
Citation: Alotaibi, R.; Nassar, M.;

Ghosh, I.; Rezk, H.; Elshahhat, A.

Inferences of a Mixture Bivariate

Alpha Power Exponential Model

with Engineering Application.

Axioms 2022, 11, 459. https://

doi.org/10.3390/axioms11090459

Academic Editors: Jiajuan Liang and

Kaitai Fang

Received: 8 August 2022

Accepted: 4 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Inferences of a Mixture Bivariate Alpha Power Exponential
Model with Engineering Application
Refah Alotaibi 1 , Mazen Nassar 2,3, Indranil Ghosh 4 , Hoda Rezk 5 and Ahmed Elshahhat 6,*

1 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

2 Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3 Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt
4 Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC 28403, USA
5 Department of Statistics, Al-Azhar University, Cairo 11651, Egypt
6 Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt
* Correspondence: aelshahhat@ftd.zu.edu.eg

Abstract: The univariate alpha power exponential (APE) distribution has several appealing charac-
teristics. It behaves similarly to Weibull, Gamma, and generalized exponential distributions with
two parameters. In this paper, we consider different bivariate mixture models starting with two
independent univariate APE models, and, in the latter case, starting from two dependent APE models.
Several useful structural properties of such a mixture model (under the assumption of two indepen-
dent APE distribution) are discussed. Bivariate APE (BAPE), in short, modelled under the dependent
set up are also discussed in the context of a copula-based construction. Inferential aspects under the
classical and under the Bayesian paradigm are considered to estimate the model parameters, and a
simulation study is conducted for this purpose. For illustrative purposes, a well-known motor data is
re-analyzed to exhibit the flexibility of the proposed bivariate mixture model.

Keywords: alpha power exponential mixture model; Bayesian approach; Gaussian copula; bivariate
model; EM algorithm; simulation study; motor data
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1. Introduction

Univariate continuous alpha power exponential distribution with two parameters
has received a considerable amount of attention among researchers working in the area
of distribution theory. Since the introduction of the model, an appreciable amount of
work has taken place on the development of bivariate APE distribution and its different
generalizations; for more information, see Ref. [1] and the references cited therein. In
this paper, we discuss several different bivariate APE models with various mixing mecha-
nisms. Noticeably, mixture distribution plays an important role in various data-analysis
purposes; see [2]. Precisely, if the data are coming from different subpopulations, and their
identifications are unknown, then the mixture distribution can be used quite effectively
to analyze the data set. Unlike any other symmetric distribution (for example, normal)
APE distribution is a skewed distribution. Consequently, if the subpopulations do not
have symmetric distribution, the mixture of APE resulting in a bivariate APE distribution
may be used to analyze these data. Furthermore, a multi-model distribution can be well
approximated by a mixture distribution. Not much work has been carried out on a bivariate
mixture of APE distribution.

This is an effort towards that direction. We consider two different mixing strategies
to construct the bivariate mixture APE (BMAPE type I). In both cases, we start with the
following: let X ∼ APE(α1, θ1) and Y ∼ APE(α2, θ2), and let them be independent. In
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the first, we consider a finite mixing strategy as described above and call it a BMAPE
distribution. While, in the second scenario, we consider a copula-based construction
approach. We consider a bivariate Gaussian copula to construct a copula-based bivariate
distribution which we call (henceforth) BMAPE (type I). One of the major objectives for a
copula-based construction is that we can better discuss the dependence structure between
two components. For a copula-based bivariate and multivariate distribution, see [3]. In the
next, we provide a non-exhaustive list of pertinent references that serves as motivation to
carry out the present work.

Statisticians and practitioners have been particularly interested in studying groups that
demonstrate similar behavior in response to pre-determined criteria. Refs. [4,5] developed
and utilized a method known as finite mixture distributions, and provided the majority
of the early evidence for the study of heterogeneous populations as a possible application
of finite mixture models. Studies focusing on heterogeneous populations became more
popular in the modern era as data-related computation facilities improved. For some
useful references, see [6–10] and the references cited therein. Starting with one parameter
exponential baseline distribution, Ref. [1] developed the alpha power exponential (APE)
distribution, discussed its several useful properties, and studied the associated statistical
inference. Ref. [11] introduced the alpha power Weibull distribution and demonstrated
that it provides superior modelling to several other generalizations of the Weibull distri-
bution, in particular, when modeling heterogenous population. To introduce the alpha
power generalized exponential (APGE) distribution, Ref. [12] employed the generalized
exponential baseline distribution and the alpha power transformation (APT) technique.
Ref. [13] developed closed-form expressions for the alpha power generalized exponential
(APGE) distribution’s moment properties. Ref. [14] presented a new family of APT-based
distributions by inverting the quantile function of any distribution as a function of the APT
cumulative distribution function (CDF). In the next, we provide a non-exhaustive list of
references related to APT-based mixture distributions that are developed in the univariate
domain. The alpha power exponentiated Weibull distribution was suggested by Ref. [3],
who investigated the general mathematical features of the APT family. Ref. [15] introduced
the Marshall Olkin alpha power family as a new generalization of the APT and a novel
approach to studying the mathematical properties of the APT model was introduced by
Ref. [16]. The probability density function (PDF) and the hazard functions of the APE
distribution are similar to those of the Weibull, Gamma, and generalized exponential (GE)
distributions under certain specific choices of the model parameters. As a result, it can be
used as a variable alternative for the widely used Weibull, Gamma, and GE distributions.
Specially, when, component-wise, each one of them cannot provide best fit, such a mixture
mode will be a good fit. As the CDF of the APE distribution has a closed form which is
analytically tractable, it can be used to analyze censored data sets as well.

Mixture distributions are made up of a finite or an infinite number of components,
which may be comprised of several different distributions, and can be used to represent
various aspects of data for example, two of the most notable studies that explore different
sorts of combinations of distributions can be found in Refs. [17,18]. Discussion on a finite
three-component mixture of exponential distribution can be found in Ref. [19]. In the
literature, there are not many references of finite and/or infinite mixtures of probability
models. A non-exhaustive list of references can be cited as follows. A mixture of bivariate
exponential distributions (MBE), in which the authors predicted the elements of MBE are
given in Ref. [20]. Discussion on a new bivariate distribution whose both marginals are
finite mixtures of gamma distribution are nicely explored in Ref. [21]. For a review of known
bivariate distributions, we refer the readers to Refs. [22–24]. The univariate exponential
distribution is one of the most celebrated distributions because of its importance in many
lifetime applications and its structural properties. Consequently, if we consider a simple
bivariate expansion, there might be limitations due to properties, especially for modeling
heterogenous data. This motivates us to consider a mixture form that will have many
desirable properties. In this article, we propose and study a finite mixture of a bivariate
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continuous probability model arising from two independent univariate APE distributions,
which we call BMAPE, in short. In this paper, we consider various mechanisms of mixing
univariate APE distributions to construct a bivariate mixture of APE models, which are
listed below:

(i) In the first case, we start with two independent and univariate APE with parame-
ters (α1, α2, θ) and (µ1, µ2, λ) with α1 6= α2, µ1 6= µ2. Further, we assume that α1,
α2, µ1, µ2 are random variables. Then, using the methodology of compounding, we
develop the bivariate APE distribution, and, for the sake of notational simplicity, call
it the BMAPE (type-I) distribution.

(ii) In the second scenario, we consider a copula-based construction approach. We con-
sider a bivariate Gaussian copula in which the margins are two univariate and inde-
pendent APE distributions with the coupling parameter ρ. For notational simplicity,
we call this the BMAPE (type-II) distribution, for more details of copula based on
construction and associated properties, see [25].

The remainder of the paper is laid out as follows. In Section 2, we describe the BMAPE
(type-I) distribution and discuss its properties. In Section 3, we provide some useful proper-
ties of the BMAPE (type-I) distribution, including the survival function, hazard rate function
and conditional moments. In Section 4, we look at how the expectation-maximization (EM)
technique can be used to estimate model parameters for BMAPE (type-I) distribution.
The estimation approach for the BMAPE (type-II) distribution formed using the bivariate
Gaussian copula is discussed in Section 5. In Section 6, we investigate how to estimate
model parameters under the Bayesian paradigm. In Section 7, the simulation results are
reported. A well-known Motor data set was re-analyzed in Section 8 to demonstrate the
efficacy of the suggested BMAPE type models. Finally, in Section 9, we wrap up the paper
with some concluding remarks.

2. The APE Model with a Bivariate Mixture

We will start with two independent univariate APE distributions with parameters of
(α, θ) and (µ, λ), respectively. We employ here the strategy of compounding by assuming
that α and µ are random variables; then, the marginal joint distribution of Xin and Yin may
be derived from the joint distribution of α and µ respectively, which is given as follows

h1x,y(x, y) =
x

h1(x, y, α, µ)dα dµ, (1)

where Xin and Yin are independent APE distributions. Next, we consider two different
scenarios in the context of the nature of the distributions of Xin and Yin. From (1), one may
obtain the desired BMAPE (type-I) distribution.

We generate a bivariate mixture of the APE distribution in two scenarios. In the
first scenario, Xin and Yin are independent APE distributions with a generalized bivariate
Bernoulli distribution for the shape parameters as

µ1 µ2

P =
α1
α2

[
Pα1µ1 Pα1µ2

Pα2µ1 Pα2µ2

]
.

A random variable with an APE distribution has a CDF and a PDF for Xin > 0, given
by, respectively,

F(xin, α, θ) =
α1−e−θxin − 1

α− 1
, xin > 0, θ α > 0, i = 1, 2, (2)

f (xin, α, θ) =
θlog(α)e−θxin α1−e−θxin

α− 1
, xin > 0, (3)

where α and θ are the shape and scale parameters.



Axioms 2022, 11, 459 4 of 27

Next, in order to construct a finite mixture of bivariate alpha power exponential model,
we proceed as follows:

(i) We consider Xi ∼ APE (αi, θ) ∀i = 1, 2, where α1 and α2 are random and θ is
fixed, and each are independent for fixed choices of α1 and α2. Likewise, Yi ∼
APE (µi, λ) ∀i = 1, 2, where µ1 and µ2 are random and λ is fixed.

(ii) Next, we further assume that (X1, X2) and (Y1, Y2) are independent but (αi , µi),
∀i = 1, 2, are correlated through their bivariate generalized Bernoulli distribution
with the shape parameter (αi , µi), assuming the following probability matrix.

