( f ). Consequently, J( f ) is an entire function of bounded type. Thus, J( f ) ∈ Hbs((L1 ∩
L∞)(Ω)).

Theorem 5. The mapping J, defined by (17), is an isomorphism of Fréchet algebras Hbs(L∞[0, 1])
and Hbs((L1 ∩ L∞)(Ω)).

Proof. Let us show that J is linear. Let f , g ∈ Hbs(L∞[0, 1]). Then functions f and g can be
uniquely represented as

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · R

kn
n ,

g = β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

βk1,...,kn Rk1
1 · · · R

kn
n

respectively. Let λ ∈ C. Note that

λ f = λα0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

λαk1,...,kn Rk1
1 · · · R

kn
n

and

f + g = α0 + β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

(αk1,...,kn + βk1,...,kn)Rk1
1 · · · R

kn
n .

Therefore,

J(λ f ) = λα0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

λαk1,...,kn R̃k1
1 · · · R̃

kn
n = λJ( f )

and

J( f + g) = α0 + β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

(αk1,...,kn + βk1,...,kn)R̃k1
1 · · · R̃

kn
n = J( f ) + J(g).

Thus, J is linear.
Let us show that J is continuous. Since J is a linear mapping between Fréchet al-

gebras, it follows that for J the continuity and the boundedness are equivalent. In turn,
the boundedness of J follows from (18). Thus, J is continuous.

Let us show that J is multiplicative. By (17),

J(Rk1
1 · · · R

kn
n ) = R̃k1

1 · · · R̃
kn
n (25)

for every n ∈ N and k1, . . . , kn ∈ Z+. As a consequence of Theorem 1, every symmetric
continuous polynomial P : L∞[0, 1]→ C can be uniquely represented as

P = α0 +
N

∑
n=1

∑
k1+2k2+...+nkn=n

αk1,...,kn Rk1
1 · · · R

kn
n ,
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where N ∈ N, k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C. Therefore, since J is linear, taking into
account (25),

J(P) = α0 +
N

∑
n=1

∑
k1+2k2+...+nkn=n

αk1,...,kn R̃k1
1 · · · R̃

kn
n . (26)

By using (26), it can be verified the equality

J(P1P2) = J(P1)J(P2) (27)

for arbitrary symmetric continuous polynomials P1, P2 : L∞[0, 1]→ C. Let f , g ∈ Hbs(L∞[0, 1]).
Let us show that J( f g) = J( f )J(g). Let f = ∑∞

n=0 fn and g = ∑∞
n=0 gn be the Taylor series

expansions of f and g respectively. Then

f g =
∞

∑
k=0

k

∑
s=0

fsgk−s.

Consequently, since J is linear and continuous, taking into account (26),

J( f g) =
∞

∑
k=0

k

∑
s=0

J( fsgk−s) =
∞

∑
k=0

k

∑
s=0

J( fs)J(gk−s) =

(
∞

∑
n=0

J( fn)

)(
∞

∑
n=0

J(gn)

)
= J( f )J(g).

Thus, J is multiplicative.
Let us show that J is a bijection. Let γ0 be an arbitrary element of Γ. Let v : L∞[0, 1]→

(L1 ∩ L∞)(Ω) be defined by
v = Jγ0 ◦Wγ0 , (28)

where Wγ0 is defined by (5), and Jγ0 is defined by (6). Since Wγ0 is a linear isometrical
bijection and Jγ0 is a linear isometrical injective mapping (by Lemma 2), it follows that v is
a linear isometrical injective mapping. Therefore, for every r > 0, the image of the closed
ball with the center at 0 and the radius r of the space L∞[0, 1] under v is a subset of the
closed ball with the center at 0 and the radius r of the space (L1 ∩ L∞)(Ω). Therefore,

sup
{
|g(v(x))| : x ∈ L∞[0, 1], ‖x‖∞ ≤ r

}
≤ sup

{
|g(y)| : y ∈ (L1 ∩ L∞)(Ω), ‖y‖ ≤ r

}
. (29)

for every function of bounded type g : (L1 ∩ L∞)(Ω) → C and for every r > 0. Let us
prove the following auxiliary statement.

Lemma 5. For every function f ∈ Hbs((L1 ∩ L∞)(Ω)), the function f ◦ v belongs to the Fréchet
algebra Hbs(L∞[0, 1]).

Proof of Lemma 5. Let f ∈ Hbs((L1 ∩ L∞)(Ω)). Since f is a function of bounded type, it
follows that the value ‖ f ‖r is finite for every r > 0. Therefore, by (29), the value ‖ f ◦ v‖r is
finite for every r > 0. Thus, the function f ◦ v is of bounded type.

