



# Article Some Common Fixed-Circle Results on Metric Spaces

Nabil Mlaiki <sup>1,\*</sup>, Nihal Taş <sup>2</sup>, Elif Kaplan <sup>3</sup>, Suhad Subhi Aiadi <sup>1</sup>, and Asma Karoui Souayah <sup>4,5,\*</sup>

- <sup>1</sup> Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- <sup>2</sup> Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey
- <sup>3</sup> Department of Mathematics, Ondokuz Mayıs University, 55280 Samsun, Turkey
- <sup>4</sup> Department of Business Administration, College of Science and Humanities, Shaqra University, Dhurma 11961, Saudi Arabia
- <sup>5</sup> Institut Préparatoire aux Études d'Ingénieurs de Gafsa, Gafsa University, Gafsa 2112, Tunisia
- \* Correspondence: nmlaiki@psu.edu.sa or nmlaiki2012@gmail.com (N.M.); asma.souayah@yahoo.fr (A.K.S.)

**Abstract:** Recently, the fixed-circle problems have been studied with different approaches as an interesting and geometric generalization. In this paper, we present some solutions to an open problem *CC*: what is (are) the condition(s) to make any circle  $C_{\omega_0,\sigma}$  as the common fixed circle for two (or more than two) self-mappings? To do this, we modify some known contractions which are used in fixed-point theorems such as the Hardy–Rogers-type contraction, Kannan-type contraction, etc.

Keywords: metric spaces; fixed circle; common fixed circle

MSC: 54E35; 54E40; 54H25



Citation: Mlaiki, N.; Taş, N.; Kaplan, E.; Subhi Aiadi, S.; Karoui Souayah, A. Some Common Fixed-Circle Results on Metric Spaces. *Axioms* 2022, *11*, 454. https://doi.org/ 10.3390/axioms11090454

Academic Editors: Adrian Petrusel, Wei-Shih Du and Luigi Muglia

Received: 6 August 2022 Accepted: 1 September 2022 Published: 4 September 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

## 1. Introduction

In the recent past, the fixed-circle problem has been introduced as a new geometric generalization of fixed-point theory. After that, some solutions to this problem have been investigated using various techniques (for example, see [1-8], and the references therein). In addition, in [1], the following open problem was given:

Let  $(X, \mathfrak{D})$  be a metric space and  $C_{\omega_0,\sigma} = \{ \omega \in X : \mathfrak{D}(\omega, \omega_0) = \sigma \}$  be any circle on *X*. **Open Problem** *CC*: What is (are) the condition(s) to make any circle  $C_{\omega_0,\sigma}$  as the common fixed circle for two (or more than two) self-mappings?

Let  $\xi$  and g be two self-mappings on a set X. If  $\xi \omega = g\omega = \omega$  for all  $\omega \in C_{\omega_0,\sigma}$ , then  $C_{\omega_0,\sigma}$  is called a common fixed circle of the pair  $(\xi, g)$  (see [9] for more details).

Some solutions were given for this open problem (for example, see [8,9]). To obtain new solutions, in this paper, we define new contractions for the pair ( $\xi$ , g) and prove new common fixed-circle results on metric spaces. Before moving on to the main results, we recall the following.

Throughout this article, we denote by  $\mathbb{R}$  the set of all real numbers and by  $\mathbb{R}_+$  the set of all positive real numbers.

Let  $\xi$  and g be self-mappings on a set X. If  $\xi \omega = g\omega = w$  for some  $\omega$  in X, then  $\omega$  is called a coincidence point of  $\xi$  and g, w is called a point of coincidence of  $\xi$  and g.

Let  $C(\xi, g) = \{ \omega \in X : \xi \omega = g \omega = \omega \}$  denote the set of all common fixed-points of self-mappings  $\xi$  and g.

In [10], Wardowski introduced the following family of functions to obtain a new type of contraction called  $\mathcal{F}$ -contraction.

Let  $\mathbb{F}$  be the family of all mappings  $\mathcal{F} : \mathbb{R}_+ \to \mathbb{R}$  that satisfy the following conditions:

 $(\mathcal{F}_{1})\mathcal{F}$  is strictly increasing, that is, for all  $a, b \in \mathbb{R}_{+}$  such that a < b implies that  $\mathcal{F}(a) < \mathcal{F}(b)$ ;

( $\mathcal{F}$ 2)For every sequence  $\{a_n\}_{n \in \mathbb{N}}$  of positive real numbers,  $\lim_{n \to \infty} a_n = 0$  and  $\lim_{n \to \infty} \mathcal{F}(a_n) = -\infty$  are equivalent;

( $\mathcal{F}$ 3)There exists  $k \in (0, 1)$  such that  $\lim_{a \to 0^+} a^k \mathcal{F}(a) = 0$ .

Some examples of functions that confirm the conditions ( $\mathcal{F}1$ ), ( $\mathcal{F}2$ ), and ( $\mathcal{F}3$ ) are as follows:

- $\mathcal{F}(a) = \ln(a);$
- $\mathcal{F}(a) = \ln(a) + a;$
- $\mathcal{F}(a) = \ln(a^2 + a);$
- $\mathcal{F}(a) = -\frac{1}{\sqrt{a}}$  (see [10] for more details).

**Definition 1.** [10] Let  $(X, \mathfrak{D})$  be a metric space,  $\mathcal{F} \in \mathbb{F}$  and  $\xi : X \to X$ . The mapping  $\xi$  is called an  $\mathcal{F}$ -contraction if there exists  $\tau > 0$  such that

$$au + \mathcal{F}(\mathfrak{D}(\xi \omega, \xi v)) \leq \mathcal{F}(\mathfrak{D}(\omega, v))$$

for all  $\omega, v \in X$  satisfying  $\mathfrak{D}(T\omega, Tv) > 0$ .