µ1 µ2

P =
α1
α2

[
Pα1µ1 Pα1µ2

Pα2µ1 Pα2µ2

]
,

where P is the mixing component with the condition ∑2
i=1 Pαiµi = 1.

Let h1(x, y) be the joint PDF created from the marginal densities of (xi , yi),
i = 1, 2, given earlier.

Then, the joint density of (x, y) can be written as

h1x,y(x, y) = f (x1|α1, θ) g(y1|µ1, λ)Pα1µ1 + f (x2
∣∣α1, θ

)
g(y2|µ2, λ)Pα1µ2

+ f (x2|α2, θ) g(y1|µ1, λ)Pα2µ1 + f (x2
∣∣α2, θ

)
g(y2|µ2, λ)Pα2µ2 ,

(4)

Then,

h1(x, y) = Pα1µ1

(
θlog(α1)e−θx1 α1−e−θx1

1
α1−1 × λlog(µ1)e−λy1 µ1

1−e−λy1

µ1−1

)
+Pα1µ2

(
θlog(α1)e−θx1 α1

1−e−θx1

α1−1 × λlog(µ2)e−λy2 µ2
1−e−λy2

µ2−1

)
+Pα2µ1

(
θlog(α2)e−θx2 α2

1−e−θx2

α2−1 × λlog(µ1)e−λyµ1
1−e−λy

µ1−1

)
+Pα2µ2

(
θlog(α2)e−θx2 α2

1−e−θx2

α2−1 × λlog(µ2)e−λy2 µ2
1−e−λy2

µ2−1

)
, xi > 0, yi > 0.

(5)

For this model, it appears that, for a valid PDF, we must have this constraint α,
µ > 0 and α, µ 6= 1.

To make things easier in terms of writing and visualization, let a = Pα1µ1 , b = Pα1µ2 ,
c = Pα2µ1 and d = Pα2µ2 . Depending on a variety of choices for the mixing parameters
a, b, c, d, θ, λ, αi and µi for i = 1, 2, several shapes of the joint PDF in (5) are provided
in Figure 1. Moreover, several contour plots for various values of a, b, c and d when
(α1, α2, µ1, µ2, θ, λ) = (9, 7, 6, 5, 1.2, 0.6) are displayed in Figure 2. As one might expect, not
all four components may be required in applications to real-world data sets. Consequently,
some constraints can be applied, such as b = c = 0, a = d = 0 or a = b = c = 0, as
appropriate. These constraints result in correlation values of +1,−1, and 0 among the shape
parameter, respectively.
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Figure 1. Joint density plot of the BMAPE (type-I) distribution for the selected parameter choices.
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Figure 2. Contour plot of the BMAPE (type-I) distribution for the selected parameter choices.

The marginal densities of X and Y, respectively, from the joint PDF in (5) are not avail-
able in closed form; one may consider some numerical methods to obtain an approximate
expression. The CDF for the joint model will be
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F(x, y) =
∫ y

0

∫ x
0 h1(t, s)dt ds =

∫ y
0

∫ x
0

[
a
(

θlog(α1)e−θtα1−e−θt
1

α1−1 × λlog(µ1)e−λsµ1−e−λs
1

µ1−1

)
+b
(

θlog(α1)e−θtα1−e−θt
1

α1−1 × λlog(µ2)e−λsµ1−e−λs
2

µ2−1

)
+c
(

θlog(α2)e−θtα1−e−θt
2

α2−1 × λlog(µ1)e−λsµ1−e−λs
1

µ1−1

)
+d
(

θlog(α2)e−θtα1−e−θt
2

α2−1 × λlog(µ2)e−λsµ1−e−λs
2

µ2−1

)]
dtds

= a

(
α1−e−θx

1 −1
)(

µ1−e−λy
1 −1

)
(α1−1)(µ1−1) + b

(
α1−e−θx

1 −1
)(

µ1−e−λy
2 −1

)
(α1−1)(µ2−1) + c

(
α1−e−θx

2 −1
)(

µ1−e−λy
1 −1

)
(α2−1)(µ1−1) + d

(
α1−e−θx

2 −1
)(

µ1−e−λy
2 −1

)
(α2−1)(µ2−1) .

(6)

For (6), to be a valid CDF, we must have

(i) F(x, y) ≥ 0, ∀(x, y) ∈ R+ ⇐⇒ α1, µ1, α2, µ2 > 0 and α1, µ1, α2, µ2 6= 0.
(ii) limx,y→0F(x, y) = 0.
(iii) limx,y→∞F(x, y) = 1.

Next, one may obtain the marginal survival functions for the smallest order statistics
for a random sample of size two. For example, let w1 = min{X, Y}, then, FW1(w1) =
P{min(X, Y) > w1} = P{X > w1, Y > w1}, while

FW2(W2) = P{max(X, Y) < w2} = P{X ≤ w2, Y ≤ w2} (7)

From (7), one can obtain the associated PDF for W2. We discuss some useful structural
properties in the next section for the BMAPE (type-I) distribution.

3. Structural Properties

Theorem: The BMAPE (type I) distribution is log-concave. Taking the negative loga-
rithm of (5), for 0 < x < y < ∞ (or for 0 < y < x < ∞), we obtain

− log[h1(x, y)] = −log


Pα1µ1

(
θlog(α1)e−θxα1−e−θx

1
α1−1 × λlog(µ1)e−λyµ1

1−e−λy

µ1−1

)
+ Pα1µ2

(
θlog(α1)e−θxα1

1−e−θx

α1−1 × λlog(µ2)e−λyµ2
1−e−λy

µ2−1

)
+Pα2µ1

(
θlog(α2)e−θxα2

1−e−θx

α2−1 × λlog(µ1)e−λyµ1
1−e−λy

µ1−1

)
+ Pα2µ2

(
θlog(α2)e−θxα2

1−e−θx

α2−1 × λlog(µ2)e−λyµ2
1−e−λy

µ2−1

)
. (8)

Next, taking partial derivatives w.r.t. x and y of (8), respectively, we obtain

Dy[Dx(−log(h1(x, y)))] =
{(

Pα1µ2 Pα2µ1 − Pα1µ1 Pα2µ2

)
e−θx−λyθλ(α1 − 1)αe−θx+1

1 (α2 − 1)αe−θx+1
2

}
×
{
(µ1 − 1)(µ2 − 1)µ1

1+e−λy
µ2

1+e−λy
log(α1)[log(α1)− log(α2)]

}
{log(α2)log(α1)[log(µ1)− log(µ2)]}

×
{

α1(α2 − 1)αe−θx
2 log(α1)

[
Pα1µ1 µ1log(µ1)(µ2 − 1)µ2

e−λy
+ Pα1µ2 µ2log(µ2)(µ1 − 1)µ1

e−λy
]}

×
{
+(α1 − 1)αe−θx

1 α2log(α2)
[

Pα2µ1 µ1log(µ1)(µ2 − 1)µ2
e−λy

+ Pα2µ2 µ2log(µ2)(µ1 − 1)µ1
e−λy

]}−2
.

(9)

It is obvious from (9) that, provided α1 > 1, µ1 > 1, α2 > 1, µ2 > 1, the expression
in (9) is greater than zero with the assumption that Pα1µ2Pα2µ1 > Pα1µ1Pα2µ2 , i.e., the joint
density in (5) is log-concave.

The BMAPE (type-I) distribution’s survival function will be

R(x, y) = P(X > x, Y > y) = 1− P(X < x)− P(Y < y) + P(X < x, Y < y) = 1− FX(x)− FY(y) + FX,Y(x, y) (10)

The marginal distribution functions of X and Y are FX(x) and FY(y), respectively. The
following is the hazard rate function (hrf):
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hr f (x, y) = (1− FX(x)− FY(y) + FX,Y(x, y))−1 ×



a
(

θlog(α1)e−θxα1−e−θx
1

α1−1 × λlog(µ1)e−λyµ1
1−e−λy

µ1−1

)
+b
(

θlog(α1)e−θxα1
1−e−θx

α1−1 × λlog(µ2)e−λyµ2
1−e−λy

µ2−1

)
+c
(

θlog(α2)e−θxα2
1−e−θx

α2−1 × λlog(µ1)e−λyµ1
1−e−λy

µ1−1

)
+d
(

θlog(α2)e−θxα2
1−e−θx

α2−1 × λlog(µ2)e−λyµ2
1−e−λy

µ2−1

)


.

For each fixed Y = y, the conditional PDF of X given Y as well as Y given X are given,
respectively, by

f ( x|y) = h1(x, y)
h1y(y)

and f (y|x) = h1(x, y)
h1x(x)

.

Proposition 1. Let (X, Y) ∼ BMAPE (type I) (a, b, c, d, α1, α2, µ1, µ2, θ, λ). Then, (X,Y)
has a positive association with a total positivity of order 2 (TP2), provided (α1, α2, µ1, µ2) > 1.
Observe that an absolute continuous bivariate random vector, such as (U1, U2), has the TP2
property if and only if for each u11, u12, u21, and u22, whenever u11 < u12 and u21 > u22,
it satisfies fU1, U2(u11, u21) fU1, U2(u11, u12) − fU1,U2(u12, u21) fU1, U2(u11, u22) ≥ 0, where
fU1, U2(u1, u2) is the joint PDF. Take distinct ordered u11, u12, u21 and u22 such that u11 < u12
and u21 > u22 , and our result follows instantly. Consequently, the positive quadrant dependence
property (also known as the TP2 property) would reveal a number of non-increasing features relating
to conditional survival, the conditional CDF of X given Y, and Y given X, as well as the following
finding: g1(.) and g2(.), Cov(g1(X), g2(Y) ) ≥ 0.

Proposition 2. Shape of the distribution
A critical point in a two-variable function is where the first-order partial derivatives are equal

to zero. The following are the two most compelling reasons to investigate the critical points of a
bivariate distribution:

(1) A real-life data set (or sets) can assume a variety of shapes. A study such as this can help
determine the adaptability of this bivariate distribution.

(2) When working with bivariate distributions, it is essential to examine the joint PDF’s tails
as well as the point of inflection. This study is useful in the context of data fitting, as data
sets having heavier tails and/or which are small can be adequately modeled by a distribution
exhibiting one of these features, as appropriate. Critical-point(s) knowledge will aid in a better
understanding of these features, as will be illustrated in Appendix A.

