Article

Some Common Fixed-Circle Results on Metric Spaces

Nabil Mlaiki ${ }^{1, *(\mathbb{D})}$, Nihal Taş ${ }^{2}{ }^{(\mathbb{D}}$, Elif Kaplan ${ }^{3}\left(\mathbb{D}\right.$, Suhad Subhi Aiadi ${ }^{1}{ }^{(\mathbb{D}}$ and Asma Karoui Souayah ${ }^{4,5, *(\mathbb{D})}$
1 Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
2 Department of Mathematics, Balıkesir University, 10145 Balikesir, Turkey
3 Department of Mathematics, Ondokuz Mayis University, 55280 Samsun, Turkey
4 Department of Business Administration, College of Science and Humanities, Shaqra University, Dhurma 11961, Saudi Arabia
5 Institut Préparatoire aux Études d'Ingénieurs de Gafsa, Gafsa University, Gafsa 2112, Tunisia
* Correspondence: nmlaiki@psu.edu.sa or nmlaiki2012@gmail.com (N.M.); asma.souayah@yahoo.fr (A.K.S.)

Abstract

Recently, the fixed-circle problems have been studied with different approaches as an interesting and geometric generalization. In this paper, we present some solutions to an open problem CC: what is (are) the condition(s) to make any circle $C_{\omega_{0}, \sigma}$ as the common fixed circle for two (or more than two) self-mappings? To do this, we modify some known contractions which are used in fixed-point theorems such as the Hardy-Rogers-type contraction, Kannan-type contraction, etc.

Keywords: metric spaces; fixed circle; common fixed circle
MSC: 54E35; 54E40; 54H25

Citation: Mlaiki, N.; Taş, N.; Kaplan, E.; Subhi Aiadi, S.; Karoui Souayah, A. Some Common Fixed-Circle Results on Metric Spaces. Axioms 2022, 11, 454. https://doi.org/ 10.3390/axioms11090454

Academic Editors: Adrian Petrusel, Wei-Shih Du and Luigi Muglia

Received: 6 August 2022
Accepted: 1 September 2022
Published: 4 September 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

In the recent past, the fixed-circle problem has been introduced as a new geometric generalization of fixed-point theory. After that, some solutions to this problem have been investigated using various techniques (for example, see [1-8], and the references therein). In addition, in [1], the following open problem was given:

Let (X, \mathfrak{D}) be a metric space and $C_{\omega_{0}, \sigma}=\left\{\omega \in X: \mathfrak{D}\left(\omega_{\omega}, \omega_{0}\right)=\sigma\right\}$ be any circle on X.
Open Problem CC: What is (are) the condition(s) to make any circle $C_{\omega_{0}, \sigma}$ as the common fixed circle for two (or more than two) self-mappings?

Let ξ and g be two self-mappings on a set X. If $\xi \mathcal{\omega}=g \omega=\omega$ for all $\omega \in C_{\omega_{0}, \sigma}$, then $C_{\omega_{0}, \sigma}$ is called a common fixed circle of the pair (ξ, g) (see [9] for more details).

Some solutions were given for this open problem (for example, see [8,9]). To obtain new solutions, in this paper, we define new contractions for the pair (ξ, g) and prove new common fixed-circle results on metric spaces. Before moving on to the main results, we recall the following.

Throughout this article, we denote by \mathbb{R} the set of all real numbers and by \mathbb{R}_{+}the set of all positive real numbers.

Let ξ and g be self-mappings on a set X. If $\xi \mathcal{\omega}=g \omega=w$ for some ω in X, then ω is called a coincidence point of ξ and g, w is called a point of coincidence of ξ and g.

Let $C(\xi, g)=\{\omega \in X: \xi \omega=g \omega=\omega\}$ denote the set of all common fixed-points of self-mappings ξ and g.

In [10], Wardowski introduced the following family of functions to obtain a new type of contraction called \mathcal{F}-contraction.

Let \mathbb{F} be the family of all mappings $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ that satisfy the following conditions:
$(\mathcal{F} 1) \mathcal{F}$ is strictly increasing, that is, for all $a, b \in \mathbb{R}_{+}$such that $a<b$ implies that $\mathcal{F}(a)<$ $\mathcal{F}(b) ;$
$(\mathcal{F} 2)$ For every sequence $\left\{a_{n}\right\}_{n \in N}$ of positive real numbers, $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} \mathcal{F}\left(a_{n}\right)=-\infty$ are equivalent;
$(\mathcal{F} 3)$ There exists $k \in(0,1)$ such that $\lim _{a \rightarrow 0^{+}} a^{k} \mathcal{F}(a)=0$.
Some examples of functions that confirm the conditions $(\mathcal{F} 1),(\mathcal{F} 2)$, and $(\mathcal{F} 3)$ are as follows:

- $\mathcal{F}(a)=\ln (a) ;$
- $\mathcal{F}(a)=\ln (a)+a$;
- $\mathcal{F}(a)=\ln \left(a^{2}+a\right) ;$
- $\mathcal{F}(a)=-\frac{1}{\sqrt{a}}$ (see [10] for more details).

Definition 1. [10] Let (X, \mathfrak{D}) be a metric space, $\mathcal{F} \in \mathbb{F}$ and $\xi: X \rightarrow X$. The mapping ξ is called an \mathcal{F}-contraction if there exists $\tau>0$ such that

$$
\tau+\mathcal{F}(\mathfrak{D}(\mathfrak{\xi} \omega, \xi v)) \leq \mathcal{F}(\mathfrak{D}(\omega, v))
$$

for all $\omega, v \in X$ satisfying $\mathfrak{D}(T \omega, T v)>0$.