### 2. Main Results

In this section, we prove new common fixed-circle theorems on metric spaces. For this purpose, we modify some well-known contractions such as the Wardowski-type contraction [10], Nemytskii–Edelstein-type contraction [11,12], Banach-type contraction [13], Hardy–Rogers-type contraction [14], Reich-type contraction [15], Chatterjea-type contraction [16], and Kannan-type contraction [17].

At first, we introduce the following new contraction type for two mappings to obtain some common fixed-circle results on metric spaces.

**Definition 2.** Let  $(X, \mathfrak{D})$  be a metric space and  $\xi$ , g be two self-mappings on X. If there exist  $\tau > 0, \mathcal{F} \in \mathbb{F}$  and  $\omega_0 \in X$  such that

$$\tau + \mathcal{F}(\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega)) \leq \mathcal{F}(\mathfrak{D}(\omega_0, \omega))$$

for all  $\omega \in X$  satisfying min{ $\mathfrak{D}(\omega, \xi \omega), \mathfrak{D}(\omega, g \omega)$ } > 0, then the pair  $(\xi, g)$  is called a Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction.

Notice that the point  $\omega_0$  mentioned in Definition 2 must be a common fixed-point of the mappings  $\xi$  and g. In fact, if  $\omega_0$  is not a common fixed-point of  $\xi$  and g, then we have  $\mathfrak{D}(\omega_0, \xi\omega_0) > 0$  and  $\mathfrak{D}(\omega_0, g\omega_0) > 0$ . Hence, we obtain

 $\min\{\mathfrak{D}(\varpi_0,\xi\varpi_0),\mathfrak{D}(\varpi_0,g\varpi_0)\}>0\Longrightarrow\tau+\mathcal{F}(\mathfrak{D}(\varpi_0,\xi\varpi_0)+\mathfrak{D}(\varpi_0,g\varpi_0))\leq\mathcal{F}(\mathfrak{D}(\varpi_0,\varpi_0)).$ 

This gives a contradiction since the domain of  $\mathcal{F}$  is  $(0, \infty)$ . As a result, we receive the following proposition as a consequence of Definition 2.

**Proposition 1.** Let  $(X, \mathfrak{D})$  be a metric space. If the pair  $(\xi, g)$  is a Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$ , then we have  $\xi \omega_0 = g \omega_0 = \omega_0$ .

Using this new type contraction, we give the following fixed-circle theorem.

**Theorem 1.** Let  $(X, \mathfrak{D})$  be a metric space and the pair  $(\xi, g)$  be a Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$ . Define the number  $\sigma$  by

$$\sigma = \inf\{\mathfrak{D}(\omega,\xi\omega) + \mathfrak{D}(\omega,g\omega) : \omega \neq \xi\omega, \omega \neq g\omega, \omega \in X\}.$$
 (1)

Then,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,r}$  where  $r < \sigma$ .

Proof. We distinguish two cases.

Case 1: Let  $\sigma = 0$ . Clearly,  $C_{\omega_0,\sigma} = {\omega_0}$  and by Proposition 1, we see that  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Case 2: Let  $\sigma > 0$  and  $\omega \in C_{\omega_0,\sigma}$ . If  $\xi \omega \neq \omega$  and  $g \omega \neq \omega$ , then by (1), we have  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) \geq \sigma$ . Hence, using the Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction property and the fact that  $\mathcal{F}$  is increasing, we obtain

$$\begin{aligned} \mathcal{F}(\sigma) &\leq & \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)) \\ &\leq & \mathcal{F}(\mathfrak{D}(\varpi_0,\varpi)) - \tau \\ &< & \mathcal{F}(\mathfrak{D}(\varpi_0,\varpi)) \\ &= & \mathcal{F}(\sigma) \end{aligned}$$

This gives a contradiction. Therefore, we have  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) = 0$ , that is,  $\omega = \xi \omega$  and  $\omega = g \omega$ . As a consequence,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Now, we show that  $\xi$  and g also fix any circle  $C_{\omega_0,r}$  with  $r < \sigma$ . Let  $\omega \in C_{\omega_0,r}$  and suppose that  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) > 0$ . With the Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction property, we have

$$\begin{split} \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)) &\leq & \mathcal{F}(\mathfrak{D}(\varpi_0,\varpi)) - \tau \\ &< & \mathcal{F}(\mathfrak{D}(\varpi_0,\varpi)) \\ &= & \mathcal{F}(r). \end{split}$$

Since  $\mathcal{F}$  is increasing, then we find

$$\mathfrak{D}(\omega,\xi\omega) + \mathfrak{D}(\omega,g\omega) < \mathfrak{D}(\omega_0,\omega) < r < \sigma.$$

However,  $\sigma = \inf \{ \mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) : \omega \neq \xi \omega, \omega \neq g \omega, \omega \in X \}$ , so this gives a contradiction. Thus,  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) = 0$  and  $\omega = \xi \omega = g \omega$ . Hence,  $C_{\omega_0, r}$  is a common fixed circle of the pair  $(\xi, g)$ .  $\Box$ 

**Example 1.** Let  $X = \{0, 1, -e, e, e - 1, e + 1, -e^2, e^2, e^2 - 1, e^2 + 1, e^2 - e, e^2 + e\}$  with usual *metric. Define*  $\xi, g : X \to X$  by

$$\xi \omega = \begin{cases} 1, & \omega = 0\\ \omega, & otherwise \end{cases}$$

and

$$g\varpi = \begin{cases} e-1, & \varpi = 0\\ \varpi, & otherwise \end{cases}$$

Take  $\mathcal{F}(a) = \ln(a) + a$ , a > 0,  $\tau = e$  and  $\omega_0 = e^2$ . Thus, the pair  $(\xi, g)$  is a Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction. For  $\omega = 0$ , we have

$$\min\{\mathfrak{D}(\omega,\xi\omega),\mathfrak{D}(\omega,g\omega)\} = \min\{\mathfrak{D}(0,1),\mathfrak{D}(0,e-1)\}$$
$$= \min\{1,e-1\}$$
$$= 1 > 0$$