4. Inference

In this section, we consider the estimation of the model parameters of the BMAPE
(type-I) distribution using the EM algorithm. The EM algorithm, originally proposed by [2],
is an iterative approach for determining the maximum likelihood estimator of a parameter
in a parametric probability distribution. To use the EM technique, we combine the data
(xk, yk), k = 1, . . . , n (to be obtained from a random sample of size n obtained from the
associated joint density) with the group membership variables Φk = (ak, bk, ck), k = 1, . . . , n,
where ak is an indicator variable that is one if the kth observation is in f (x, α1, µ1) and
zero otherwise. Similarly, we have four groups fij, i, j = 1, 2, for bk, ck, with the following
densities of

fij(x, y) = fi(x) f j(y) =
θ1log(α)e−θ1xα1−e−θ1x

α− 1
λ1log(µ)e−λ1yµ1−e−λ1y

µ− 1
,

where P( f11) = a, P( f12) = b, P( f21) = c, and P( f22) = 1− a− b− c are the equivalent
mixing proportions.
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The associated log likelihood function for the complete sample `ij(x, y) = log fij(x, y),
is symbolized by:

` = ∑n
k=1 ak`11(xk, yk) + ∑n

k=1 bk`12(xk, yk) + ∑n
k=1 ck`21(xk, yk) + ∑n

k=1(1− ak − bk − ck)`22(xk, yk). (11)

The EM method has two steps: Step-E (expectation) and Step-M (maximization) in
each iteration. As the group membership variables represented as Φk are linear, we replace
the related expected values in (11) with the current estimates (α̂1, µ̂1, α̂2, µ̂2, λ̂, θ̂, â, b̂, ĉ) of
the parameters determined and, subsequently, an update occurs. For more information on
this topic, see [26] as:

âk =
â f11(xk, yk)

â f11(xk, yk) + b̂ f12(xk, yk) + ĉ f21(xk, yk) +
(

1− â− b̂− ĉ
)

f22 (xk , yk)
.

Similarly, for bk and ck, apply the same technique, as follows:

b̂k = b̂ f12(xk , yk)

â f11(xk , yk)+b̂ f12(xk , yk)+ĉ f21(xk , yk)+(1−â−b̂−ĉ ) f22 (xk ,yk)

and ĉk = ĉ f21(xk , yk)

â f11(xk , yk)+b̂ f12(xk , yk)+ĉ f21(xk , yk)+(1−â−b̂−ĉ ) f22 (xk ,yk)
.

Following that, in the M-step, we maximize (11) across (λ, θ, α1, α2, µ1, µ2) for fixed
values of Φk. The conditional independence of X and Y given the group membership
achieves maximization by differentiating (11), which are:

∂ι

∂α1
=
−n

α1 − 1 ∑n
k=1(ak + bk) +

n
α1 log(α1)

∑n
k=1(ak + bk) +

1
α1

∑n
k=1(ak + bk)

(
1− e−θx

)
, (12)

∂ι

∂µ1
=
−n

µ1 − 1 ∑n
k=1(ak + ck) +

n
µ1 log(µ1)

∑n
k=1(ak + ck) +

1
µ1

∑n
k=1(ak + ck)

(
1− e−λy

)
, (13)

∂ι

∂α2
=
−n

α2 − 1 ∑n
k=1(ck + dk) +

n
α1 log(α1)

∑n
k=1(ck + dk) +

1
α1

∑n
k=1(ck + dk)

(
1− e−θx

)
, (14)

∂ι

∂µ2
=
−n

µ2 − 1 ∑n
k=1(bk + dk) +

n
µ2 log(µ2)

∑n
k=1(bk + dk) +

1
µ1

∑n
k=1(bk + ck)

(
1− e−λy

)
, (15)

∂ι

∂θ
=

n
θ ∑n

k=1(ak + bk + ck + dk)−∑n
k=1(ak + bk + ck + dk)xk − log(α1)∑n

k=1 xk(ak + bk)e
−θxk − log(α2)∑n

k=1 xk(ck + dk)e
−θxk , (16)

and
∂ι

∂λ
=

n
λ ∑n

k=1(ak + bk + ck + dk)−∑n
k=1(ak + bk + ck + dk)yk − log(µ1)∑n

k=1 yk(ak + ck)e
−λyk − log(µ2)∑n

k=1 yk(bk + dk)e
−λyk . (17)

The M-step is then completed by setting

â = n−1 ∑n
k=1 ak, etc. (18)

The model parameters must have a starting value to initiate the process, which is
denoted by the symbol Φ(0). To ensure that the proposed EM algorithm’s rate of conver-
gence does not become significantly sluggish, careful selection of these initial values is
required. Another factor to consider is that the maximum likelihood equation may have
several solutions corresponding to local maxima, necessitating careful selection of starting
values. In the literature, some discussion on the identification of starting value(s) have
been discussed and the references cited therein. The “coda” and “maxLik” of R package
were used to quantitatively solve these equations. After obtaining the maximum likelihood
estimators (MLEs) for α1, µ1, α2, µ2, θ, λ, δ, ρ11, ρ12, ρ21 and ρ22, we replace these estimates
in (ak, bk, ck). Then, the M-step is completed by setting â = n−1 ∑n

k=1 ak, and the process
continues. To produce initial values for the mixing proportions individually, the matching
moment’s method for the marginal univariate APE parameter is employed. The BMAPE
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(type-I) parameter estimates are used as the starting points for the EM technique. Then,
assuming that the two variables X and Y are independent, we combine the marginal mixing
parameter moment estimators to obtain initial values for the bivariate mixing parameters.
Specific details are provided in Section 7, and, more specifically, in Tables 2–4. By assuming
that the two variables X and Y are independent, as in (3) and (4), we combine the marginal
mixing parameter of moment estimators to obtain initial values for the bivariate mixing
parameters. We equate (12)–(17) to zero to obtain the estimates of the BMAPE (type-I) distri-
bution’s parameter. Approximate confidence intervals (ACIs) of the unknown parameters
are also obtained. This part is not investigated here but its results are presented numerically
in Sections 7 and 8.

5. BMAPE (Type-II) Model Gaussian Copula Distribution

In this scenario, the proposed BMAPE model uses APE marginals and provides a
reasonable flexibility in terms of marginals and the associated correlation structure. A
copula is a useful tool for constructing bivariate and multivariate distributions, see [24,25]
and the references cited therein. Copulas are extensively employed and play a vital part
in the study of dependency. Several bivariate and multivariate lifetime distributions have
been proposed by Refs. [27,28] on using a wide variety of couples. In this paper, we discuss
the construction of a BMAPE (type-II) distribution via bivariate Gaussian copula with two
APE marginals.

5.1. BMAPE (Type-II) Distribution Based on a Gaussian Copula

Any multivariate distribution may be decomposed into a copula and its continuous
marginal, according to Ref. [29]. Copulas are useful tools in a bivariate scenario to combine
two marginal distributions such that, for every bivariate distribution function F(x,y), with
continuous marginal F(x) and F(y), one can write

F(x, y) = C{F(x), F(y)}, (x, y) ∈ R. (19)

The density function associated with the bivariate distribution will be

f (x, y) = f (x) f (y)C(F(x), F(y)), (20)

where C{ F(x), F(y)} = ∂2

∂u∂v [C(u, v)] is the density function of a copula; see [30].
As explained, there are a variety of options for building BMAPE (type-II) distributions

using copulas and APE marginals (1). A bivariate Gaussian copula is defined as

CNormal(u, v) = Φ2
(

Φ−1(u), Φ−1(v); ρ
)

, (21)

where Φ2 is the joint CDF of a bivariate normal vector with zero means, unit variates, and
correlation coefficient ρ.

Here, we denote the joint distribution of the two variables as Xd and Yd where d
symbolizes the phrase dependence. The joint PDF of Xd and Yd based on Gaussian cop-
ula becomes

f (xd, yd) = f (xd) f (yd)

{
1√

1− ρ2
(exp[

−ρ

2(1− ρ2)

{
ρ
(

z2
1 + z2

2

)
− 2z1z2

}
])

}
, (22)

where Z1 and Z2 are latent random variable as well as f (xd) and f (yd) being the density
functions of APE distributions provided in (3) and (4), and ρ ∈ [−1, 1] the dependence
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parameter. The BAPE (type-II) distribution PDF is generated if the marginals are from an
APE distribution.

f (xd, yd, α, µ, θ, λ) =

(
θlog(α)e−θxd α1−e−θxd

α−1

)(
λlog(µ)e−λyd µ1−e−λyd

µ−1

)
×
{

1√
1−ρ2

(exp[ −ρ

2(1−ρ2)

{
ρ
(
z2

1 + z2
2
)
− 2z1z2

}
])

}
, I(xd, yd),

and ( α, µ, θ, λ) > 0. Assuming that Xd and Yd are dependent APE distributions with a
generalized bivariate Bernoulli distribution for the shape parameters αi, µi and, hence, the
PDF of the BMAPE (type-II) distribution is defined as

f (xd, αi, θ) =
2

∑
i=1

mi f ((xd)i, αi, θ)i,

where the mixing proportions are mi, and it must satisfy ∑2
i=1 mi = 1, and mi ≥ 0, all of

which are unknown. The first component of APE’s density is provided by (3). The PDF of
the first component of APE is given by

f (xd, α, θ) =
θlog(α)e−θxd α1−e−θxd

α− 1
, xd > 0, (23)

where θ is a fixed-scale parameter, θ > 0, and α is a random-shape parameter, α > 0, which
takes two distinct values of α1 and α2. Let Yd have an APE mixing density and the PDF of
the second component APE be determined by Yd for a fixed-scale parameter λ

g(yd, µ, λ) =
λlog(µ)e−λyd µ1−e−λy

µ− 1
, yd > 0, (24)

with the values µ1 and µ2 being a random-shape parameter. We suppose that Xd and Yd
are dependent for given values (α, µ) and that α and µ are associated by their generalized
bivariate distribution with the following probability matrix provided by

µ1 µ2

md =
α1
α2

[
mα1µ1 mα1µ2

mα2µ1 mα2µ2

]
.

