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Abstract: In the present paper, due to beta negative binomial distribution series and Laguerre poly-
nomials, we investigate a new family FΣ(δ, η, λ, θ; h) of normalized holomorphic and bi-univalent
functions associated with Ozaki close-to-convex functions. We provide estimates on the initial
Taylor–Maclaurin coefficients and discuss Fekete–Szegő type inequality for functions in this family.
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beta negative binomial distribution; subordination

1. Introduction

Consider the setA of functions f which are holomorphic in the unit disk D = {|z| < 1}
in the complex plane C, of the form:

f (z) = z +
∞

∑
n=2

anzn, z ∈ D. (1)

Let S be the subset of A which contains univalent functions in D having the form (1).
As we can see in [1], due to the Koebe one-quarter theorem, every function f ∈ S has an
inverse f−1 such that f−1( f (z)) = z, (z ∈ D) and f ( f−1(w)) = w, (|w| < r0( f ), r0( f ) ≥ 1

4 ).
With f on the form (1), we have

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · , |w| < r0( f ). (2)

We called a function f ∈ A as bi-univalent in D, if both f and f−1 are univalent in D.
The set of bi-univalent functions in D is denoted by Σ.

In recent years, Srivastava et al. [2] reconsidered the study of holomorphic and bi-
univalent functions. In this sense, we pursued a kind of surveys represented by those of
Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and others (see, for example, [6–18]).

The polynomial solution φ(τ) of the differential equation (see [19])

τφ′′ + (1 + γ− τ)φ′ + nφ = 0,

consists on the generalized Laguerre polynomial Lγ
n(τ), where γ > −1 and n is non-

negative integers.
We defined by

Hγ(τ, z) =
∞

∑
n=0

Lγ
n(τ)zn =

e−
τz

1−z

(1− z)γ+1 , (3)
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the generating function of generalized Laguerre polynomial Lγ
n(τ), where τ ∈ R and z ∈ D.

Similarly, the generalized Laguerre polynomials is given by the following recurrence relations:

Lγ
n+1(τ) =

2n + 1 + γ− τ

n + 1
Lγ

n(τ)−
n + γ

n + 1
Lγ

n−1(τ) (n ≥ 1),

with the initial conditions

Lγ
0 (τ) = 1, Lγ

1 (τ) = 1 + γ− τ and Lγ
2 (τ) =

τ2

2
− (γ + 2)τ +

(γ + 1)(γ + 2)
2

. (4)

Obviously, if γ = 0 the generalized Laguerre polynomial implies the simple Laguerre
polynomial, i.e., L0

n(τ) = Ln(τ).
Consider two functions f and g holomorphic in D. We say that the function f is

subordinate to g, if there exists a function w, holomorphic in D with w(0) = 0, and |w(z)| <
1, (z ∈ D) such that f (z) = g(w(z)). We denote this relation by f ≺ g or f (z) ≺ g(z) (z ∈
D). In addition, if the function g is univalent in D, then we get the following equivalence
(see [20]), f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

From a theoretical standpoint, the Poisson, Pascal, logarithmic, binomial and Borel
distributions have all been examined in some depth in geometric function theory (see for
example [21–26]).

For a discrete random variable x, we say that it has a beta negative binomial distribu-
tion if it takes the values 0, 1, 2, 3, · · · with the probabilities

B(η + θ, λ)

B(η, λ)
, θ

B(η + θ, λ + 1)
B(η, λ)

,
1
2

θ(θ + 1)
B(η + θ, λ + 2)

B(η, λ)
, · · · ,

respectively, where η, θ and λ are the parameters.

Prob(x = τ) =

(
θ + τ − 1

τ

)
B(η + θ, λ + τ)

B(η, λ)

=
Γ(θ + τ)

τ!Γ(θ)
Γ(η + θ)Γ(λ + τ)Γ(η + λ)

Γ(η + θ + λ + τ)Γ(η)Γ(λ)

=
(η)θ(θ)τ(λ)τ

(η + λ)θ(θ + η + λ)ττ!
,

where (α)n is the Pochhammer symbol defined by

(α)n =
Γ(α + n)

Γ(α)
=

{
1 (n = 0),
α(α + 1) . . . (α + n− 1) (n ∈ N).

Wanas and Al-Ziadi [27] developed the following power series whose coefficients are
beta negative binomial distribution probabilities:

Xθ
η,λ(z) = z +

∞

∑
n=2

(η)θ(θ)n−1(λ)n−1

(η + λ)θ(θ + η + λ)n−1(n− 1)!
zn (z ∈ D; η, λ, θ > 0).