In addition, we can easily see that the following inequality is satisfied:

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega)) &\leq & \mathcal{F}(\mathfrak{D}(\omega_0, \omega)) \\ e + \mathcal{F}(1 + e - 1) &\leq & \mathcal{F}(e^2) \\ e + \ln e + e &\leq & \ln e^2 + e^2 \\ &2e + 1 &< & 2 + e^2 \end{aligned}$$

With Theorem (1), we obtain

$$\sigma = \inf\{\mathfrak{D}(\omega,\xi\omega) + \mathfrak{D}(\omega,g\omega) : \omega \neq \xi\omega, \omega \neq g\omega, \omega \in X\} = \inf\{1+e-1\} = e$$

and  $\xi$ , g fix the circle  $C_{e^2,e} = \{e^2 - e, e^2 + e\}$ . Notice that  $\xi$  and g fix also the circle  $C_{e^2,1} = \{e^2 - 1, e^2 + 1\}$ .

The converse of Theorem 1 fails. The following example confirms this statement.

**Example 2.** Let  $(X, \mathfrak{D})$  be a metric space with any point  $\omega_0 \in X$ . Define the self-mappings  $\xi$  and *g* as follows:

and

$$\begin{split} \xi \varpi &= \left\{ \begin{array}{ll} \varpi, & \mathfrak{D}(\varpi, \varpi_0) \leq \mu \\ \varpi_0, & \mathfrak{D}(\varpi, \varpi_0) > \mu \end{array} \right. \\ g \varpi &= \left\{ \begin{array}{ll} \varpi, & \mathfrak{D}(\varpi, \varpi_0) \leq \mu \\ \varpi_0, & \mathfrak{D}(\varpi, \varpi_0) > \mu \end{array} \right. \end{split}$$

for all  $\omega \in X$  with any  $\mu > 0$ . Then, it can be easily checked that the pair  $(\xi, g)$  is not a Wardowskitype  $\mathcal{F}_{\xi_g}$ -contraction for the point  $\omega_0$  but  $\xi$  and g fix every circle  $C_{\omega_0,r}$  where  $r \leq \mu$ .

**Example 3.** Let  $\mathbb{C}$  be the set of complex numbers,  $(\mathbb{C}, \mathfrak{D})$  be the usual metric space, and define the self-mappings  $\xi, g : \mathbb{C} \to \mathbb{C}$  as follows:

$$\xi arpi = \left\{ egin{array}{cc} arpi, & |arpi - 2| < e \ arphi + rac{1}{2}, & |arpi - 2| \ge e \end{array} 
ight.$$

and

$$g\varpi = \begin{cases} \varpi, & |\varpi - 2| < e \\ \varpi - \frac{1}{2}, & |\varpi - 2| \ge e \end{cases},$$

for all  $\omega \in C$ . We have  $\sigma = \inf\{\mathfrak{D}(\omega, \xi\omega) + \mathfrak{D}(\omega, g\omega) : \omega \neq \xi\omega, \omega \neq g\omega, \omega \in C\}$ . Thus, the pair  $(\xi, g)$  is a Wardowski-type  $\mathcal{F}_{\xi g}$ -contraction with  $\mathcal{F} = \ln(a), \tau = \ln e$  and  $\omega_0 = 2 \in C$ . Obviously, the number of common fixed circles of  $\xi$  and g is infinite.

**Definition 3.** *If there exist*  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  *and*  $\omega_0 \in X$  *such that for all*  $\omega \in X$  *the following holds:* 

$$\tau + \mathcal{F}(\mathfrak{D}(\boldsymbol{\xi}\boldsymbol{\varpi},\boldsymbol{\omega}) + \mathfrak{D}(\boldsymbol{g}\boldsymbol{\varpi},\boldsymbol{\omega})) < \mathcal{F}(\mathfrak{D}(\boldsymbol{\omega},\boldsymbol{\omega}_0))$$

with min{ $\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)$ } > 0, then the pair  $(\xi, g)$  is called a Nemytskii–Edelstein-type  $\mathcal{F}_{\xi g}$ -contraction.

**Proposition 2.** Let  $(X, \mathfrak{D})$  be a metric space. If the pair  $(\xi, g)$  is a Nemytskii-Edelstein-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$ , then we have  $\xi \omega_0 = g \omega_0 = \omega_0$ .

**Proof.** It can be easily proved from the similar arguments used in Proposition 1.  $\Box$ 

**Theorem 2.** Let the pair  $(\xi, g)$  be a Nemytskii–Edelstein-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$  and  $\sigma$  be defined as in (1). Then,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,r}$  where  $r < \sigma$ .

**Proof.** It can be easily seen from the proof of Theorem 1.  $\Box$ 

In addition, we inspire the classical Banach contraction principle to give the following definition:

**Definition 4.** *If there exist*  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  *and*  $\omega_0 \in X$  *such that for all*  $\omega \in X$ , *the follow-ing holds*:

$$\tau + \mathcal{F}(\mathfrak{D}(\boldsymbol{\xi}\boldsymbol{\omega},\boldsymbol{\omega}) + \mathfrak{D}(\boldsymbol{g}\boldsymbol{\omega},\boldsymbol{\omega})) \leq \mathcal{F}(\boldsymbol{\eta}\mathfrak{D}(\boldsymbol{\omega},\boldsymbol{\omega}_0))$$

with min{ $\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)$ } > 0 where  $\eta \in [0, 1)$ , then the pair  $(\xi, g)$  is called a Banach-type  $\mathcal{F}_{\xi g}$ -contraction.

**Proposition 3.** Let  $(X, \mathfrak{D})$  be a metric space. If the pair  $(\xi, g)$  is a Banach-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$ , then we have  $\xi \omega_0 = g \omega_0 = \omega_0$ .