If f (xd, yd) is the combined PDF of (Xd, Yd), then

f (xd, yd) = f (xd|α1, θ)g(yd|µ1, λ)c(F( xd|α1, θ), G(yd|µ1, λ))mα1µ1

+ f (xd|α1, θ)g(yd|µ2, λ)c(F( xd|α1, θ), G(yd|µ2, λ))mα1µ2

+ f (xd|α2, θ)g(yd|µ1, λ)c(F( xd|α2, θ), G(yd|µ1, λ))mα2µ1

+ f (xd|α2, θ)g(yd|µ2, λ)c(F( xd|α2, θ), G(yd|µ2, λ))mα2µ2 .

(25)

The joint PDF in (25) can take on a variety of shapes, similar to the joint PDF in (4).
For simplicity, let xd = x, yd = y, a = mα1µ1 , b = mα1µ2 , c = mα2µ1 and mα2µ2 ; as a result,
the BMAPE (type-II) distribution PDF will be
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f (x, y, α1, α2, θ, µ1, µ2, λ) ={
a

(α1−1)(µ1−1)

(
θlog(α1)e−θxα1−e−θx

1

)(
λlog(µ1)e−λyµ1−e−λy

1

){
1√

1−ρ2
11

(exp[ −ρ11

2(1−ρ2
11)

{
ρ11
(
z2

1 + z2
2
)
− 2z1z2

}
])

}
+

b
(α1−1)(µ2−1)

(
θlog(α1)e−θxα1

1−e−θ1 x
)(

λlog(µ2)e−λyµ2
1−e−λy

){
1√

1−ρ2
12

(exp[ −ρ12

2(1−ρ2
12)

{
ρ12
(
z2

1 + z2
2
)
− 2z1z2

}
])

}
+

c
(α2−1)(µ1−1)

(
θlog(α2)e−θxα2

1−e−θx
) (

λlog(µ1)e−λyµ1
1−e−λy

){
1√

1−ρ2
21

(exp[ −ρ21

2(1−ρ2
21)

{
ρ21
(
z2

1 + z2
2
)
− 2z1z2

}
])

}
+

d
(α2−1)(µ2−1)

(
θlog(α2)e−θxα1−e−θx

)(
λlog(µ2)e−λyµ2

1−e−λy
){

1√
1−ρ2

22

(exp[ −ρ22

2(1−ρ2
22)

{
ρ22
(
z2

1 + z2
2
)
− 2z1z2

}
])

}}
,

I(xd, yd), ( α, µ, θ, λ) > 0, and ρij ∈ [−1, 1] denotes the dependence parameter.

(26)

5.2. Gaussian Copula and the EM Algorithm

Here again, the EM algorithm is introduced. To use the EM technique, we supplement
the data (xk, yk); k = 1, . . . , n, with the group membership variables (adk, bdk, cdk), k = 1, . . . ,
n, where adk is one if the kth observation is in fij (x, y, α1, µ1, θ, λ, ρ11), and zero otherwise.
Similarly, we have four groups fij, i, j = 1, 2 for bdk, cdk, with densities as

fij
(
x, y, αi , µi , θ, λ, ρij

)
=
(

θlog(αi)e−θxαi
1−e−θx

)(
λlog(µi)e−λyµi

1−e−λy
)

exp
(

−ρij

2(1−ρij
2)

{
ρij
(
z2

1 + z2
2
)
− 2z1z2

})
√

1− ρij
2

, x, y, αi , µi , θ, λ > 0, (27)

where ρij ∈ [−1, 1] denotes the dependence parameter. Let P( f11) = ad, P( f12) = bd,
P( f21) = bd and P( f22) = 1− ad − bd − ad be the mixing proportions. We define `ij (x, y) =
log fij

(
x, y, αi, µi, θ, λ, ρij

)
and then the EM algorithm as a technique of estimate by finding

the complete log likelihood, say `d, is given as follows:

`d = ∑n
k=1 adk `11 (xk, yk)+∑n

k=1 bdk `12 (xk, yk)+∑n
k=1 cdk `21 (xk, yk)+∑n

k=1(1− adk − bdk − cdk)`22 (xk, yk). (28)

As the group membership variables (adk, bdk, cdk) are linear, we enter their predicted
values into (28) in the E-step, given the current estimates (α̂1, µ̂1, α̂2, µ̂2, θ̂, θ̂, λ̂, λ̂, ρ̂11, ρ̂12,
ρ̂21, ρ̂22, âd, b̂d, ĉd) of the parameter, computed as:

âdk =
âd f11 (xk, yk)

âd f11 (xk, yk) + b̂d f12 (xk, yk) + ĉd f21 (xk, yk) +
(

1− âd − b̂d − ĉd

)
f22 (xk, yk)

,

Similarly, we use the same approach for bdk and cdk. It is worth noting that the above
algebraic simplification may be required to obtain numerical solution. For fixed values of
(adk, bdk, cdk), we maximize (28) over (α1, µ1, α2, µ2, θ, λ, ρ11, ρ12, ρ21, ρ22). The univariates
and the Gaussian copula parameter can be dealt with separately.

Then, differentiating (28) results in

∂l
∂α1

=
n ∑n

k=1(ak + bk )

α1log(α1)
+

1
α1

∑n
k=1(ak + bk)

(
1− e−θx

)
, (29)

∂l
∂α2

=
n ∑n

k=1(ck + dk )

α2log(α2)
+

1
α2

∑n
k=1(ck + dk)

(
1− e−θx

)
, (30)

∂l
∂µ1

=
n ∑n

k=1(ak + ck )

µ1log(µ1)
+

1
µ1

∑n
k=1(ak + ck)

(
1− e−λy

)
, (31)

∂l
∂µ2

=
n ∑n

k=1(bk + dk )

µ2log(µ2)
+

1
µ2

∑n
k=1(bk + dk)

(
1− e−λy

)
, (32)
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∂l
∂θ

=
n
θ ∑n

k=1(ak + bk + ck + dk)−∑n
k=1 x(ak + bk + ck + dk) + ∑n

k=1 x log(α1)(ak + ck)e
−θx + ∑n

k=1 x log(α2)(bk + dk)e
−θx, (33)

∂l
∂λ

=
n
λ ∑n

k=1(ak + bk + ck + dk)−∑n
k=1 y(ak + bk + ck + dk) + ∑n

k=1 y log(µ)(ak + bk + ck + dk)e−λy, (34)

∂l
∂ρ11

= ak
(α1−1)(µ1−1)

(
θlog(α1)e−θxα1−e−θx

1

)(
λlog(µ1)e−λyµ1−e−λy

1

)
×


ρ11(exp[ −ρ11

2(1−ρ2
11)
{ρ11(z2

1+z2
2)−2z1z2}√

(1−ρ2
11)

3 +
√

1− ρ2
11(exp[ −ρ11

2(1−ρ2
11)

{
ρ11
(
z2

1 + z2
2
)
− 2z1z2

}
+
(
1− 3ρ2

11
){

ρ11
(
z2

1 + z2
2
)
− 2z1z2

}
+
{(

ρ11 − ρ3
11
)(

z2
1 + z2

2
)}

,
(35)

∂l
∂ρ12

= bk
(α1−1)(µ2−1)

(
θlog(α1)e−θxα1−e−θx

1

)(
λlog(µ2)e−λyµ1−e−λy

2

)
×


ρ12(exp[ −ρ12

2(1−ρ2
11)
{ρ12(z2

1+z2
2)−2z1z2}√

(1−ρ2
12)

3 +
√

1− ρ2
12(exp[ −ρ12

2(1−ρ2
12)

{
ρ12
(
z2

1 + z2
2
)
− 2z1z2

}
+
(
1− 3ρ2

12
){

ρ12
(
z2

1 + z2
2
)
− 2z1z2

}
+
{(

ρ12 − ρ3
12
)(

z2
1 + z2

2
)}

,
(36)

∂l
∂ρ21

= ck
(α2−1)(µ1−1)

(
θlog(α2)e−θxα1−e−θx

2

)(
λlog(µ1)e−λyµ1−e−λy

1

)
×


ρ21(exp[ −ρ21

2(1−ρ2
21)
{ρ21(z2

1+z2
2)−2z1z2}√

(1−ρ2
21)

3 +
√

1− ρ2
21(exp[ −ρ21

2(1−ρ2
21)

{
ρ21
(
z2

1 + z2
2
)
− 2z1z2

}
+
(
1− 3ρ2

21
){

ρ21
(
z2

1 + z2
2
)
− 2z1z2

}
+
{(

ρ21 − ρ3
21
)(

z2
1 + z2

2
)}

,
(37)

and

∂l
∂ρ22

= dk
(α2−1)(µ2−1)

(
θlog(α2)e−θxα1−e−θx

2

)(
λlog(µ2)e−λyµ1−e−λy

2

)
×


ρ22(exp[ −ρ22

2(1−ρ2
22)
{ρ22(z2

1+z2
2)−2z1z2}√

(1−ρ2
22)

3 +
√

1− ρ2
22(exp[ −ρ22

2(1−ρ2
22)

{
ρ22
(
z2

1 + z2
2
)
− 2z1z2

}
+
(
1− 3ρ2

22
){

ρ22
(
z2

1 + z2
2
)
− 2z1z2

}
+
{(

ρ22 − ρ3
22
)(

z2
1 + z2

2
)}

.
(38)

The method uses a two-step strategy to estimate the marginal of X and Y as well as the
copula function separately, yielding the MLEs of (α1, µ1, α2, µ2, θ, λ, ρ11, ρ12, ρ21, ρ22). The
MLEs of α1, µ1, α2, µ2, θ, λ, ρ11, ρ12, ρ21, ρ22 are obtained by solving the nonlinear equation
in (28)–(37). The density of copulas is then calculated as follows:

logLij(ρ) = ∑n
k=1 logC

(
F̂i(xk), F̂j( yk)

)
, (39)

where F̂i(xk) and F̂j(yk) are the maximum likelihood estimates of the PDF from the first step.
The MLEs of ρ11, ρ12, ρ21, and ρ22 are obtained by solving the nonlinear (39). The M-step is
completed by setting âd = n−1 ∑n

k=1 adk. To solve these equations numerically, we use the
copula R package. Next, we replace these estimates in (adk, bdk, cdk) after obtaining MLEs
for α1, µ1, α2, µ2, θ, λ, ρ11, ρ12, ρ21, ρ22. We finish the M-step by setting âd = n−1 ∑n

k=1 adk,
and so on.