2. Main Results

In this section, we prove new common fixed-circle theorems on metric spaces. For this purpose, we modify some well-known contractions such as the Wardowski-type contraction [10], Nemytskii-Edelstein-type contraction [11,12], Banach-type contraction [13], Hardy-Rogers-type contraction [14], Reich-type contraction [15], Chatterjea-type contraction [16], and Kannan-type contraction [17].

At first, we introduce the following new contraction type for two mappings to obtain some common fixed-circle results on metric spaces.

Definition 2. Let (X, \mathfrak{D}) be a metric space and ξ, g be two self-mappings on X. If there exist $\tau>0, \mathcal{F} \in \mathbb{F}$ and $\omega_{0} \in X$ such that

$$
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathscr{} \omega)+\mathfrak{D}(\omega, g \mathscr{\omega})) \leq \mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \mathfrak{\omega}\right)\right)
$$

for all $\omega \in X$ satisfying $\min \{\mathfrak{D}(\omega, \xi \mathfrak{\omega}), \mathfrak{D}(\omega, g \omega)\}>0$, then the pair (ξ, g) is called a Wardowski-type $\mathcal{F}_{\xi g}$-contraction.

Notice that the point ω_{0} mentioned in Definition 2 must be a common fixed-point of the mappings ξ and g. In fact, if ω_{0} is not a common fixed-point of ξ and g, then we have $\mathfrak{D}\left(\omega_{0}, \mathfrak{\xi} \omega_{0}\right)>0$ and $\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)>0$. Hence, we obtain
$\min \left\{\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right), \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right\}>0 \Longrightarrow \tau+\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right) \leq \mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \omega_{0}\right)\right)$.
This gives a contradiction since the domain of \mathcal{F} is $(0, \infty)$. As a result, we receive the following proposition as a consequence of Definition 2.

Proposition 1. Let (X, \mathfrak{D}) be a metric space. If the pair (ξ, g) is a Wardowski-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=g \omega_{0}=\omega_{0}$.

Using this new type contraction, we give the following fixed-circle theorem.
Theorem 1. Let (X, \mathfrak{D}) be a metric space and the pair (ξ, g) be a Wardowski-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$. Define the number σ by

$$
\begin{equation*}
\sigma=\inf \{\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega): \omega \neq \xi \omega, \omega \neq g \omega, \omega \in X\} . \tag{1}
\end{equation*}
$$

Then, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, r}$ where $r<\sigma$.

Proof. We distinguish two cases.

Case 1: Let $\sigma=0$. Clearly, $C_{\omega_{0}, \sigma}=\left\{\omega_{0}\right\}$ and by Proposition 1, we see that $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Case 2: Let $\sigma>0$ and $\omega \in C_{\omega_{0}, \sigma}$. If $\xi \omega \neq \omega$ and $g \omega \neq \omega$, then by (1), we have $\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega) \geq \sigma$. Hence, using the Wardowski-type $\mathcal{F}_{\xi g}$-contraction property and the fact that \mathcal{F} is increasing, we obtain

$$
\begin{aligned}
\mathcal{F}(\sigma) & \leq \mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{\xi})+\mathfrak{D}(\omega, g \omega)) \\
& \leq \mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \omega\right)\right)-\tau \\
& <\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \omega\right)\right) \\
& =\mathcal{F}(\sigma)
\end{aligned}
$$

This gives a contradiction. Therefore, we have $\mathfrak{D}(\omega, \xi \mathcal{})+\mathfrak{D}(\omega, g \mathscr{\omega})=0$, that is, $\omega=\xi \omega$ and $\omega=g \omega$. As a consequence, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle $C_{\omega_{0}, r}$ with $r<\sigma$. Let $\omega \in C_{\omega_{0}, r}$ and suppose that $\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega)>0$. With the Wardowski-type $\mathcal{F}_{\xi g}$-contraction property, we have

$$
\begin{aligned}
\mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{\xi})+\mathfrak{D}(\omega, g \omega)) & \leq \mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \omega\right)\right)-\tau \\
& <\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \omega\right)\right) \\
& =\mathcal{F}(r) .
\end{aligned}
$$

Since \mathcal{F} is increasing, then we find

$$
\mathfrak{D}(\omega, \xi \mathfrak{\omega})+\mathfrak{D}(\omega, g \omega)<\mathfrak{D}\left(\omega_{0}, \omega\right)<r<\sigma .
$$

However, $\sigma=\inf \{\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega): \omega \neq \xi \omega, \omega \neq g \omega, \omega \in X\}$, so this gives a contradiction. Thus, $\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega)=0$ and $\omega=\xi \mathcal{\omega}=g \omega$. Hence, $C_{\omega_{0}, r}$ is a common fixed circle of the pair (ξ, g).