**Proof.** It can be easily proved from the similar arguments used in Proposition 1.  $\Box$ 

**Theorem 3.** Let the pair  $(\xi, g)$  be a Banach-type  $\mathcal{F}_{\xi g}$ -contraction with  $\varpi_0 \in X$  and  $\sigma$  be defined as in (1). Then  $C_{\varpi_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\varpi_0,r}$  where  $r < \sigma$ .

**Proof.** It can be easily seen from the proof of Theorem 1.  $\Box$ 

If we consider Example 1, then the pair  $(\xi, g)$  is both a Nemytskii–Edelstein-type  $\mathcal{F}_{\xi g}$ -contraction and a Banach-type  $\mathcal{F}_{\xi g}$ -contraction with  $\mathcal{F}(a) = \ln(a) + a$ , a > 0,  $\tau = e$ ,  $\omega_0 = e^2$  and so  $\xi$ , g have two common fixed circles  $C_{e^2,e}$  and  $C_{e^2,1}$ .

We introduce the notion of Hardy–Rogers-type  $\mathcal{F}_{\xi g}$ -contraction.

**Definition 5.** Let  $(X, \mathfrak{D})$  be a metric space and  $\xi$ , g be two self-mappings on X. The pair  $(\xi, g)$  is called a Hardy–Rogers-type  $\mathcal{F}_{\xi g}$ -contraction if there exist  $\tau > 0$  and  $\mathcal{F} \in \mathcal{F}$  such that

$$\tau + \mathcal{F}(\mathfrak{D}(\omega,\xi\omega) + \mathfrak{D}(\omega,g\omega)) \le \mathcal{F}\left(\begin{array}{c} \alpha \mathfrak{D}(\omega,\omega_0) + \beta \mathfrak{D}(\omega,\xi\omega) \\ + \gamma \mathfrak{D}(\omega,g\omega) + \delta \mathfrak{D}(\omega_0,\xi\omega_0) + \eta \mathfrak{D}(\omega_0,g\omega_0) \end{array}\right)$$
(2)

holds for any  $\omega, \omega_0 \in X$  with  $\min\{\mathfrak{D}(\omega, \xi\omega), \mathfrak{D}(\omega, g\omega)\} > 0$ , where  $\alpha, \beta, \gamma, \delta, \eta$  are nonnegative numbers,  $\alpha \neq 0$  and  $\alpha + \beta + \gamma + \delta + \eta \leq 1$ .

**Proposition 4.** *If the pair*  $(\xi, g)$  *is a Hardy–Rogers-type*  $\mathcal{F}_{\xi g}$ *-contraction with*  $\omega_0 \in X$ *, then we have*  $\xi \omega_0 = g \omega_0 = \omega_0$ .

**Proof.** Suppose that  $\xi \omega_0 \neq \omega_0$  and  $g\omega_0 \neq \omega_0$ . From the definition of the Hardy–Rogerstype  $\mathcal{F}_{\xi g}$ -contraction with min{ $\mathfrak{D}(\omega_0, \xi \omega_0), \mathfrak{D}(\omega_0, g\omega_0)$ } > 0, we obtain

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\omega_0, \xi\omega_0) + \mathfrak{D}(\omega_0, g\omega_0)) &\leq & \mathcal{F}\left(\begin{array}{c} \alpha \mathfrak{D}(\omega_0, \omega_0) + \beta \mathfrak{D}(\omega_0, \xi\omega_0) \\ + \gamma \mathfrak{D}(\omega_0, g\omega_0) + \delta \mathfrak{D}(\omega_0, \xi\omega_0) + \eta \mathfrak{D}(\omega_0, g\omega_0) \end{array}\right) \\ &= & \mathcal{F}((\beta + \delta)\mathfrak{D}(\omega_0, \xi\omega_0) + (\gamma + \eta)\mathfrak{D}(\omega_0, g\omega_0)) \\ &< & \mathcal{F}(\mathfrak{D}(\omega_0, \xi\omega_0) + \mathfrak{D}(\omega_0, g\omega_0)) \end{aligned}$$

a contradiction because of  $\tau > 0$ . Thus, we have  $\xi \omega_0 = g \omega_0 = \omega_0$ .  $\Box$ 

Using Proposition 4, we rewrite the condition (2) as follows:

$$\tau + \mathcal{F}(\mathfrak{D}(\omega, \xi\omega), \mathfrak{D}(\omega, g\omega)) \leq \mathcal{F}(\alpha \mathfrak{D}(\omega, \omega_0) + \beta \mathfrak{D}(\omega, \xi\omega) + \gamma \mathfrak{D}(\omega, g\omega))$$

with min{ $\mathfrak{D}(\omega, \xi \omega), \mathfrak{D}(\omega, g \omega)$ } > 0 where  $\alpha, \beta, \gamma$  are nonnegative numbers,  $\alpha \neq 0$  and  $\alpha + \beta + \gamma \leq 1$ .

Using this inequality, we present the following fixed-circle result.

**Theorem 4.** Let the pair  $(\xi, g)$  be a Hardy–Rogers-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$  and  $\sigma$  be defined as in (1). If  $\beta = \gamma$ , then  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . In addition,  $\xi$  and g fix every circle  $C_{\omega_0,r}$  with  $r < \sigma$ .