The method of matching moments, which is generated from the marginal univariate
APE and the Gaussian copula parameter separately, are used to obtain the initial values of
the parameters for the mixing proportions. The BAPE parameter estimators obtained are
used as starting values for the EM method. Then, assuming that the dependency between
two variables X and Y is zero, we combine the moment estimators of the marginal mixing
parameters to generate initial values for the bivariate mixing parameters. Ref. [31] for
more information. Following that, we present the process for estimating the unknown
parameters for the density in (28). We use two approaches in copula-based estimation:
parametric and semiparametric.
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5.3. Maximum Likelihood Estimation

We look at how to estimate the unknown parameters of BMAPE (type-II) distributions
using the maximum likelihood technique and two-step estimation. This entails a two-step
process in which the marginal and copula functions are individually estimated; see [32].
The log-likelihood function is defined as follows:

logL = ∑n
i=1[log f1(xi) + log f2(yi) + logc(F1(xi), F2(yi))]. (40)

The log-likelihood function in (40) may be rewritten as

logL = ∑n
i=1 log f1(xi) + ∑n

i=1 log f2(x2i) + ∑n
i=1 logc(F1(x1i), F2(x2i))]. (41)

The MLEs are separately used to estimate the parameters of the marginal distribution
F1 and F2 , as follows:

log L1 = ∑n
i=1 log log f1(xi). logL2 = ∑n

i=1 log f2(yi). (42)

Then, by maximizing the copula density, the copula parameters may be estimated.

logL = ∑n
i=1 logc(F1(xi), F2(yi)). (43)

The maximum likelihood estimation will estimate the parameters of each marginal
distribution by evaluating the first step with APE distributions. If ( x1, . . . , xn) is a random
sample from APE(α, θ) and ( y1, . . . , yn) is a random sample from APE(µ, λ), the log-
likelihood functions are provided by

logL1(x, α, θ) = nlog(θ) + nlog(log(α))− θ ∑n
i=1 xi + log(α)∑n

i=1

(
1− e−θxi

)
(44)

and

logL2(y, µ, λ) = nlog(λ) + nlog(log(µ))− λ ∑n
i=1 yi + log(µ)∑n

i=1

(
1− e−λyi

)
. (45)

As a result, the maximum likelihood equations are as follows:

∂l
∂λ

=
n
λ
−∑n

i=1 yi + log(µ)∑n
i=1 yi e−λyi = 0 (46)

∂l
∂θ

=
n
θ
−∑n

i=1 xi + log(α)∑n
i=1 xi e−ϑxi = 0, (47)

∂l
∂α

=
n

αlog(α)
+

1
α ∑n

i=1

(
1− e−θxi

)
= 0 (48)

and
∂l
∂µ

=
n

µlog(µ)
+

1
µ ∑n

i=1

(
1− e−λyi

)
= 0, (49)

The MLEs of α, µ, θ and λ are obtained by solving the nonlinear (46)–(49) system. The
density of copulas is then calculated as follows:

log L(γ) = ∑n
i=1 logc

(
F̂1(xi), F̂2(yi)

)
, (50)

where F̂1(x) and , F̂2(y) are the maximum likelihood estimates of the first-step parame-
ters. Therefore, the maximum likelihood estimate of γ can be obtained by solving the
nonlinear (50).
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5.4. Estimation via Semiparametric Methods

The inversion Kendall’s and inversion of Spearman’s semiparametric methods for
estimating the copula parameter in copula models are compared to the two methods of
moments approaches, inversion Kendall’s τ and inversion of Spearman’s ρ, respectively.

5.5. Moments Method

We present a brief description of moment’s method of inversion of Kendall’s τ and the
inversion of Spearman’s ρ as indicated in Ref. [33]. Let c be a bivariate random sample from
a CDF, Cγ [F1(x ), F2(y)], where F1 and F2 are continuous CDF and Cγ is an absolutely
continuous copula such that γ ∈ O. Moreover, unless otherwise specified, let R1, . . . , Rn
be the vectors of ranks associated with (x1, . . . , xn). All vectors in the following are row
vectors. The inversion of a consistent estimator of a moment of the copula Cγ is used in
moments methods. The two most well-known moments, Spearman’s ρ and Kendall’s τ,
are given by Spearman and Kendall, respectively, as

ρ(γ) = 12
∫ ∫

[0,1]2
u v dCγ(u, v)− 3, (51)

and
τ(γ) = 4

∫ ∫
[0,1]2

Cγ(u, v) dCγ(u, v)− 1. (52)

These two moments’ consistent estimators can be stated as

ρn =
12

n(n + 1)(n− 1) ∑n
i=1 Ri,1Ri,2 − 3

n + 1
n− 1

, (53)

and
τn =

4
n(n− 1) ∑n

i=1 1[xi,1 ≤ xj,1]1[xi,2 ≤ xj,2]− 1. (54)

Consistent estimators of ρ and τ will be if and are one-to-one γn,ρ = ρ−1(ρn), γn,τ =
τ−1(τ n), respectively.

Inversion of Kendall’s τ and inversion of Spearman’s ρ are two terms for the same
thing. Ref. [33] and the references referenced therein for more information. As previ-
ously stated, the moment’s method of τ and ρ estimation for copula can be classified as
semiparametric approach estimation.

5.6. Copula Fit Tests

We want to compare the empirical copula with the parametric estimator generated
under the null hypothesis; for more information, see [34,35]. According to the theory, a test
to see if C is well-represented by a given copula Cγ can be represented as

H0 : C = Cγ , against H1 : C 6= Cγ.

There are several well-known ways in the literature, such as Ref. [36] or the rapid
multiplier approach, as described by Refs. [37,38]. The empirically based goodness of fit
test is written as

Cn(u, v) =
√

n{Cn(u, v)− Cγn(u, v)},

where Cn(u, v) is the empirical copula of the X and Y data.
Cn(u, v) = 1

n ∑n
i=1 1(Ui,n ≤ u, Vi,n ≤ v), u, v ∈ [0, 1], the pseudo-observations Ui,n and

Vi,n from C, are calculated as:
Ui,n = R1i

n+1 , Vi,n = R2i
n+1 ; R1i and R2i are, respectively, the ranks of Xi, Yi.

Cn(u, v) is an estimator obtained using the pseudo observations and Cn(u, v) is a
consistent estimator. The relevant test statistic, is the Cramer-von Miss, which is defined as

Sn = ∑n
i=1{Cn(Ui,n, Vi,n)− Cγn(Ui,n, Vi,n)}2; see [39] as well as the references within.
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6. Bayesian Estimation

The Bayes estimates of the joint posterior density (54) model parameters are computed
in this part under the assumption that the random variable Φ = (α1, α2, µ1, µ2, θ, λ) have in-
dependent gamma prior distributions with hyperparameter wk and mk and k = 1, 2, 3, 4, 5, 6,
provided by

f (Φ; w, m) =
mk

wk

Γwk
Φwk−1e−mkΦ, Φ > 0, (55)

and ρ11, ρ12, ρ21, ρ22 theses have a non-informative prior. The joint posterior density for
the vector Φ given the data is obtained by multiplying (9) or (28) as

π(Φ|x ) ∝ L(x|Φ) f (Φ; wm, sm). (56)

Integrating out the (nuisance) hyperparameters yields marginal distributions of Φ. As
a result, under the square error loss function, the Bayesian estimators of the parameters can
be derived as follows:

Φ̂ ∝
∫ ∞

0
Φπ(Φ|x )dΦ. (57)

6.1. Bayes MCMC Estimates

As the integrals in (56) are not in a closed form, the Markov-chain Monte-Carlo
(MCMC) method is used. The posterior distribution and intractable integrals are derived
using simulated samples from the posterior distribution in MCMC algorithms. Gibbs
sampling and the Metropolis-Hastings (M-H) algorithm are also employed as MCMC
techniques, see [40,41].

The M-H algorithm assumes that a candidate value can be generated from a proposed
distribution for each iteration of the process. As a result, the applicant value is allowed if
the approval chance is high enough. This method ensures that the Markov chain for the
target density will converge. Finally, we can see that the advantage of the MCMC technique
over the MLE method is that by creating probability intervals based on empirical posterior
distribution, we can always obtain an acceptable interval estimate of the parameters. In
MLE, this is frequently unavailable.

6.2. Bayes Credible Intervals

The following expression can be used to obtain a symmetric 100(1− ε)% percent
two-sided Bayes probability interval estimate of Φ, denoted by [LΦ, UΦ].

p[L(t) < Φ < U(t)] =
∫ U(t)

L(t)
π(θ, β, λ|t)dΦ = 1− ε, (58)

We need appropriate numerical approaches to solve this non-linear equation because
finding the interval LΦ and UΦ analytically is difficult.

7. Monte-Carlo Simulation

To assess the adaptability and flexibility of the proposed MBAPE model for different
combinations of the true parameter value and sample size, an extensive Monte-Carlo
simulation is conducted based on both independent and dependent cases. The point
(MLE and MCMC) estimates and interval (ACI and BCI) estimates are evaluated based
on 2,000 random samples of sizes n(= 50, 100, 150, 200). Extensive computations were
performed using R statistical software via two useful statistical packages, namely, (i) the
“coda” package proposed by Ref. [42], and (ii) the “maxLik” package, which uses the
Newton–Raphson method of maximization in the likelihood computations, proposed by
Ref. [43].