Example 1. Let $X=\left\{0,1,-e, e, e-1, e+1,-e^{2}, e^{2}, e^{2}-1, e^{2}+1, e^{2}-e, e^{2}+e\right\}$ with usual metric. Define $\xi, g: X \rightarrow X$ by

$$
\xi \mathscr{\omega}=\left\{\begin{array}{cc}
1, \quad \omega=0 \\
\omega, & \text { otherwise }
\end{array}\right.
$$

and

$$
g \mathfrak{\omega}=\left\{\begin{array}{cc}
e-1, & \mathfrak{\omega}=0 \\
\omega, & \text { otherwise }
\end{array} .\right.
$$

Take $\mathcal{F}(a)=\ln (a)+a, a>0, \tau=e$ and $\omega_{0}=e^{2}$. Thus, the pair (ξ, g) is a Wardowski-type $\mathcal{F}_{\xi g}$-contraction. For $\omega=0$, we have

$$
\begin{aligned}
\min \{\mathfrak{D}(\mathfrak{\omega}, \xi \mathfrak{\jmath}), \mathfrak{D}(\mathfrak{\omega}, g \mathfrak{\omega})\} & =\min \{\mathfrak{D}(0,1), \mathfrak{D}(0, e-1)\} \\
& =\min \{1, e-1\} \\
& =1>0
\end{aligned}
$$

In addition, we can easily see that the following inequality is satisfied:

$$
\begin{aligned}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathcal{W})+\mathfrak{D}(\omega, g \omega)) & \leq \mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \mathfrak{\omega}\right)\right) \\
e+\mathcal{F}(1+e-1) & \leq \mathcal{F}\left(e^{2}\right) \\
e+\ln e+e & \leq \ln e^{2}+e^{2} \\
2 e+1 & \leq 2+e^{2}
\end{aligned}
$$

With Theorem (1), we obtain
$\sigma=\inf \{\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega): \omega \neq \xi \omega, \omega \neq g \omega, \omega \in X\}=\inf \{1+e-1\}=e$
and ξ, g fix the circle $C_{e^{2}, e}=\left\{e^{2}-e, e^{2}+e\right\}$. Notice that ξ and g fix also the circle $C_{e^{2}, 1}=$ $\left\{e^{2}-1, e^{2}+1\right\}$.

The converse of Theorem 1 fails. The following example confirms this statement.
Example 2. Let (X, \mathfrak{D}) be a metric space with any point $\omega_{0} \in X$. Define the self-mappings ξ and g as follows:

$$
\xi \boldsymbol{\omega}=\left\{\begin{array}{cc}
\omega, & \mathfrak{D}\left(\omega, \omega_{0}\right) \leq \mu \\
\omega_{0}, & \mathfrak{D}\left(\omega, \omega_{0}\right)>\mu
\end{array}\right.
$$

and

$$
g \omega=\left\{\begin{array}{cc}
\omega, & \mathfrak{D}\left(\omega, \omega_{0}\right) \leq \mu \\
\omega_{0}, & \mathfrak{D}\left(\omega, \omega_{0}\right)>\mu
\end{array}\right.
$$

for all $\omega \in X$ with any $\mu>0$. Then, it can be easily checked that the pair (ξ, g) is not a Wardowskitype $\mathcal{F}_{\xi g}$-contraction for the point ω_{0} but ξ and g fix every circle $C_{\omega_{0}, r}$ where $r \leq \mu$.

Example 3. Let \mathbb{C} be the set of complex numbers, $(\mathbb{C}, \mathfrak{D})$ be the usual metric space, and define the self-mappings $\xi, g: \mathbb{C} \rightarrow \mathbb{C}$ as follows:

$$
\xi \omega=\left\{\begin{array}{cc}
\omega, & |\omega-2|<e \\
\omega+\frac{1}{2}, & |\omega-2| \geq e
\end{array}\right.
$$

and

$$
g \omega=\left\{\begin{array}{cc}
\omega, & |\omega-2|<e \\
\omega-\frac{1}{2}, & |\omega-2| \geq e
\end{array}\right.
$$

for all $\omega \in C$. We have $\sigma=\inf \{\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega): \omega \neq \xi \omega, \omega \neq g \omega, \omega \in C\}$. Thus, the pair (ξ, g) is a Wardowski-type $\mathcal{F}_{\xi g}$-contraction with $\mathcal{F}=\ln (a), \tau=\ln e$ and $\omega_{0}=2 \in C$. Obviously, the number of common fixed circles of ξ and g is infinite.

Definition 3. If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$ the following holds:

$$
\tau+\mathcal{F}(\mathfrak{D}(\xi \mathfrak{\omega}, \boldsymbol{\omega})+\mathfrak{D}(g \omega, \omega))<\mathcal{F}\left(\mathfrak{D}\left(\omega, \omega_{0}\right)\right)
$$

with $\min \{\mathfrak{D}(\xi \mathfrak{\omega}, \omega), \mathfrak{D}(g \omega, \omega)\}>0$, then the pair (ξ, g) is called a Nemytskii-Edelstein-type $\mathcal{F}_{\xi g}$-contraction.

Proposition 2. Let (X, \mathfrak{D}) be a metric space. If the pair (ξ, g) is a Nemytskii-Edelstein-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=g \omega_{0}=\omega_{0}$.

Proof. It can be easily proved from the similar arguments used in Proposition 1.
Theorem 2. Let the pair (ξ, g) be a Nemytskii-Edelstein-type $\mathcal{F}_{\xi,}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). Then, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, r}$ where $r<\sigma$.

Proof. It can be easily seen from the proof of Theorem 1.
In addition, we inspire the classical Banach contraction principle to give the following definition:

Definition 4. If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$, the following holds:

$$
\tau+\mathcal{F}(\mathfrak{D}(\xi \mathfrak{\xi} \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\eta \mathfrak{D}\left(\omega, \omega_{0}\right)\right)
$$

with $\min \{\mathfrak{D}(\xi \mathfrak{\omega}, \omega), \mathfrak{D}(g \omega, \omega)\}>0$ where $\eta \in[0,1)$, then the pair (ξ, g) is called a Banach-type $\mathcal{F}_{\xi g}$-contraction.