**Proof.** We distinguish two cases.

Case 1: Let  $\sigma = 0$ . Clearly,  $C_{\omega_0,\sigma} = \{\omega_0\}$  and by Proposition 4, we see that  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Case 2: Let  $\sigma > 0$  and  $\omega \in C_{\omega_0,\sigma}$ . Using the Hardy–Rogers-type  $\mathcal{F}_{\xi_{\delta}}$ -contractive property and the fact that  $\mathcal{F}$  is increasing, we have

$$\begin{split} \mathcal{F}(\sigma) &\leq & \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)) \\ &\leq & \mathcal{F}(\alpha\mathfrak{D}(\varpi,\varpi_0) + \beta\mathfrak{D}(\varpi,\xi\varpi) + \gamma\mathfrak{D}(\varpi,g\varpi)) - \tau \\ &< & \mathcal{F}(\alpha\sigma + \beta(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi))) \\ &< & \mathcal{F}((\alpha + \beta)(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi))) \\ &< & \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)). \end{split}$$

This gives a contradiction. Therefore,  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) = 0$  and so  $\xi \omega = \omega = g \omega$ . As a result,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Now, we show that  $\xi$  and g also fix any circle  $C_{\omega_0,r}$  with  $r < \sigma$ . Let  $\omega \in C_{\omega_0,r}$  and suppose that  $\mathfrak{D}(\omega, \xi\omega) + \mathfrak{D}(\omega, g\omega) > 0$ . By the Hardy–Rogers-type  $\mathcal{F}_{\xi g}$ -contraction, we have

$$\begin{split} \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)) &\leq \mathcal{F}(\alpha\mathfrak{D}(\varpi,\varpi_0) + \beta\mathfrak{D}(\varpi,\xi\varpi) + \gamma\mathfrak{D}(\varpi,g\varpi)) - \tau \\ &< \mathcal{F}(\alpha\mathfrak{D}(\varpi,\omega_0) + \beta\mathfrak{D}(\varpi,\xi\varpi) + \gamma\mathfrak{D}(\varpi,g\varpi)) \\ &< \mathcal{F}(\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)) \end{split}$$

a contradiction. So, we obtain  $\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega) = 0$  and  $\xi \omega = \omega = g \omega$ . Thus,  $C_{\omega_0, r}$  is a common fixed circle of the pair  $(\xi, g)$ .  $\Box$ 

**Remark 1.** If we take  $\alpha = 1$  and  $\beta = \gamma = \delta = \eta = 0$  in Definition 5, then we obtain the concept of a Wardowski-type  $\mathcal{F}_{\xi_{g}}$ -contractive mapping.

Now, we give the concept of a Reich-type  $\mathcal{F}_{\xi g}$ -contraction as follows.

**Definition 6.** If there exist  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  and  $\omega_0 \in X$  such that for all  $\omega \in X$ , the following holds:

$$\tau + \mathcal{F}(\mathfrak{D}(\xi\omega,\omega) + \mathfrak{D}(g\omega,\omega)) \le \mathcal{F}\left(\begin{array}{c} \alpha\mathfrak{D}(\omega,\omega_0) + \beta[\mathfrak{D}(\omega,\xi\omega) + \mathfrak{D}(\omega,g\omega)] \\ + \gamma[\mathfrak{D}(\omega_0,\xi\omega_0) + \mathfrak{D}(\omega_0,g\omega_0)] \end{array}\right)$$
(3)

with min{ $\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)$ } > 0, where  $\alpha + \beta + \gamma < 1$ ,  $\alpha \neq 0$  and  $\alpha, \beta, \gamma \in [0, \infty)$ . Then, the pair  $(\xi, g)$  is called a Reich-type  $\mathcal{F}_{\xi g}$ -contraction on X.

**Proposition 5.** If the pair  $(\xi, g)$  is a Reich-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$ , then we have  $\xi \omega_0 = \omega_0 = g \omega_0$ .

**Proof.** Assume that  $\xi \omega_0 \neq \omega_0$  and  $g \omega_0 \neq \omega_0$ . From the definition of the Reich-type  $\mathcal{F}_{\xi g}$ -contraction with min{ $\mathfrak{D}(\omega_0, \xi \omega_0), \mathfrak{D}(\omega_0, g \omega_0)$ } > 0, we get

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\omega_{0},\xi\omega_{0}) + \mathfrak{D}(\omega_{0},g\omega_{0})) &\leq & \mathcal{F}\left(\begin{array}{cc} \alpha \mathfrak{D}(\omega_{0},\omega_{0}) + \beta [\mathfrak{D}(\omega_{0},\xi\omega_{0}) + \mathfrak{D}(\omega_{0},g\omega_{0})] \\ &+ \gamma [\mathfrak{D}(\omega_{0},\xi\omega_{0}) + \mathfrak{D}(\omega_{0},g\omega_{0})] \end{array}\right) \\ &= & \mathcal{F}((\beta + \gamma)[\mathfrak{D}(\omega_{0},\xi\omega_{0}) + \mathfrak{D}(\omega_{0},g\omega_{0})]) \\ &< & \mathcal{F}(\mathfrak{D}(\omega_{0},\xi\omega_{0}) + \mathfrak{D}(\omega_{0},g\omega_{0})) \end{aligned}$$

a contradiction because of  $\tau > 0$ . Then, we have  $\xi \omega_0 = \omega_0 = g \omega_0$ .  $\Box$ 

Using Proposition 5, we rewrite the condition (3) as follows:

$$\tau + \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \le \mathcal{F}(\alpha \mathfrak{D}(\omega, \omega_0) + \beta[\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega)])$$

with min{ $\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)$ } > 0 where  $\alpha + \beta < 1, \alpha \neq 0$  and  $\alpha, \beta \in [0, \infty)$ .

Using this inequality, we obtain the following common fixed-circle result.

**Theorem 5.** Let the pair  $(\xi, g)$  be a Reich-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$  and  $\sigma$  be defined as in (1). Then,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .

**Proof.** We distinguish two cases.

Case 1: Let  $\sigma = 0$ . Clearly,  $C_{\omega_0,\sigma} = \{\omega_0\}$  and by Proposition 5, we see that  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Case 2: Let  $\sigma > 0$  and  $\omega \in C_{\omega_0,\sigma}$ . This case can be easily seen since

$$\begin{split} \mathcal{F}(\sigma) &\leq & \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \\ &\leq & \mathcal{F}((\alpha + \beta)[\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)]) \\ &< & \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)). \end{split}$$

Consequently,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .  $\Box$ 

To obtain, some new common fixed-circle results, we define the following contractions.