By the well-known ratio test, we deduce that the radius of convergence of the above
power series is infinity.

We recall the linear operator Bθ
η,λ : A −→ A, as can be found in (see [27])

Bθ
η,λ f (z) = Xθ

η,λ(z) ∗ f (z) = z +
∞

∑
n=2

(η)θ(θ)n−1(λ)n−1

(η + λ)θ(θ + η + λ)n−1(n− 1)!
anzn z ∈ D,

where (∗) represents the Hadamard product (or convolution) of two series.
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2. Main Results

We open the main section by introducing the family FΣ(δ, η, λ, θ; h) as follows:

Definition 1. Suppose that 1
2 ≤ δ ≤ 1, η, λ, θ > 0 and h is analytic in D, h(0) = 1. We say that

the function f ∈ Σ is in the family FΣ(δ, η, λ, θ; h) if the following subordinations hold:

2δ− 1
2δ + 1

+
2

2δ + 1

1 +
z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′
 ≺ h(z)

and

2δ− 1
2δ + 1

+
2

2δ + 1

1 +
w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′
 ≺ h(w),

where f−1 is given by (2).

For δ = 1
2 in Definition 1, the family FΣ(δ, η, λ, θ; h) reduces to the family SΣ(η, λ, θ; h)

of bi-starlike functions such that the following subordinations hold:

1 +
z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ ≺ h(z)

and

1 +
w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ ≺ h(w).

Theorem 1. Suppose that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0. If f ∈ Σ of the form (1) is in the family

FΣ(δ, η, λ, θ; h), with h(z) = 1 + e1z + e2z2 + · · · , then

|a2| ≤
(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)|e1|

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)
=
|e1|
Υ

(5)

and

|a3| ≤ min

{
max

{∣∣∣ e1

Φ

∣∣∣, ∣∣∣∣∣ e2

Φ
+

Ψe2
1

Υ2Φ

∣∣∣∣∣
}

, max

{∣∣∣ e1

Φ

∣∣∣, ∣∣∣∣∣ e2

Φ
−

(2Φ−Ψ)e2
1

Υ2Φ

∣∣∣∣∣
}}

, (6)

where
Υ = 4θΓ(η+θ)Γ(λ+1)Γ(η+λ)

(2δ+1)Γ(η+θ+λ+1)Γ(η)Γ(λ) ,

Φ = 6θ(θ+1)Γ(η+θ)Γ(λ+2)Γ(η+λ)
(2δ+1)Γ(η+θ+λ+2)Γ(η)Γ(λ) ,

Ψ = 8θ2Γ2(η+θ)Γ2(λ+1)Γ2(η+λ)
(2δ+1)Γ2(η+θ+λ+1)Γ2(η)Γ2(λ)

.

(7)

Proof. Assume that f ∈ FΣ(δ, η, λ, θ; h). Then, there exist two holomorphic functions
φ, ψ : D −→ D given by

φ(z) = r1z + r2z2 + r3z3 + · · · (z ∈ D) (8)

and
ψ(w) = s1w + s2w2 + s3w3 + · · · (w ∈ D), (9)
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with φ(0) = ψ(0) = 0, |φ(z)| < 1, |ψ(w)| < 1, z, w ∈ D such that

1 +
2

2δ + 1

z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ = 1 + e1φ(z) + e2φ2(z) + · · · (10)

and

1 +
2

2δ + 1

w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ = 1 + e1ψ(w) + e2ψ2(w) + · · · . (11)

Using (8)–(11), one obtains

1 +
2

2δ + 1

z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ = 1 + e1r1z +

[
e1r2 + e2r2

1

]
z2 + · · · (12)

and

1 +
2

2δ + 1

w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ = 1 + e1s1w +

[
e1s2 + e2s2

1

]
w2 + · · · . (13)

Since |φ(z)| < 1 and |ψ(w)| < 1, z, w ∈ D, we deduce∣∣rj
∣∣ ≤ 1 and

∣∣sj
∣∣ ≤ 1 (j ∈ N). (14)

In view of (12) and (13), after simplifying, we obtain

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)
a2 = e1r1, (15)

6θ(θ + 1)Γ(η + θ)Γ(λ + 2)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 2)Γ(η)Γ(λ)
a3 −

8θ2Γ2(η + θ)Γ2(λ + 1)Γ2(η + λ)

(2δ + 1)Γ2(η + θ + λ + 1)Γ2(η)Γ2(λ)
a2

2 (16)

= e1r2 + e2r2
1,

− 4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)
a2 = e1s1 (17)

and

6θ(θ + 1)Γ(η + θ)Γ(λ + 2)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 2)Γ(η)Γ(λ)

(
2a2

2 − a3

)
− 8θ2Γ2(η + θ)Γ2(λ + 1)Γ2(η + λ)

(2δ + 1)Γ2(η + θ + λ + 1)Γ2(η)Γ2(λ)
a2

2 (18)

= e1s2 + e2s2
1.