Proposition 3. Let (X, \mathfrak{D}) be a metric space. If the pair (ξ, g) is a Banach-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=g \omega_{0}=\omega_{0}$.

Proof. It can be easily proved from the similar arguments used in Proposition 1.
Theorem 3. Let the pair (ξ, g) be a Banach-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). Then $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, r}$ where $r<\sigma$.

Proof. It can be easily seen from the proof of Theorem 1.
If we consider Example 1, then the pair (ξ, g) is both a Nemytskii-Edelstein-type $\mathcal{F}_{\xi g}$-contraction and a Banach-type $\mathcal{F}_{\xi g}$-contraction with $\mathcal{F}(a)=\ln (a)+a, a>0, \tau=e$, $\omega_{0}=e^{2}$ and so ξ, g have two common fixed circles $C_{e^{2}, e}$ and $C_{e^{2}, 1}$.

We introduce the notion of Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction.
Definition 5. Let (X, \mathfrak{D}) be a metric space and ξ, g be two self-mappings on X. The pair (ξ, g) is called a Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction if there exist $\tau>0$ and $\mathcal{F} \in \mathcal{F}$ such that

$$
\begin{equation*}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{} \omega)+\mathfrak{D}(\omega, g \omega)) \leq \mathcal{F}\binom{\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \mathfrak{\xi})}{+\gamma \mathfrak{D}(\omega, g \mathfrak{\omega})+\delta \mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\eta \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)} \tag{2}
\end{equation*}
$$

holds for any $\omega, \omega_{0} \in X$ with $\min \{\mathfrak{D}(\omega, \xi \mathcal{\omega}), \mathfrak{D}(\omega, g \omega)\}>0$, where $\alpha, \beta, \gamma, \delta, \eta$ are nonnegative numbers, $\alpha \neq 0$ and $\alpha+\beta+\gamma+\delta+\eta \leq 1$.

Proposition 4. If the pair (ξ, g) is a Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=g \omega_{0}=\omega_{0}$.

Proof. Suppose that $\xi \omega_{0} \neq \omega_{0}$ and $g \omega_{0} \neq \omega_{0}$. From the definition of the Hardy-Rogerstype $\mathcal{F}_{\xi \xi}$-contraction with $\min \left\{\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right), \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right\}>0$, we obtain

$$
\begin{aligned}
\tau+\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right) & \leq \mathcal{F}\binom{\alpha \mathfrak{D}\left(\omega_{0}, \omega_{0}\right)+\beta \mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)}{+\gamma \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)+\delta \mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\eta \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)} \\
& =\mathcal{F}\left((\beta+\delta) \mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+(\gamma+\eta) \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right) \\
& <\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right)
\end{aligned}
$$

a contradiction because of $\tau>0$. Thus, we have $\xi \omega_{0}=g \omega_{0}=\omega_{0}$.
Using Proposition 4, we rewrite the condition (2) as follows:

$$
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{\omega}), \mathfrak{D}(\omega, g \mathfrak{\omega})) \leq \mathcal{F}\left(\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \mathfrak{} \omega)+\gamma \mathfrak{D}(\omega, g \mathfrak{\omega})\right)
$$

with $\min \{\mathfrak{D}(\omega, \xi \mathcal{}), \mathfrak{D}(\omega, g \omega)\}>0$ where α, β, γ are nonnegative numbers, $\alpha \neq 0$ and $\alpha+\beta+\gamma \leq 1$.

Using this inequality, we present the following fixed-circle result.
Theorem 4. Let the pair (ξ, g) be a Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). If $\beta=\gamma$, then $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). In addition, ξ and g fix every circle $C_{\omega_{0}, r}$ with $r<\sigma$.

Proof. We distinguish two cases.
Case 1: Let $\sigma=0$. Clearly, $C_{\omega_{0}, \sigma}=\left\{\omega_{0}\right\}$ and by Proposition 4 , we see that $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Case 2: Let $\sigma>0$ and $\omega \in C_{\omega_{0}, \sigma}$. Using the Hardy-Rogers-type $\mathcal{F}_{\tilde{\xi} g}$-contractive property and the fact that \mathcal{F} is increasing, we have

$$
\begin{aligned}
\mathcal{F}(\sigma) & \leq \mathcal{F}(\mathfrak{D}(\omega, \xi \mathcal{} \omega)+\mathfrak{D}(\omega, g \omega)) \\
& \leq \mathcal{F}\left(\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \omega)+\gamma \mathfrak{D}(\omega, g \omega)\right)-\tau \\
& <\mathcal{F}(\alpha \sigma+\beta(\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega))) \\
& <\mathcal{F}((\alpha+\beta)(\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega))) \\
& <\mathcal{F}(\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega)) .
\end{aligned}
$$

This gives a contradiction. Therefore, $\mathfrak{D}(\omega, \xi \mathcal{})+\mathfrak{D}(\omega, g \omega)=0$ and so $\xi \omega=\omega=g \omega$. As a result, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle $C_{\omega_{0}, r}$ with $r<\sigma$. Let $\omega \in C_{\omega_{0}, r}$ and suppose that $\mathfrak{D}(\omega, \xi \mathcal{\omega})+\mathfrak{D}(\omega, g \omega)>0$. By the Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction, we have

$$
\begin{aligned}
\mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{\xi})+\mathfrak{D}(\omega, g \omega)) & \leq \mathcal{F}\left(\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \mathfrak{\omega})+\gamma \mathfrak{D}(\omega, g \omega)\right)-\tau \\
& <\mathcal{F}\left(\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \omega)+\gamma \mathfrak{D}(\omega, g \omega)\right) \\
& <\mathcal{F}(\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega))
\end{aligned}
$$

a contradiction. So, we obtain $\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega)=0$ and $\xi \omega=\omega=g \omega$. Thus, $C_{\omega_{0}, r}$ is a common fixed circle of the pair (ξ, g).