**Definition 7.** *If there exist*  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  *and*  $\omega_0 \in X$  *such that for all*  $\omega \in X$ , *the follow-ing holds:* 

$$\tau + \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}(\eta[\mathfrak{D}(\xi \omega, \omega_0) + \mathfrak{D}(g \omega, \omega_0)])$$

with  $\min\{\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)\} > 0$  where  $\eta \in (0, \frac{1}{3})$ , then the pair  $(\xi, g)$  is called a Chatterjeatype  $\mathcal{F}_{\xi g}$ -contraction.

**Proposition 6.** *If the pair*  $(\xi, g)$  *is a Chattereja-type*  $\mathcal{F}_{\xi g}$ *-contraction with*  $\omega_0 \in X$ *, then we have*  $\xi \omega_0 = \omega_0 = g \omega_0$ .

**Proof.** From the similar arguments used in Proposition 4, it can be easily proved.  $\Box$ 

**Theorem 6.** Let the pair  $(\xi, g)$  be a Chatterjea-type  $\mathcal{F}_{\xi g}$ -contraction with  $\omega_0 \in X$  and  $\sigma$  be defined as in (1). Then,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .

**Proof.** We distinguish two cases.

Case 1: Let  $\sigma = 0$ . Clearly,  $C_{\omega_0,\sigma} = \{\omega_0\}$  and by Proposition 6, we see that  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Case 2: Let  $\sigma > 0$  and  $\omega \in C_{\omega_0,\sigma}$ . Using the Chatterjea-type  $\mathcal{F}_{\xi g}$ -contractive property, the fact that  $\mathcal{F}$  is increasing, and the triangle inequality property of metric function d, we have

$$\begin{array}{lll} \mathcal{F}(\sigma) &\leq & \mathcal{F}(\mathfrak{D}(\xi \varpi, \varpi) + \mathfrak{D}(g \varpi, \varpi)) \\ &\leq & \mathcal{F}(\eta[\mathfrak{D}(\xi \varpi, \varpi_0) + \mathfrak{D}(g \varpi, \varpi_0)]) - \tau \\ &\leq & \mathcal{F}(\eta[\mathfrak{D}(\xi \varpi, \varpi) + \mathfrak{D}(\varpi, \varpi_0) + \mathfrak{D}(g \varpi, \varpi) + \mathfrak{D}(\varpi, \varpi_0)]) \\ &= & \mathcal{F}(\eta[\mathfrak{D}(\xi \varpi, \varpi) + \mathfrak{D}(g \varpi, \varpi) + \mathfrak{D}(g \varpi, \varpi)]]) \\ &= & \mathcal{F}(\mathfrak{J}[\mathfrak{D}(\xi \varpi, \varpi) + \mathfrak{D}(g \varpi, \varpi)]) \\ &< & \mathcal{F}(\mathfrak{D}(\xi \varpi, \varpi) + \mathfrak{D}(g \varpi, \varpi)). \end{array}$$

This gives a contradiction. Thus,  $\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega) = 0$ , that is,  $\xi \omega = \omega = g \omega$ . As a result,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . By the similar arguments used in the proof of Theorem 1,  $\xi$  and g also fix any circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .  $\Box$ 

**Definition 8.** If there exist  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  and  $\omega_0 \in X$  such that for all  $\omega \in X$  the following holds:

$$\tau + \mathcal{F}(\mathfrak{D}(\xi\omega,\omega) + \mathfrak{D}(g\omega,\omega)) \le \mathcal{F}(\eta[\mathfrak{D}(\omega,\xi\omega_0) + \mathfrak{D}(\omega,g\omega_0)])$$
(4)

with  $\min\{\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)\} > 0$  where  $\eta \in (0, \frac{1}{2})$ , then the pair  $(\xi, g)$  is called a Kannantype  $\mathcal{F}_{\xi g}$ -contraction.

**Proposition 7.** *If the pair*  $(\xi, g)$  *is a Kannan-type*  $\mathcal{F}_{\xi g}$ *-contraction with*  $\omega_0 \in X$ *, then we have*  $\xi \omega_0 = \omega_0 = g \omega_0$ .

**Proof.** From the similar arguments used in Proposition 4, it can be easily obtained.  $\Box$ 

**Theorem 7.** Let the pair  $(\xi, g)$  be a Kannan-type  $\mathcal{F}_{\xi g}$ -contraction with  $\varpi_0 \in X$  and  $\sigma$  be defined as in (1). Then,  $C_{\varpi_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\varpi_0,\rho}$  with  $\rho < \sigma$ .

**Proof.** We distinguish two cases.

Case 1: Let  $\sigma = 0$ . Clearly,  $C_{\omega_0,\sigma} = \{\omega_0\}$  and by Proposition 7, we see that  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ .

Case 2: Let  $\sigma > 0$  and  $\omega \in C_{\omega_0,\sigma}$ . Using the Kannan-type  $\mathcal{F}_{\xi g}$ -contractive property, the fact that  $\mathcal{F}$  is increasing, and the triangle inequality property of metric function d, we have

$$\begin{array}{lll} \mathcal{F}(\sigma) & \leq & \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \\ & \leq & \mathcal{F}(\eta[\mathfrak{D}(\omega, \xi \omega_0) + \mathfrak{D}(\omega, g \omega_0)]) - \tau \\ & \leq & \mathcal{F}(\eta[\mathfrak{D}(\omega, \omega_0) + \mathfrak{D}(\omega, \omega_0)]) \\ & \leq & \mathcal{F}(2\eta \sigma) \\ & < & \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)). \end{array}$$

This gives a contradiction. Thus,  $\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega) = 0$ , that is,  $\xi \omega = \omega = g \omega$ . As a result,  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . By similar arguments used in the proof of Theorem 1,  $\xi$  and g also fix any circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .  $\Box$ 

Now, we present an illustrative example of our obtained results.