Comparison between point estimators is made in terms of their mean absolute bias
(MAB) and root mean squared-error (RMSE) values. In addition, the behavior of 95%
asymptotic/credible intervals are compared by their average confidence lengths (ACLs). In
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Table 1, different actual values of the model parameters and the associated hyperparameters
are reported. Clearly, the values of hyperparameters are specified in such a way that the
prior mean becomes the expected value of the target parameter. In this study, for both
sets III and IV, we take (ρ11, ρ12, ρ21, ρ22) as (0.2,0.15,0.05,0.1) and (0.5,0.4,0.2,0.3) as well as
also assuming they have improper gamma priors. The MCMC estimates under squared-
error loss are computed by running the M-H algorithm 12,000 times and ignoring the first
2,000 MCMC iterations. The calculated MLE of each unknown parameter is taken as an
initial guess to obtain the corresponding Bayes estimate; for more information in this topic
see [44–46]. The simulation outcomes are provided in Tables 2–6. In these tables, the Bayes
MCMC results under Prior 1 (as an example) are denoted as “MCMC.1”; similarly, the BCI
estimates under Prior 1 are also denoted as “BCI.1”, for brevity. From Tables 2–6, it can
be seen that the proposed estimates of the unknown MBAPE parameters are sufficiently
efficient with respect to their minimum simulated values of RMSEs, MABs and ACLs. For
all true parametric combinations, when n increases under independent and dependent
assumptions, the RMSEs, MABs and ACLs of the classical and Bayesian estimates decrease,
as expected. Therefore, one can maximize the efficiency associated with all estimates by
increasing the overall sample size. As α, θ, µ, λ and ρ increase, it is observed that their
RMSEs, MABs and ACLs increase. A similar pattern is observed in the case of α1, α2, µ1,
µ2 and ρij for i, j = 1, 2 increases, a dependent case. Since the Bayesian estimates include
the flexible gamma information, the Bayesian estimates of all unknown parameters have
overall lower RMSE and MAB values, so they performed better compared to the classical
estimates in both independent and dependent cases. Consequently, the credible intervals
estimates are also better than the asymptotic confidence intervals in terms of shortest
ACLs. In particular, as the calculated variance in Prior 2 is less than Prior 1, it is also seen
that the Bayes (point and interval) estimates have performed better based on Prior 2 than
those obtained based on Prior 1. All accuracy criteria developed in this work support
this statement.

Table 1. Different parameter values under independent/dependent cases.

Parameter True
Value

Prior 1 Prior 2 True
Value

Prior 1 Prior 2

w m w m w m w m

Set → I II

α 0.4 0.8 2 2.0 5 0.8 1.6 2 4.0 5
θ 0.5 1.0 2 2.5 5 1.5 3.0 2 7.5 5
µ 0.2 0.4 2 1.0 5 0.4 2.0 2 2.0 5
λ 0.8 1.6 2 4.0 5 1.2 2.4 2 6.0 5
ρ 0.3 0.6 2 1.5 5 0.5 1.0 2 5.0 5

Set → III IV

α1 0.1 0.2 2 0.5 5 0.3 0.6 2 1.5 5
α2 0.3 0.6 2 1.5 5 0.5 1.0 2 2.5 5
θ 0.5 1.0 2 2.5 5 1.5 3.0 2 7.5 5

µ1 0.1 0.2 2 0.5 5 0.2 0.4 2 1.0 5
µ2 0.1 0.2 2 0.5 5 0.2 0.4 2 1.0 5
λ 0.8 1.6 2 4.0 5 1.2 2.4 2 5.0 5
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Table 2. Simulated point and interval estimates of the BMAPE parameters for Sets I and II.

Set n Par.
MLE MCMC.1 MCMC.2

ACI BCI.1 BCI.2
MAB RMSE MAB RMSE MAB RMSE

I 50 α 0.618 1.106 0.143 0.199 0.037 0.064 3.056 0.348 0.092
θ 0.171 0.217 0.108 0.154 0.039 0.059 0.727 0.300 0.099
µ 0.401 0.764 0.179 0.205 0.102 0.177 2.040 0.296 0.250
λ 0.314 0.409 0.262 0.395 0.203 0.343 1.402 0.658 0.492
ρ 0.304 0.363 0.261 0.335 0.166 0.290 0.636 0.525 0.392

100 α 0.351 0.527 0.127 0.187 0.036 0.058 1.771 0.346 0.089
θ 0.118 0.155 0.096 0.125 0.037 0.056 0.552 0.250 0.093
µ 0.246 0.388 0.153 0.198 0.097 0.165 1.226 0.274 0.242
λ 0.242 0.375 0.240 0.350 0.200 0.301 1.110 0.648 0.474
ρ 0.302 0.317 0.231 0.291 0.164 0.279 0.575 0.405 0.390

150 α 0.263 0.377 0.122 0.181 0.034 0.055 1.338 0.286 0.087
θ 0.097 0.151 0.079 0.101 0.036 0.051 0.458 0.249 0.086
µ 0.186 0.277 0.103 0.163 0.096 0.141 0.918 0.266 0.236
λ 0.202 0.340 0.198 0.258 0.152 0.226 0.975 0.480 0.352
ρ 0.301 0.311 0.225 0.285 0.162 0.277 0.555 0.399 0.319

200 α 0.224 0.314 0.116 0.155 0.032 0.054 1.121 0.282 0.084
θ 0.084 0.109 0.038 0.061 0.032 0.045 0.398 0.113 0.076
µ 0.177 0.221 0.099 0.153 0.095 0.140 0.751 0.259 0.230
λ 0.192 0.335 0.179 0.226 0.150 0.220 0.847 0.464 0.347
ρ 0.300 0.306 0.211 0.280 0.160 0.267 0.503 0.392 0.276

II 50 α 0.907 1.583 0.272 0.443 0.107 0.183 4.988 0.676 0.265
θ 0.373 0.482 0.276 0.437 0.223 0.396 1.815 0.726 0.550
µ 0.591 1.046 0.368 0.628 0.360 0.621 3.161 1.062 0.867
λ 0.395 0.562 0.311 0.461 0.266 0.453 1.794 0.883 0.644
ρ 0.503 0.551 0.470 0.505 0.236 0.412 1.057 0.573 0.551

100 α 0.546 0.819 0.268 0.404 0.105 0.177 2.866 0.640 0.258
θ 0.293 0.452 0.262 0.387 0.221 0.392 1.295 0.698 0.544
µ 0.423 0.693 0.355 0.621 0.354 0.568 1.810 1.033 0.857
λ 0.346 0.509 0.288 0.451 0.255 0.372 1.328 0.799 0.630
ρ 0.502 0.525 0.348 0.476 0.233 0.400 0.836 0.571 0.392

150 α 0.427 0.610 0.254 0.398 0.101 0.173 2.179 0.609 0.248
θ 0.268 0.437 0.226 0.378 0.216 0.338 1.069 0.695 0.542
µ 0.407 0.672 0.351 0.618 0.270 0.392 1.326 1.030 0.851
λ 0.315 0.487 0.258 0.444 0.234 0.299 1.103 0.764 0.626
ρ 0.501 0.512 0.339 0.401 0.230 0.399 0.789 0.558 0.319

200 α 0.365 0.514 0.218 0.320 0.098 0.169 1.827 0.521 0.243
θ 0.244 0.392 0.223 0.277 0.184 0.233 0.914 0.614 0.539
µ 0.400 0.648 0.326 0.558 0.225 0.313 1.124 0.862 0.832
λ 0.307 0.453 0.255 0.442 0.200 0.257 0.959 0.624 0.619
ρ 0.500 0.509 0.317 0.399 0.229 0.381 0.764 0.552 0.277
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Table 3. Simulated point and interval estimates of the BMAPE parameters using Set III when
(ρ11, ρ12, ρ21, ρ22) = (0.2, 0.15, 0.05, 0.1).

n Par.
MLE MCMC.1 MCMC.2

ACI BCI.P1 BCI.P2
MAB RMSE MAB RMSE MAB RMSE

50 α1 0.085 0.113 0.058 0.061 0.039 0.044 0.606 0.085 0.074
α2 0.274 0.295 0.073 0.081 0.029 0.031 0.630 0.143 0.077
θ 0.273 0.263 0.228 0.062 0.208 0.060 0.779 0.099 0.056

µ1 0.087 0.123 0.061 0.063 0.049 0.053 0.455 0.133 0.055
µ2 0.099 0.106 0.087 0.104 0.045 0.046 0.528 0.116 0.068
λ 0.323 0.359 0.053 0.063 0.018 0.019 1.814 0.129 0.041

ρ11 0.388 0.411 0.224 0.234 0.172 0.178 0.514 0.247 0.195
ρ12 0.428 0.447 0.184 0.194 0.141 0.144 0.554 0.228 0.162
ρ21 0.409 0.442 0.166 0.176 0.112 0.115 0.602 0.180 0.156
ρ22 0.427 0.451 0.166 0.180 0.163 0.171 0.678 0.254 0.154

100 α1 0.084 0.101 0.048 0.051 0.023 0.025 0.206 0.083 0.070
α2 0.268 0.287 0.041 0.053 0.024 0.024 0.549 0.105 0.067
θ 0.239 0.260 0.220 0.035 0.176 0.015 0.557 0.079 0.038

µ1 0.086 0.108 0.050 0.058 0.045 0.051 0.388 0.104 0.053
µ2 0.085 0.101 0.035 0.044 0.025 0.030 0.321 0.101 0.061
λ 0.322 0.358 0.047 0.058 0.015 0.016 1.045 0.117 0.040

ρ11 0.364 0.391 0.173 0.181 0.145 0.158 0.394 0.192 0.139
ρ12 0.420 0.445 0.157 0.172 0.109 0.119 0.381 0.201 0.117
ρ21 0.407 0.439 0.127 0.136 0.050 0.059 0.451 0.161 0.097
ρ22 0.422 0.450 0.113 0.119 0.053 0.061 0.449 0.130 0.128

150 α1 0.083 0.096 0.025 0.028 0.022 0.022 0.201 0.069 0.066
α2 0.267 0.273 0.040 0.045 0.018 0.022 0.539 0.092 0.040
θ 0.235 0.257 0.212 0.034 0.170 0.013 0.519 0.076 0.037

µ1 0.086 0.104 0.043 0.046 0.012 0.015 0.321 0.099 0.052
µ2 0.083 0.097 0.026 0.031 0.019 0.024 0.244 0.078 0.037
λ 0.319 0.356 0.038 0.041 0.014 0.015 0.821 0.069 0.037

ρ11 0.365 0.388 0.087 0.089 0.061 0.062 0.348 0.074 0.040
ρ12 0.419 0.435 0.129 0.130 0.068 0.078 0.350 0.139 0.060
ρ21 0.401 0.429 0.059 0.067 0.041 0.044 0.364 0.094 0.076
ρ22 0.409 0.440 0.075 0.080 0.017 0.018 0.410 0.121 0.026