Remark 1. If we take $\alpha=1$ and $\beta=\gamma=\delta=\eta=0$ in Definition 5 , then we obtain the concept of a Wardowski-type $\mathcal{F}_{\xi g}$-contractive mapping.

Now, we give the concept of a Reich-type $\mathcal{F}_{\xi g}$-contraction as follows.
Definition 6. If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$, the following holds:

$$
\begin{equation*}
\tau+\mathcal{F}(\mathfrak{D}(\xi \mathfrak{\xi}, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\binom{\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta[\mathfrak{D}(\mathfrak{\omega}, \mathfrak{\xi} \omega)+\mathfrak{D}(\omega, g \mathfrak{\omega})]}{+\gamma\left[\mathfrak{D}\left(\omega_{0}, \mathfrak{\xi} \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right]} \tag{3}
\end{equation*}
$$

with $\min \{\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)\}>0$, where $\alpha+\beta+\gamma<1, \alpha \neq 0$ and $\alpha, \beta, \gamma \in[0, \infty)$. Then, the pair (ξ, g) is called a Reich-type $\mathcal{F}_{\xi g}$-contraction on X.

Proposition 5. If the pair (ξ, g) is a Reich-type $\mathcal{F}_{\xi \delta}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=\omega_{0}=g \omega_{0}$.

Proof. Assume that $\xi \omega_{0} \neq \omega_{0}$ and $g \omega_{0} \neq \omega_{0}$. From the definition of the Reich-type $\mathcal{F}_{\xi g}$-contraction with $\min \left\{\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right), \mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right\}>0$, we get

$$
\begin{aligned}
\tau+\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right) & \leq \mathcal{F}\binom{\alpha \mathfrak{D}\left(\omega_{0}, \omega_{0}\right)+\beta\left[\mathfrak{D}\left(\omega_{0}, \mathfrak{\xi} \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right]}{+\gamma\left[\mathfrak{D}\left(\omega_{0}, \mathfrak{\xi} \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right]} \\
& =\mathcal{F}\left((\beta+\gamma)\left[\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right]\right) \\
& <\mathcal{F}\left(\mathfrak{D}\left(\omega_{0}, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega_{0}, g \omega_{0}\right)\right)
\end{aligned}
$$

a contradiction because of $\tau>0$. Then, we have $\xi \omega_{0}=\omega_{0}=g \omega_{0}$.
Using Proposition 5, we rewrite the condition (3) as follows:

$$
\tau+\mathcal{F}(\mathfrak{D}(\mathfrak{\xi} \mathfrak{\omega}, \mathfrak{\omega})+\mathfrak{D}(g \mathfrak{\omega}, \mathfrak{\omega})) \leq \mathcal{F}\left(\alpha \mathfrak{D}\left(\mathfrak{\omega}, \omega_{0}\right)+\beta[\mathfrak{D}(\mathfrak{\omega}, \xi \mathfrak{\omega})+\mathfrak{D}(\omega, g \mathfrak{\omega})]\right)
$$

with $\min \{\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)\}>0$ where $\alpha+\beta<1, \alpha \neq 0$ and $\alpha, \beta \in[0, \infty)$.
Using this inequality, we obtain the following common fixed-circle result.
Theorem 5. Let the pair (ξ, g) be a Reich-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). Then, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, \rho}$ with $\rho<\sigma$.

Proof. We distinguish two cases.
Case 1: Let $\sigma=0$. Clearly, $C_{\omega_{0}, \sigma}=\left\{\omega_{0}\right\}$ and by Proposition 5 , we see that $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Case 2: Let $\sigma>0$ and $\omega \in C_{\omega_{0}, \sigma}$. This case can be easily seen since

$$
\begin{aligned}
\mathcal{F}(\sigma) & \leq \mathcal{F}(\mathfrak{D}(\mathfrak{\xi} \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \\
& \leq \mathcal{F}((\alpha+\beta)[\mathfrak{D}(\xi \mathfrak{\xi} \omega)+\mathfrak{D}(g \omega, \omega)]) \\
& <\mathcal{F}(\mathfrak{D}(\mathfrak{\xi} \omega, \omega)+\mathfrak{D}(g \omega, \omega))
\end{aligned}
$$

Consequently, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0, \rho}}$ with $\rho<\sigma$.

To obtain, some new common fixed-circle results, we define the following contractions.
Definition 7. If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$, the following holds:

$$
\tau+\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\eta\left[\mathfrak{D}\left(\xi \omega, \omega_{0}\right)+\mathfrak{D}\left(g \omega, \omega_{0}\right)\right]\right)
$$

with $\min \{\mathfrak{D}(\xi \mathfrak{\omega}, \mathfrak{\infty}), \mathfrak{D}(g \mathfrak{\omega}, \boldsymbol{\omega})\}>0$ where $\eta \in\left(0, \frac{1}{3}\right)$, then the pair (ξ, g) is called a Chatterjeatype $\mathcal{F}_{\xi g}$-contraction.