**Example 4.** Let  $X = \{1, 2, e^2, e^2 - 1, e^2 + 1\}$  be the metric space with the usual metric. Let us define the self-mappings  $\xi, g : X \longrightarrow X$  as

$$\xi \varpi = \begin{cases} 2, & \varpi = 1\\ \varpi, & otherwise \end{cases}$$

and

$$g\omega = \begin{cases} 2, & \omega = 1\\ \omega, & otherwise \end{cases}$$

for all  $\omega \in X$ .

The pair ( $\xi$ , g) is a Hardy–Rogers-type  $\mathcal{F}_{\xi g}$ -contraction with  $\mathcal{F} = lna + a$ ,  $\tau = 0.01$ ,  $\alpha = \beta = \gamma = \frac{1}{4}$  and  $\omega_0 = e^2$ . Indeed, we get

$$\min\{\mathfrak{D}(\varpi,\xi\varpi),\mathfrak{D}(\varpi,g\varpi)\}=\min\{\mathfrak{D}(1,2),\mathfrak{D}(1,2)\}=1>0$$

for  $\omega = 1$  and we get

$$\begin{split} \alpha\mathfrak{D}(\varpi,\varpi_0) + \beta\mathfrak{D}(\varpi,\xi\varpi) + \gamma\mathfrak{D}(\varpi,g\varpi) &= \frac{1}{4} \Big[ \mathfrak{D}\Big(1,e^2\Big) + \mathfrak{D}(1,2) + \mathfrak{D}(1,2) \Big] \\ &= \frac{1}{4} \Big[e^2 - 1 + 1 + 1\Big] \\ &= \frac{e^2 + 1}{4}. \end{split}$$

Then, we have

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\varpi, \xi \varpi) + \mathfrak{D}(\varpi, g \varpi)) &= 0.01 + \ln 2 + 2 \\ &\leq \mathcal{F}\left(\frac{e^2 + 1}{4}\right) \\ &= \ln\left(e^2 + 1\right) - \ln 4 + \frac{e^2 + 1}{4}. \end{aligned}$$

The pair  $(\xi, g)$  is a Reich-type  $\mathcal{F}_{\xi g}$ -contraction with  $\mathcal{F} = \ln a$ ,  $\tau = \ln(e^2 + 1) - \ln 6$ ,  $\alpha = \beta = \frac{1}{3}$  and  $\omega_0 = e^2$ . Indeed, we get

$$\min\{\mathfrak{D}(\omega,\xi\omega),\mathfrak{D}(\omega,g\omega)\}=\min\{\mathfrak{D}(1,2),\mathfrak{D}(1,2)\}=1>0$$

for  $\omega = 1$  and we have

$$\begin{split} \alpha\mathfrak{D}(\varpi,\varpi_0) + \beta[\mathfrak{D}(\varpi,\xi\varpi) + \mathfrak{D}(\varpi,g\varpi)] &= \frac{1}{3}\mathfrak{D}\left(1,e^2\right) + \frac{1}{3}[\mathfrak{D}(1,2) + \mathfrak{D}(1,2)] \\ &= \frac{e^2 + 1}{3}. \end{split}$$

Then, we obtain

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega)) &= \ln\left(e^2 + 1\right) - \ln 6 + \ln 2 \\ &\leq \mathcal{F}\left(\frac{e^2 + 1}{3}\right) \\ &= \ln(e^2 + 1) - \ln 3. \end{aligned}$$

The pair  $(\xi, g)$  is both a Chatterjea-type  $\mathcal{F}_{\xi g}$ -contractions and a Kannan-type  $\mathcal{F}_{\xi g}$ contraction with  $\mathcal{F} = lna$ ,  $\tau = \ln(e^2 - 2) - \ln 4$ ,  $\eta = \frac{1}{4}$  and  $\omega_0 = e^2$ . Indeed, for Chatterjeatype  $\mathcal{F}_{\xi g}$ -contractions, we get

$$\min\{\mathfrak{D}(\varpi,\xi\varpi),\mathfrak{D}(\varpi,g\varpi)\}=\min\{\mathfrak{D}(1,2),\mathfrak{D}(1,2)\}=1>0$$

for  $\omega = 1$  and we have

$$\eta[\mathfrak{D}(\omega_0,\xi\omega) + \mathfrak{D}(\omega_0,g\omega)] = \frac{1}{4} \Big[ \mathfrak{D}\Big(e^2,2\Big) + \mathfrak{D}\Big(e^2,2\Big) \Big]$$
$$\leq \frac{1}{4} \Big[ 2(e^2-2) \Big]$$
$$= \frac{e^2-2}{2}.$$

Then, we obtain

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\varpi, \xi \varpi) + \mathfrak{D}(\varpi, g \varpi)) &= \ln\left(e^2 - 2\right) - \ln 4 + \ln 2 \\ &\leq \mathcal{F}\left(\frac{e^2 - 2}{2}\right) \\ &= \ln\left(e^2 - 2\right) - \ln 2. \end{aligned}$$

For Kannan-type  $\mathcal{F}_{\xi g}$ -contractions, we have

$$\min\{\mathfrak{D}(\omega,\xi\omega),\mathfrak{D}(\omega,g\omega)\}=\min\{\mathfrak{D}(1,2),\mathfrak{D}(1,2)\}=1>0$$

for  $\omega = 1$  and we have

$$\eta[\mathfrak{D}(\omega,\xi\omega_0) + \mathfrak{D}(\omega,g_0)] = \frac{1}{4} \Big[\mathfrak{D}\Big(1,e^2\Big) + \mathfrak{D}\Big(1,e^2\Big)\Big]$$
$$\leq \frac{1}{4} \Big[2(e^2-1)\Big]$$
$$= \frac{e^2-1}{2}.$$

Then, we obtain

$$\begin{aligned} \tau + \mathcal{F}(\mathfrak{D}(\omega, \xi \omega) + \mathfrak{D}(\omega, g \omega)) &= \ln\left(e^2 - 2\right) - \ln 4 + \ln 2 \\ &\leq \mathcal{F}\left(\frac{e^2 - 1}{2}\right) \\ &= \ln\left(e^2 - 1\right) - \ln 2. \end{aligned}$$

Consequently,  $\xi$  and g fix the circle  $C_{e^2,1} = \{e^2 - 1, e^2 + 1\}$ .