From (15) and (17), we derive inequality (5). Applying (7), then (15) and (16) become

Υa2 = e1r1, Φa3 −Ψa2
2 = e1r2 + e2r2

1 (19)

which yields
Φ
e1

a3 = r2 +

(
e2

e1
+

Ψe1

Υ2

)
r2

1, (20)

and on using the known sharp result ([28], p. 10):

|r2 − µr2
1| ≤ max{1, |µ|} (21)
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for all µ ∈ C, we obtain ∣∣∣∣Φe1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣ e2

e1
+

Ψe1

Υ2

∣∣∣∣}. (22)

Similarly, (17) and (18) become

− Υa2 = e1s1, Φ(2a2
2 − a3)−Ψa2

2 = e1s2 + e2s2
1. (23)

These equalities provide

− Φ
e1

a3 = s2 +

(
e2

e1
− (2Φ−Ψ)e1

Υ2

)
s2

1. (24)

Applying (21), we deduce∣∣∣∣Φe1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣ e2

e1
− (2Φ−Ψ)e1

Υ2

∣∣∣∣}. (25)

Inequality (6) follows from (22) and (25).

Furthermore, we use the generating function (3) of the generalized Laguerre poly-
nomials Lγ

n(τ) as h(z). As a consequence, from (4), we obtain e1 = 1 + γ − τ and
e2 = τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2 , and then, Theorem 1 is reduced to the following corollary.

Corollary 1. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; Hγ(τ, z)), then

|a2| ≤
(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)|1 + γ− τ|

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)
=
|1 + γ− τ|

Υ

and

|a3| ≤ min

{
max

{∣∣∣∣1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣ τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
+

Ψ(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣
}

,

max

{∣∣∣∣1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣ τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
− (2Φ−Ψ)(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣
}}

,

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are defined by (7) and Hγ(τ, z)

is given by (3).

In the following theorem, we develop “the Fekete–Szegő Problem” for the family
FΣ(δ, η, λ, θ; h).

Theorem 2. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; h), then

∣∣∣a3 − ηa2
2

∣∣∣ ≤ |e1|
Φ

min
{

max
{

1,
∣∣∣∣ e2

e1
+

(Ψ + ηΦ)e1

Υ2

∣∣∣∣}, max
{

1,
∣∣∣∣ e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

∣∣∣∣}}, (26)

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are defined by (7).

Proof. According to the notations from the proof of Theorem 1 and from (19) and (20),
we obtain

a3 − ηa2
2 =

e1

Φ

(
r2 +

(
e2

e1
+

(Ψ + ηΦ)e1

Υ2

)
r2

1

)
. (27)

Applying the well-known sharp result |r2 − µr2
1| ≤ max{1, |µ|}, one obtains

|a3 − ηa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣ e2

e1
+

(Ψ + ηΦ)e1

Υ2

∣∣∣∣}. (28)
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Similarly, from (23) and (24), we derive

a3 − ηa2
2 = − e1

Φ

(
s2 +

(
e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

)
s2

1

)
(29)

and in view of |s2 − µs2
1| ≤ max{1, |µ|}, we get

|a3 − ηa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣ e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

∣∣∣∣}. (30)

Inequality (26) follows from (28) and (30).

Corollary 2. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; Hγ(τ, z)), then∣∣∣a3 − ηa2
2

∣∣∣
≤ |1 + γ− τ|

Φ
min

{
max

{
1,

∣∣∣∣∣ τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
+

(Ψ + ηΦ)(1 + γ− τ)

Υ2

∣∣∣∣∣
}

,

max

{
1,

∣∣∣∣∣ τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
− (2Φ−Ψ− ηΦ)(1 + γ− τ)

Υ2

∣∣∣∣∣
}}

,

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are given by (7) and Hγ(τ, z)

is given by (3).

3. Conclusions

In the present survey, we considered a certain class of bi-univalent functions, denoted
by FΣ(δ, η, λ, θ; h), representable in the form of a Hadamard product of two power series.
The coefficients of the first one, developed by Wanas and Al-Ziadi in [27], are beta negative
binomial distribution probabilities. Furthermore, the Fekete–Szegő Problem was developed,
by making use of the newly introduced family. Consequently, inequalities of Fekete–Szegő
type were obtained in the special case of generalized Laguerre polynomials.
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