Proposition 6. If the pair (ξ, g) is a Chattereja-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=\omega_{0}=g \omega_{0}$.

Proof. From the similar arguments used in Proposition 4, it can be easily proved.
Theorem 6. Let the pair (ξ, g) be a Chatterjea-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). Then, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, \rho}$ with $\rho<\sigma$.

Proof. We distinguish two cases.
Case 1: Let $\sigma=0$. Clearly, $C_{\omega_{0}, \sigma}=\left\{\omega_{0}\right\}$ and by Proposition 6, we see that $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Case 2: Let $\sigma>0$ and $\omega \in C_{\omega_{0}, \sigma}$. Using the Chatterjea-type $\mathcal{F}_{\xi g}$-contractive property, the fact that \mathcal{F} is increasing, and the triangle inequality property of metric function d, we have

$$
\begin{aligned}
\mathcal{F}(\sigma) & \leq \mathcal{F}(\mathfrak{D}(\mathfrak{\xi} \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \\
& \leq \mathcal{F}\left(\eta\left[\mathfrak{D}\left(\xi \omega, \omega_{0}\right)+\mathfrak{D}\left(g \omega, \omega_{0}\right)\right]\right)-\tau \\
& \leq \mathcal{F}\left(\eta\left[\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}\left(\omega, \omega_{0}\right)+\mathfrak{D}(g \omega, \omega)+\mathfrak{D}\left(\omega, \omega_{0}\right)\right]\right) \\
& =\mathcal{F}\left(\eta\left[2 \mathfrak{D}\left(\omega, \omega_{0}\right)+[\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)]\right]\right) \\
& =\mathcal{F}(3 \eta[\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)]) \\
& <\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) .
\end{aligned}
$$

This gives a contradiction. Thus, $\mathfrak{D}(\xi \mathfrak{\xi}, \omega)+\mathfrak{D}(g \omega, \omega)=0$, that is, $\xi \mathcal{\omega}=\boldsymbol{\omega}=g \omega$. As a result, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). By the similar arguments used in the proof of Theorem $1, \xi$ and g also fix any circle $C_{\omega_{0}, \rho}$ with $\rho<\sigma$.

Definition 8. If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$ the following holds:

$$
\begin{equation*}
\tau+\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\eta\left[\mathfrak{D}\left(\omega, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega, g \omega_{0}\right)\right]\right) \tag{4}
\end{equation*}
$$

with $\min \{\mathfrak{D}(\xi \omega, \omega), \mathfrak{D}(g \omega, \omega)\}>0$ where $\eta \in\left(0, \frac{1}{2}\right)$, then the pair (ξ, g) is called a Kannantype $\mathcal{F}_{\xi g}$-contraction.

Proposition 7. If the pair (ξ, g) is a Kannan-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$, then we have $\xi \omega_{0}=\omega_{0}=g \omega_{0}$.

Proof. From the similar arguments used in Proposition 4, it can be easily obtained.
Theorem 7. Let the pair (ξ, g) be a Kannan-type $\mathcal{F}_{\xi g}$-contraction with $\omega_{0} \in X$ and σ be defined as in (1). Then, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, \rho}$ with $\rho<\sigma$.

Proof. We distinguish two cases.
Case 1: Let $\sigma=0$. Clearly, $C_{\omega_{0}, \sigma}=\left\{\omega_{0}\right\}$ and by Proposition 7, we see that $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g).

Case 2: Let $\sigma>0$ and $\omega \in C_{\omega_{0}, \sigma}$. Using the Kannan-type $\mathcal{F}_{\xi g}$-contractive property, the fact that \mathcal{F} is increasing, and the triangle inequality property of metric function d, we have

$$
\begin{aligned}
\mathcal{F}(\sigma) & \leq \mathcal{F}(\mathfrak{D}(\xi \mathfrak{\xi}, \omega)+\mathfrak{D}(g \omega, \omega)) \\
& \leq \mathcal{F}\left(\eta\left[\mathfrak{D}\left(\omega, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega, g \omega_{0}\right)\right]\right)-\tau \\
& \leq \mathcal{F}\left(\eta\left[\mathfrak{D}\left(\omega, \omega_{0}\right)+\mathfrak{D}\left(\omega, \omega_{0}\right)\right]\right) \\
& \leq \mathcal{F}(2 \eta \sigma) \\
& <\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) .
\end{aligned}
$$

This gives a contradiction. Thus, $\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)=0$, that is, $\xi \omega=\omega=g \omega$. As a result, $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). By similar arguments used in the proof of Theorem $1, \xi$ and g also fix any circle $C_{\omega_{0, \rho}}$ with $\rho<\sigma$.