200 α1 0.079 0.086 0.021 0.025 0.019 0.021 0.163 0.050 0.016
α2 0.258 0.269 0.035 0.040 0.014 0.018 0.347 0.080 0.019
θ 0.232 0.247 0.171 0.024 0.167 0.010 0.413 0.070 0.013

µ1 0.084 0.099 0.039 0.045 0.005 0.006 0.265 0.068 0.015
µ2 0.081 0.091 0.022 0.023 0.011 0.013 0.201 0.049 0.020
λ 0.299 0.343 0.022 0.028 0.009 0.011 0.801 0.057 0.013

ρ11 0.358 0.382 0.030 0.031 0.018 0.023 0.298 0.063 0.011
ρ12 0.415 0.434 0.034 0.038 0.010 0.011 0.304 0.054 0.019
ρ21 0.392 0.425 0.050 0.050 0.040 0.042 0.361 0.057 0.008
ρ22 0.408 0.438 0.043 0.059 0.014 0.015 0.375 0.095 0.008
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Table 4. Simulated point and interval estimates of the BMAPE parameters using Set III when
(ρ11, ρ12, ρ21, ρ22) = (0.5, 0.4, 0.2, 0.3).

n Par.
MLE MCMC.1 MCMC.2

ACI BCI.P1 BCI.P2
MAB RMSE MAB RMSE MAB RMSE

50 α1 0.095 0.144 0.065 0.067 0.045 0.056 0.807 0.129 0.083
α2 0.253 0.394 0.070 0.073 0.033 0.035 1.565 0.143 0.090
θ 0.212 0.182 0.174 0.087 0.143 0.022 1.232 0.154 0.042

µ1 0.091 0.124 0.053 0.054 0.041 0.049 0.971 0.122 0.058
µ2 0.084 0.125 0.056 0.064 0.032 0.037 0.786 0.094 0.068
λ 0.232 0.277 0.112 0.115 0.046 0.048 2.056 0.126 0.067

ρ11 0.153 0.189 0.098 0.107 0.053 0.056 0.516 0.182 0.097
ρ12 0.230 0.252 0.198 0.214 0.063 0.072 0.534 0.260 0.124
ρ21 0.335 0.348 0.112 0.120 0.032 0.036 0.620 0.138 0.093
ρ22 0.268 0.286 0.217 0.232 0.035 0.040 0.645 0.235 0.122

100 α1 0.078 0.133 0.060 0.063 0.043 0.054 0.696 0.115 0.077
α2 0.220 0.238 0.059 0.066 0.030 0.032 0.787 0.120 0.079
θ 0.210 0.177 0.170 0.049 0.137 0.011 1.030 0.117 0.039

µ1 0.077 0.091 0.047 0.052 0.034 0.038 0.758 0.101 0.054
µ2 0.079 0.101 0.039 0.042 0.019 0.023 0.695 0.092 0.061
λ 0.216 0.255 0.068 0.072 0.027 0.032 1.752 0.091 0.052

ρ11 0.142 0.171 0.082 0.102 0.042 0.047 0.482 0.146 0.066
ρ12 0.227 0.244 0.102 0.111 0.038 0.040 0.524 0.170 0.070
ρ21 0.333 0.346 0.099 0.105 0.031 0.033 0.576 0.133 0.073
ρ22 0.266 0.283 0.106 0.119 0.029 0.034 0.602 0.182 0.087

150 α1 0.067 0.087 0.057 0.062 0.036 0.041 0.562 0.113 0.068
α2 0.219 0.236 0.037 0.047 0.027 0.030 0.716 0.111 0.060
θ 0.207 0.165 0.152 0.046 0.131 0.010 0.831 0.080 0.024

µ1 0.075 0.089 0.045 0.050 0.013 0.014 0.708 0.100 0.034
µ2 0.078 0.098 0.033 0.038 0.012 0.014 0.549 0.079 0.054
λ 0.205 0.249 0.059 0.070 0.020 0.021 1.692 0.090 0.040

ρ11 0.135 0.167 0.045 0.053 0.036 0.044 0.452 0.100 0.065
ρ12 0.215 0.242 0.086 0.094 0.017 0.022 0.418 0.154 0.068
ρ21 0.332 0.345 0.060 0.069 0.023 0.024 0.530 0.124 0.039
ρ22 0.257 0.281 0.100 0.111 0.021 0.032 0.527 0.178 0.083

200 α1 0.066 0.074 0.032 0.039 0.031 0.037 0.494 0.085 0.052
α2 0.217 0.233 0.025 0.031 0.023 0.028 0.547 0.090 0.043
θ 0.180 0.158 0.147 0.025 0.130 0.008 0.804 0.068 0.022

µ1 0.068 0.081 0.035 0.041 0.009 0.012 0.691 0.092 0.032
µ2 0.067 0.076 0.029 0.032 0.011 0.011 0.544 0.076 0.052
λ 0.202 0.243 0.046 0.048 0.019 0.020 1.510 0.052 0.038

ρ11 0.133 0.163 0.042 0.047 0.022 0.027 0.390 0.084 0.062
ρ12 0.214 0.233 0.065 0.076 0.015 0.020 0.388 0.117 0.043
ρ21 0.330 0.344 0.036 0.043 0.020 0.022 0.528 0.099 0.035
ρ22 0.249 0.260 0.045 0.056 0.019 0.030 0.510 0.150 0.060
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Table 5. Simulated point and interval estimates of the BMAPE parameters using Set IV when
(ρ11, ρ12, ρ21, ρ22) = (0.2, 0.15, 0.05, 0.1).

n Par.
MLE MCMC.1 MCMC.2

ACI BCI.P1 BCI.P2
MAB RMSE MAB RMSE MAB RMSE

50 α1 0.235 0.307 0.065 0.070 0.038 0.044 2.610 0.109 0.084
α2 0.349 0.432 0.070 0.078 0.056 0.020 2.926 0.141 0.079
θ 0.974 0.456 0.383 0.062 0.070 0.027 3.167 0.104 0.060

µ1 0.160 0.213 0.076 0.078 0.061 0.068 1.758 0.191 0.073
µ2 0.179 0.250 0.097 0.103 0.049 0.053 2.360 0.113 0.110
λ 0.338 0.394 0.075 0.083 0.023 0.029 2.843 0.151 0.048

ρ11 0.427 0.448 0.229 0.240 0.171 0.180 0.507 0.253 0.199
ρ12 0.475 0.492 0.186 0.197 0.147 0.150 0.541 0.228 0.163
ρ21 0.524 0.538 0.167 0.177 0.112 0.115 0.696 0.182 0.159
ρ22 0.495 0.508 0.164 0.181 0.162 0.166 0.677 0.252 0.147

100 α1 0.198 0.229 0.049 0.053 0.032 0.039 1.388 0.099 0.081
α2 0.338 0.379 0.042 0.055 0.029 0.029 2.324 0.102 0.078
θ 0.944 0.445 0.348 0.057 0.021 0.019 2.478 0.100 0.044

µ1 0.144 0.175 0.062 0.065 0.057 0.063 1.410 0.104 0.066
µ2 0.152 0.196 0.044 0.049 0.029 0.034 1.261 0.099 0.065
λ 0.305 0.373 0.065 0.079 0.014 0.017 1.982 0.122 0.036

ρ11 0.417 0.427 0.180 0.185 0.146 0.160 0.471 0.192 0.147
ρ12 0.473 0.483 0.154 0.169 0.111 0.122 0.435 0.218 0.140
ρ21 0.508 0.520 0.128 0.138 0.046 0.058 0.576 0.163 0.100
ρ22 0.481 0.493 0.113 0.120 0.054 0.062 0.535 0.131 0.130

150 α1 0.183 0.244 0.039 0.045 0.022 0.027 1.280 0.076 0.069
α2 0.320 0.353 0.040 0.045 0.027 0.031 1.816 0.087 0.044
θ 0.873 0.428 0.266 0.041 0.007 0.013 2.199 0.082 0.038

µ1 0.138 0.173 0.039 0.046 0.013 0.015 1.004 0.100 0.053
µ2 0.147 0.186 0.037 0.048 0.017 0.020 1.105 0.061 0.056
λ 0.301 0.362 0.047 0.057 0.013 0.015 1.860 0.112 0.034

ρ11 0.407 0.420 0.090 0.092 0.064 0.065 0.441 0.078 0.067
ρ12 0.467 0.481 0.141 0.143 0.070 0.080 0.427 0.119 0.098
ρ21 0.507 0.517 0.057 0.065 0.040 0.042 0.543 0.093 0.089
ρ22 0.479 0.492 0.075 0.081 0.046 0.052 0.525 0.125 0.096

200 α1 0.182 0.236 0.028 0.028 0.019 0.021 1.016 0.042 0.019
α2 0.318 0.352 0.031 0.036 0.016 0.056 1.757 0.084 0.034
θ 0.382 0.399 0.038 0.026 0.003 0.011 1.866 0.077 0.025

µ1 0.128 0.150 0.028 0.033 0.010 0.011 0.857 0.061 0.026
µ2 0.132 0.153 0.013 0.018 0.012 0.013 0.920 0.050 0.025
λ 0.285 0.354 0.028 0.030 0.012 0.014 1.625 0.070 0.032

ρ11 0.402 0.412 0.061 0.063 0.019 0.026 0.439 0.044 0.038
ρ12 0.464 0.474 0.036 0.040 0.005 0.006 0.386 0.055 0.021
ρ21 0.506 0.516 0.049 0.049 0.038 0.041 0.511 0.059 0.010
ρ22 0.466 0.476 0.071 0.073 0.022 0.025 0.510 0.056 0.051
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Table 6. Simulated point and interval estimates of the BMAPE parameters using Set IV when
(ρ11, ρ12, ρ21, ρ22) = (0.5, 0.4, 0.2, 0.3).

n Par.
MLE MCMC.1 MCMC.2

ACI BCI.P1 BCI.P2
MAB RMSE MAB RMSE MAB RMSE

50 α1 0.250 0.412 0.072 0.077 0.056 0.071 2.545 0.157 0.087
α2 0.374 0.553 0.085 0.093 0.078 0.081 3.738 0.143 0.077
θ 0.996 0.352 0.277 0.059 0.085 0.051 2.793 0.104 0.060