Let us show that f ◦ v is symmetric. For every σ ∈ Ξ[0,1], let us define the function
σ̂ : Ω→ Ω by

σ̂(t) =
{

(w−1
γ0
◦ σ ◦ wγ0)(t), if t ∈ Ωγ0

t, if t ∈ Ω \Ωγ0 .

It can be checked that σ̂ ∈ ΞΩ and v(x ◦ σ) = v(x) ◦ σ̂ for every x ∈ L∞[0, 1]. Therefore,
taking into account the symmetry of f ,

( f ◦ v)(x ◦ σ) = f (v(x) ◦ σ̂) = f (v(x)) = ( f ◦ v)(x)

for every σ ∈ Ξ[0,1] and x ∈ L∞[0, 1]. Thus, f ◦ v is symmetric.
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Let us show that f ◦ v is an entire function. Since the function f is an entire function of
bounded type, its Taylor series, terms of which we denote by f0, f1, . . . , fn, . . ., is uniformly
convergent to f on every bounded subset of the space (L1 ∩ L∞)(Ω). By Proposition 4,

lim sup
n→∞

‖ fn‖1/n
1 = 0.

Consider the series
∞

∑
n=0

fn ◦ v. (30)

By (29), ‖ fn ◦ v‖1 ≤ ‖ fn‖1 for every n ∈ N. Consequently,

lim sup
n→∞

‖ fn ◦ v‖1/n
1 = 0,

that is, the series (30) converges uniformly to some entire function of bounded type on
every bounded subset of the space L∞[0, 1]. Let us show that this function is equal to
f ◦ v. Since ∑∞

n=0 fn converges uniformly to f on every bounded subset of (L1 ∩ L∞)(Ω), it
follows that for every ε > 0 and r > 0 there exists N ∈ N such that∥∥∥∥ f −

m

∑
n=0

fn

∥∥∥∥
r
< ε

for every m > N. Therefore, by (29),∥∥∥∥ f ◦ v−
m

∑
n=0

fn ◦ v
∥∥∥∥

r
≤
∥∥∥∥ f −

m

∑
n=0

fn

∥∥∥∥
r
< ε,

where m > N. Thus, the series (30) converges uniformly to f ◦ v on every bounded subset
of the space L∞[0, 1]. Consequently, the function f ◦ v is entire. This completes the proof of
Lemma 5.

We now continue with the proof of Theorem 5. Let us show that J is surjective. Let g
be an arbitrary element of Hbs((L1 ∩ L∞)(Ω)). Then g can be represented in the form

g = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃

kn
n . (31)

Let f = g ◦ v. By Lemma 5, f ∈ Hbs(L∞[0, 1]). By (31),

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn(R̃1 ◦ v)k1 · · · (R̃n ◦ v)kn .

Taking into account the equality R̃n ◦ v = Rn,

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · R

kn
n .

By (17), J( f ) = g. Thus, the mapping J is surjective and

J( f ) ◦ v = f (32)

for every f ∈ Hbs(L∞[0, 1]).
Let us prove that J is injective. Recall that J is linear. For a linear mapping, the in-

jectivity is equivalent to the fact that the image of every nonzero element is nonzero. Let
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f be a nonzero element of Hbs(L∞[0, 1]). Let us show that J( f ) 6= 0. Suppose J( f ) = 0.
Then J( f ) ◦ v = 0. Therefore, by (32), f = 0., which is a contradiction. Thus, J( f ) 6= 0.
Consequently, J is injective. So, J is bijective.

By (18) and (29),
‖ f ‖r ≤ ‖J( f )‖r ≤ ‖ f ‖ 2

M r

for every f ∈ Hbs(L∞[0, 1]) and for every r > 0. This inequality implies the continuity of J
and J−1. This completes the proof of Theorem 5.

4. Conclusions

This work is a significant generalization of the work [49]. We consider symmetric
functions on Banach spaces of all complex-valued integrable essentially bounded functions
on the unions of Lebesgue-Rohlin spaces with continuous measures. Note that there are a
lot of important measure spaces which can be represented as the abovementioned union.
For example, Rn for any n ∈ N with the Lebesgue measure is one such space. We investigate
algebras of symmetric polynomials and entire symmetric functions on the abovementioned
spaces. In particular, we show that Fréchet algebras of all complex-valued entire symmetric
functions of bounded type on these Banach spaces are isomorphic to the Fréchet algebra of
all complex-valued entire symmetric functions of bounded type on the complex Banach
space L∞[0, 1].

The next step in this investigation is to consider the case of unions of arbitrary
Lebesgue-Rohlin spaces.
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