Now, we present an illustrative example of our obtained results.
Example 4. Let $X=\left\{1,2, e^{2}, e^{2}-1, e^{2}+1\right\}$ be the metric space with the usual metric. Let us define the self-mappings $\xi, g: X \longrightarrow X$ as

$$
\xi \mathcal{O}=\left\{\begin{array}{lc}
2, & \mathscr{O}=1 \\
\omega, & \text { otherwise }
\end{array}\right.
$$

and

$$
g \omega=\left\{\begin{array}{cc}
2, \quad \omega=1 \\
\omega, & \text { otherwise }
\end{array}\right.
$$

for all $\omega \in X$.
The pair (ξ, g) is a Hardy-Rogers-type $\mathcal{F}_{\xi g}$-contraction with $\mathcal{F}=\ln a+a, \tau=0.01$, $\alpha=\beta=\gamma=\frac{1}{4}$ and $\omega_{0}=e^{2}$. Indeed, we get

$$
\min \{\mathfrak{D}(\omega, \xi \mathfrak{\omega}), \mathfrak{D}(\omega, g \mathscr{\omega})\}=\min \{\mathfrak{D}(1,2), \mathfrak{D}(1,2)\}=1>0
$$

for $\omega=1$ and we get

$$
\begin{aligned}
\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta \mathfrak{D}(\omega, \xi \mathfrak{O})+\gamma \mathfrak{D}(\mathfrak{\omega}, g \mathfrak{\infty}) & =\frac{1}{4}\left[\mathfrak{D}\left(1, e^{2}\right)+\mathfrak{D}(1,2)+\mathfrak{D}(1,2)\right] \\
& =\frac{1}{4}\left[e^{2}-1+1+1\right] \\
& =\frac{e^{2}+1}{4} .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathcal{\omega})+\mathfrak{D}(\omega, g \omega)) & =0.01+\ln 2+2 \\
& \leq \mathcal{F}\left(\frac{e^{2}+1}{4}\right) \\
& =\ln \left(e^{2}+1\right)-\ln 4+\frac{e^{2}+1}{4} .
\end{aligned}
$$

The pair (ξ, g) is a Reich-type $\mathcal{F}_{\xi g}$-contraction with $\mathcal{F}=\ln a, \tau=\ln \left(e^{2}+1\right)-\ln 6$, $\alpha=\beta=\frac{1}{3}$ and $\omega_{0}=e^{2}$. Indeed, we get

$$
\min \{\mathfrak{D}(\omega, \xi \mathfrak{\omega}), \mathfrak{D}(\mathfrak{\omega}, g \mathfrak{\omega})\}=\min \{\mathfrak{D}(1,2), \mathfrak{D}(1,2)\}=1>0
$$

for $\omega=1$ and we have

$$
\begin{aligned}
\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)+\beta[\mathfrak{D}(\omega, \xi \mathfrak{\omega})+\mathfrak{D}(\omega, g \mathfrak{\omega})] & =\frac{1}{3} \mathfrak{D}\left(1, e^{2}\right)+\frac{1}{3}[\mathfrak{D}(1,2)+\mathfrak{D}(1,2)] \\
& =\frac{e^{2}+1}{3} .
\end{aligned}
$$

Then, we obtain

$$
\begin{aligned}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \omega)+\mathfrak{D}(\omega, g \omega)) & =\ln \left(e^{2}+1\right)-\ln 6+\ln 2 \\
& \leq \mathcal{F}\left(\frac{e^{2}+1}{3}\right) \\
& =\ln \left(e^{2}+1\right)-\ln 3 .
\end{aligned}
$$

The pair (ξ, g) is both a Chatterjea-type $\mathcal{F}_{\xi g}$-contractions and a Kannan-type $\mathcal{F}_{\xi g^{-}}$ contraction with $\mathcal{F}=\ln a, \tau=\ln \left(e^{2}-2\right)-\ln 4, \eta=\frac{1}{4}$ and $\omega_{0}=e^{2}$. Indeed, for Chatterjeatype $\mathcal{F}_{\xi g}$-contractions, we get

$$
\min \{\mathfrak{D}(\mathfrak{\omega}, \xi \mathfrak{\omega}), \mathfrak{D}(\mathfrak{\omega}, g \mathscr{\omega})\}=\min \{\mathfrak{D}(1,2), \mathfrak{D}(1,2)\}=1>0
$$

for $\omega=1$ and we have

$$
\begin{aligned}
\eta\left[\mathfrak{D}\left(\omega_{0}, \xi \boldsymbol{\omega}\right)+\mathfrak{D}\left(\omega_{0}, g \boldsymbol{\omega}\right)\right] & =\frac{1}{4}\left[\mathfrak{D}\left(e^{2}, 2\right)+\mathfrak{D}\left(e^{2}, 2\right)\right] \\
& \leq \frac{1}{4}\left[2\left(e^{2}-2\right)\right] \\
& =\frac{e^{2}-2}{2} .
\end{aligned}
$$

Then, we obtain

$$
\begin{aligned}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathfrak{} \omega)+\mathfrak{D}(\omega, g \omega)) & =\ln \left(e^{2}-2\right)-\ln 4+\ln 2 \\
& \leq \mathcal{F}\left(\frac{e^{2}-2}{2}\right) \\
& =\ln \left(e^{2}-2\right)-\ln 2 .
\end{aligned}
$$

For Kannan-type $\mathcal{F}_{\xi g}$-contractions, we have

$$
\min \{\mathfrak{D}(\omega, \xi \mathfrak{\xi}), \mathfrak{D}(\omega, g \mathscr{\omega})\}=\min \{\mathfrak{D}(1,2), \mathfrak{D}(1,2)\}=1>0
$$

for $\mathscr{\omega}=1$ and we have

$$
\begin{aligned}
\eta\left[\mathfrak{D}\left(\omega, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega, g_{0}\right)\right] & =\frac{1}{4}\left[\mathfrak{D}\left(1, e^{2}\right)+\mathfrak{D}\left(1, e^{2}\right)\right] \\
& \leq \frac{1}{4}\left[2\left(e^{2}-1\right)\right] \\
& =\frac{e^{2}-1}{2} .
\end{aligned}
$$