If we combine the notions of Banach-type  $\mathcal{F}_{\xi g}$ -contractions, Chatterjea-type  $\mathcal{F}_{\xi g}$ -contractions, and Kannan-type  $\mathcal{F}_{\xi g}$ -contractions, then we get the following corollary. This corollary can be considered as Zamfirescu-type common fixed-circle result [18].

**Corollary 1.** Let  $(X, \mathfrak{D})$  be a metric space,  $\xi, g : X \longrightarrow X$  be two self-mappings and  $\sigma$  be defined as in (1). If there exist  $\tau > 0$ ,  $\mathcal{F} \in \mathcal{F}$  and  $\omega_0 \in X$  such that for all  $\omega \in X$ , at least one of the followings holds:

$$(1) \tau + \mathcal{F}(\mathfrak{D}(\boldsymbol{\xi}\boldsymbol{\varpi},\boldsymbol{\varpi}) + \mathfrak{D}(\boldsymbol{g}\boldsymbol{\varpi},\boldsymbol{\varpi})) \leq \mathcal{F}(\boldsymbol{\alpha}\mathfrak{D}(\boldsymbol{\varpi},\boldsymbol{\varpi}_0)),$$

 $(2) \tau + \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}(\beta[\mathfrak{D}(\xi \omega, \omega_0) + \mathfrak{D}(g \omega, \omega_0)]),$ 

$$(3) \tau + \mathcal{F}(\mathfrak{D}(\xi \omega, \omega) + \mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}(\gamma[\mathfrak{D}(\omega, \xi \omega_0) + \mathfrak{D}(\omega, g \omega_0)])$$

with min{ $\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)$ } > 0 where  $0 \le \alpha < 1, 0 \le \beta, \gamma < \frac{1}{2}$ , then  $C_{\omega_0,\sigma}$  is a common fixed circle of the pair  $(\xi, g)$ . Especially,  $\xi$  and g fix every circle  $C_{\omega_0,\rho}$  with  $\rho < \sigma$ .

**Proof.** It is obvious.  $\Box$ 

Author Contributions: N.M.: conceptualization, supervision, writing—original draft; N.T.: writing—original draft, methodology; E.K.: conceptualization, supervision, writing—original draft; S.S.A.: conceptualization, writing—original draft; A.K.S.: methodology, writing—original draft. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

**Acknowledgments:** The authors N. Mlaiki and S. S. Aiadi would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

### **Conflicts of Interest:** The authors declare no conflict of interest.

#### References

- 1. Mlaiki, N.; Özgür, N.Y.; Taş, N. New fixed-circle results related to *F*<sub>c</sub>-contractive and *F*<sub>c</sub>-expanding mappings on metric spaces. *arXiv* **2021**, arXiv:2101.10770.
- 2. Celik, U.; Özgür, N. On the fixed-circle problem. Facta Univ. Ser. Math. Inform. 2021, 35, 1273–1290. [CrossRef]
- 3. Bisht, R.K.; Özgür, N. Geometric properties of discontinuous fixed point set of  $\epsilon \delta$  contractions and applications to neural networks. *Aequationes Math.* **2020**, *94*, 847–863. [CrossRef]
- 4. Joshi, M.; Tomar, A.; Padaliya, S.K. Fixed point to fixed ellipse in metric spaces and discontinuous activation function. *Appl. Math. E-Notes* **2021**, *21*, 225–237.
- 5. Joshi, M.; Tomar, A. On unique and nonunique fixed points in metric spaces and application to chemical sciences. *J. Funct. Spaces* **2021**, 2021, 5525472. [CrossRef]
- 6. Tomar, A.; Joshi, M.; Padaliya, S.K. Fixed point to fixed circle and activation function in partial metric space. *J. Appl. Anal.* 2022, 28, 57–66. [CrossRef]
- 7. Joshi, M.; Tomar, A.; Nabwey, H.A.; George, R. On Unique and Nonunique Fixed Points and Fixed Circles in-Metric Space and Application to Cantilever Beam Problem. *J. Funct. Spaces* **2021**, 2021, 6681044. [CrossRef]
- 8. Özgür, N.Y. Fixed-disc results via simulation functions. *Turk. J. Math.* **2019**, *43*, 2794–2805. [CrossRef]
- 9. Mlaiki, N.; Taş, N.; Özgür, N.Y. On the fixed-circle problem and Khan type contractions. *Axioms* **2018**, *7*, 80. [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. *Fixed Point Theory Appl.* 2012, 2012, 94. [CrossRef]
- 11. Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74–79. [CrossRef]
- 12. Nemytskii, V.V. The fixed point method in analysis. Usp. Mat. Nauk 1936, 1, 141–174. (In Russian)
- 13. Banach, S. Sur les operations dans les ensembles abstraits et leur application auxequations integrales. *Fund. Math.* **1922**, *3*, 133–181. [CrossRef]
- 14. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16, 201–206. [CrossRef]
- 15. Reich, S. Some remarks concerning contraction mappings. Oanad. Math. Bull. 1971, 14, 121–124. [CrossRef]
- 16. Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [CrossRef]
- 17. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76.
- 18. Zamfirescu, T. A theorem on fixed points. Atti Acad. Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur. 1972, 52, 832-834.