µ1 0.207 0.312 0.078 0.083 0.074 0.080 2.369 0.205 0.071
µ2 0.219 0.347 0.093 0.099 0.077 0.090 2.621 0.139 0.108
λ 0.281 0.354 0.060 0.072 0.022 0.027 2.786 0.132 0.068

ρ11 0.175 0.211 0.160 0.168 0.060 0.072 0.648 0.236 0.113
ρ12 0.218 0.247 0.099 0.101 0.049 0.061 0.541 0.137 0.120
ρ21 0.345 0.363 0.169 0.176 0.081 0.093 0.758 0.191 0.130
ρ22 0.261 0.280 0.234 0.247 0.032 0.043 0.679 0.241 0.107

100 α1 0.247 0.347 0.060 0.064 0.040 0.045 1.836 0.104 0.085
α2 0.326 0.407 0.050 0.056 0.034 0.037 2.958 0.117 0.074
θ 0.985 0.327 0.260 0.050 0.050 0.021 2.195 0.098 0.055

µ1 0.201 0.284 0.065 0.076 0.043 0.050 1.818 0.154 0.063
µ2 0.211 0.330 0.062 0.069 0.031 0.037 2.247 0.110 0.066
λ 0.246 0.314 0.050 0.060 0.018 0.025 2.147 0.125 0.043

ρ11 0.159 0.190 0.144 0.159 0.031 0.041 0.460 0.163 0.096
ρ12 0.214 0.230 0.061 0.070 0.020 0.024 0.459 0.130 0.064
ρ21 0.344 0.361 0.137 0.148 0.038 0.046 0.527 0.180 0.125
ρ22 0.258 0.276 0.136 0.146 0.031 0.037 0.575 0.208 0.097

150 α1 0.218 0.329 0.046 0.047 0.025 0.029 1.701 0.101 0.083
α2 0.311 0.414 0.036 0.045 0.019 0.023 2.623 0.089 0.070
θ 0.974 0.304 0.241 0.041 0.013 0.012 1.872 0.094 0.039

µ1 0.172 0.227 0.063 0.067 0.013 0.016 1.167 0.098 0.057
µ2 0.203 0.295 0.040 0.045 0.016 0.019 1.628 0.094 0.058
λ 0.236 0.301 0.037 0.041 0.013 0.014 1.600 0.096 0.041

ρ11 0.157 0.187 0.086 0.089 0.029 0.033 0.430 0.100 0.082
ρ12 0.209 0.225 0.034 0.042 0.012 0.016 0.423 0.066 0.054
ρ21 0.337 0.351 0.110 0.117 0.024 0.028 0.487 0.140 0.058
ρ22 0.254 0.268 0.103 0.116 0.030 0.032 0.490 0.179 0.081

200 α1 0.159 0.201 0.038 0.045 0.010 0.012 1.233 0.048 0.039
α2 0.268 0.314 0.031 0.037 0.014 0.019 2.081 0.084 0.042
θ 0.922 0.271 0.184 0.029 0.010 0.010 1.570 0.080 0.036

µ1 0.148 0.202 0.029 0.034 0.011 0.012 1.089 0.065 0.050
µ2 0.156 0.209 0.022 0.025 0.011 0.014 1.269 0.049 0.041
λ 0.226 0.281 0.029 0.033 0.011 0.012 1.571 0.071 0.037

ρ11 0.149 0.175 0.048 0.055 0.023 0.029 0.363 0.092 0.052
ρ12 0.200 0.219 0.029 0.035 0.011 0.015 0.371 0.061 0.044
ρ21 0.333 0.343 0.084 0.094 0.018 0.020 0.429 0.132 0.034
ρ22 0.252 0.265 0.074 0.082 0.018 0.024 0.449 0.176 0.042

8. Motor Data Analysis

To demonstrate the practical utility of the proposed methodologies in an engineering
phenomenon, one real data set reported by Ref. [47] is analyzed. This data represents the
failure times (in days) of a parallel system constituted by two identical motors, namely, (X)
and (Y), see Table 7. We first check the suitability of the APE model to the complete motor
data sets. For this purpose, for each X and Y data point, the Kolmogorov–Smirnov (KS)
statistics and its p-value, as well as the MLEs with their standard errors (SEs), are obtained
and also provided in Table 7.
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Table 7. Failure times of two motors.

Motor Failure Times
MLE(SE) KS

α θ Statistic p-Value

X
84, 88, 102, 139, 148, 156, 207,
212, 213, 220, 220, 235, 243,
245, 250, 257, 263, 300

39.044
(29.274)

0.0099
(0.0016) 0.2829 0.112

Y
65, 121, 123, 148, 150, 156,
172, 192, 202, 212, 214, 220,
248, 265, 275, 300, 330, 350

47.906
(38.493)

0.0096
(0.0015) 0.2289 0.260

It shows that the APE distribution fits the motor data sets quite well. Moreover, some
graphical methods for goodness of fit for the motor data sets are developed. Plots of
fitted density, empirical cumulative distribution, probability-probability (PP) and quantile-
quantile (QQ) for X and Y data sets are displayed in Figures 3 and 4, respectively. It is clear
that the two variables X and Y are fitted for the marginal APE distribution.
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Figure 3. The fitted density, empirical CDF, PP and QQ plots under X data.

Using the complete X and Y data sets, the MLEs and 95% ACIs of α, θ, µ, λ and ρ
are calculated. Furthermore, since no prior information is available about the MBAPE
parameters, the Bayesian (point/credible) estimates of α, θ, µ, λ and ρ are developed
using the non-informative priors. Taking the maximum likelihood estimates of the same
unknown quantities as initial values, the MCMC sampler is replicated 30,000 times and
then the first 5,000 iterations removed as a burn-in. The point (with their SEs) estimates
and interval (with their lengths) estimates of the unknown parameters based on X and
Y data sets are computed and listed in Tables 8 and 9, respectively. This indicates that
the estimates of the unknown parameters obtained by maximum likelihood and Bayesian
methods are very similar. Moreover, trace plots (in Figure 5) for MCMC draws of the
posterior generated samples of α, θ, µ, λ and ρ showed that the MCMC simulated variates
converge very well. It represents the sample mean and two bounds of 95% BCIs with solid
(—) and dashed (- - -) lines, respectively. Moreover, the MCMC frequency estimates of α, θ,



Axioms 2022, 11, 459 23 of 27

µ, λ and ρ using the Gaussian kernel are represented in Figure 6. It represents the sample
mean with a vertical dash-dotted (:) line. It is evident that the generated posteriors of all
unknown parameters are quite symmetrical. To sum up, the numerical findings of the
suggested estimation methods based on motor data provide a good demonstration of the
proposed model.
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Figure 4. The fitted density, empirical CDF, PP and QQ plots under Y data.

Table 8. The point estimates of α, θ, µ, λ and ρ under motor data.

Method α θ µ λ ρ

MLE
(SE)

3256.43
(0.0056)

0.01312
(0.0014)

3112.19
(8.3910)

0.01262
(0.0014)

−0.30736
(0.2181)

Bayes
(SE)

3256.41
(0.0032)

0.01263
(0.0001)

3112.17
(0.0031)

0.01212
(0.0001)

−0.30733
(0.0001)

Table 9. The 95% interval estimates of α, θ, µ, λ and ρ under motor data.

Method α θ µ λ ρ

ACI
(length)

(3256.4,3256.4)
(0.0218)

(0.0103,0.0160)
(0.0057)

(3095.8,3128.6)
(32.894)

(0.0099,0.0154)
(0.0055)

(−0.7347,0.1200)
(0.8547)

BCI
(length)

(3255.4,3257.4)
(1.9753)

(0.0118,0.0136)
(0.0018)

(3111.2,3113.2)
(1.9131)

(0.0112,0.0131)
(0.0019)

(−0.3083,−0.3064)
(0.0019)
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Figure 5. MCMC trace plots of α, θ, µ, λ and ρ under motor data set.
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Figure 6. MCMC frequency estimates plots of α, θ, µ, λ and ρ under motor data set.

9. Conclusions

In this paper, we propose and study a new class of bivariate alpha power distribu-
tions via finite mixtures involving APE distributions as marginals, and also consider the
copula-based construction of bivariate alpha power distributions. The developed class of
distribution is made up of two different types of mixture, namely, type I, which starts with
two independent APE distributions, and type II, which starts with a bivariate Gaussian
copula. The model parameters are estimated using both frequentist (for example, method
of moments and the method of maximum likelihood) and under the Bayesian (using in-
dependent gamma priors) paradigm. This distribution can be employed in practice for
non-negative and positively correlated random variables because the joint distribution
function and joint density function are in closed forms; in addition, it can be applied to
model censored data as well. Under the Bayesian paradigm, we adopted the EM approach,
which works quite well and may be efficiently employed to compute the MLEs, because
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the MLEs of the unknown parameters cannot be computed in closed form. To compare the
behavior/efficiency of the proposed methods and to see the applicability of the different
estimators, a small simulation study is considered, and one real data set is investigated to
examine the applicability of the proposed model. From the simulation study, it appears that
the point and interval estimates of all unknown parameters using the MCMC algorithm
are performing better. Therefore, the Bayes M-H method used to estimate the unknown
MBAPE parameters is recommended. However, whether this is a general trend or not is
subject to a separate study with a wide range of possible values of the model parameters.
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Appendix A

Let us have a look at the BMAPE (type-I) distribution’s shape. From the joint density
in (5), it is clear that there may be more than one critical point for the BMAPE (type-I)
distribution. A numerical examination must be adopted for varying model parameter
choices to obtain an idea of the critical points for this distribution

∂h1(x,y)
∂x = a

((
1

(α1−1)(µ1−1)

)[
θ2 log(α1)e−2θxα−e−θx

1
(
1− e−θx)+ θe−θxα1−e−θx

1

][
λ log(µ1)e−λyµ1

1−e−λy
])

+b
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1
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1
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][
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1−e−λy
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1
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((
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(
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][
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1−e−λy
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= 0,

(A1)

Also,

∂h1(x,y)
∂y = a

((
1

(α1−1)(µ1−1)

)[
θ log(α1)e−θxα1−e−θx
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1
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λ2 log(µ1)e−2λy(1− e−λy)µ1
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(A2)

From (A1) and (A2), it is evident that there will be more than one point for the BMAPE
(type-I) distribution.
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