Then, we obtain

$$
\begin{aligned}
\tau+\mathcal{F}(\mathfrak{D}(\omega, \xi \mathcal{})+\mathfrak{D}(\omega, g \omega)) & =\ln \left(e^{2}-2\right)-\ln 4+\ln 2 \\
& \leq \mathcal{F}\left(\frac{e^{2}-1}{2}\right) \\
& =\ln \left(e^{2}-1\right)-\ln 2 .
\end{aligned}
$$

Consequently, ξ and g fix the circle $C_{e^{2}, 1}=\left\{e^{2}-1, e^{2}+1\right\}$.
If we combine the notions of Banach-type $\mathcal{F}_{\xi g}$-contractions, Chatterjea-type $\mathcal{F}_{\xi g}$ contractions, and Kannan-type $\mathcal{F}_{\xi g}$-contractions, then we get the following corollary. This corollary can be considered as Zamfirescu-type common fixed-circle result [18].

Corollary 1. Let (X, \mathfrak{D}) be a metric space, $\xi, g: X \longrightarrow X$ be two self-mappings and σ be defined as in (1). If there exist $\tau>0, \mathcal{F} \in \mathcal{F}$ and $\omega_{0} \in X$ such that for all $\omega \in X$, at least one of the followings holds:
(1) $\tau+\mathcal{F}(\mathfrak{D}(\xi \mathfrak{\omega}, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\alpha \mathfrak{D}\left(\omega, \omega_{0}\right)\right)$,
(2) $\tau+\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\beta\left[\mathfrak{D}\left(\xi \omega, \omega_{0}\right)+\mathfrak{D}\left(g \omega, \omega_{0}\right)\right]\right)$,
(3) $\tau+\mathcal{F}(\mathfrak{D}(\xi \omega, \omega)+\mathfrak{D}(g \omega, \omega)) \leq \mathcal{F}\left(\gamma\left[\mathfrak{D}\left(\omega, \xi \omega_{0}\right)+\mathfrak{D}\left(\omega, g \omega_{0}\right)\right]\right)$,
with $\min \{\mathfrak{D}(\xi \mathfrak{\omega}, \boldsymbol{\omega}), \mathfrak{D}(g \mathfrak{\omega}, \mathfrak{\omega})\}>0$ where $0 \leq \alpha<1,0 \leq \beta, \gamma<\frac{1}{2}$, then $C_{\omega_{0}, \sigma}$ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle $C_{\omega_{0}, \rho}$ with $\rho<\sigma$.

Proof. It is obvious.

Author Contributions: N.M.: conceptualization, supervision, writing-original draft; N.T.: writ-ing-original draft, methodology; E.K.: conceptualization, supervision, writing-original draft; S.S.A.: conceptualization, writing-original draft; A.K.S.: methodology, writing—original draft. All authors read and approved the final manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors N. Mlaiki and S. S. Aiadi would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mlaiki, N.; Özgür, N.Y.; Taş, N. New fixed-circle results related to F_{c}-contractive and F_{c}-expanding mappings on metric spaces. arXiv 2021, arXiv:2101.10770.
2. Celik, U.; Özgür, N. On the fixed-circle problem. Facta Univ. Ser. Math. Inform. 2021, 35, 1273-1290. [CrossRef]
3. Bisht, R.K.; Özgür, N. Geometric properties of discontinuous fixed point set of $\epsilon-\delta$ contractions and applications to neural networks. Aequationes Math. 2020, 94, 847-863. [CrossRef]
4. Joshi, M.; Tomar, A.; Padaliya, S.K. Fixed point to fixed ellipse in metric spaces and discontinuous activation function. Appl. Math. E-Notes 2021, 21, 225-237.
5. Joshi, M.; Tomar, A. On unique and nonunique fixed points in metric spaces and application to chemical sciences. J. Funct. Spaces 2021, 2021, 5525472. [CrossRef]
6. Tomar, A.; Joshi, M.; Padaliya, S.K. Fixed point to fixed circle and activation function in partial metric space. J. Appl. Anal. 2022, 28, 57-66. [CrossRef]
7. Joshi, M.; Tomar, A.; Nabwey, H.A.; George, R. On Unique and Nonunique Fixed Points and Fixed Circles in-Metric Space and Application to Cantilever Beam Problem. J. Funct. Spaces 2021, 2021, 6681044. [CrossRef]
8. Özgür, N.Y. Fixed-disc results via simulation functions. Turk. J. Math. 2019, 43, 2794-2805. [CrossRef]
9. Mlaiki, N.; Taş, N.; Özgür, N.Y. On the fixed-circle problem and Khan type contractions. Axioms 2018, 7, 80. [CrossRef]
10. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [CrossRef]
11. Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74-79. [CrossRef]
12. Nemytskii, V.V. The fixed point method in analysis. Usp. Mat. Nauk 1936, 1, 141-174. (In Russian)
13. Banach, S. Sur les operations dans les ensembles abstraits et leur application auxequations integrales. Fund. Math. 1922, 3, 133-181. [CrossRef]
14. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16, 201-206. [CrossRef]
15. Reich, S. Some remarks concerning contraction mappings. Oanad. Math. Bull. 1971, 14, 121-124. [CrossRef]
16. Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727-730. [CrossRef]
17. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71-76.
18. Zamfirescu, T. A theorem on fixed points. Atti Acad. Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur. 1972, 52, 832-834.
