Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions

Isra Al-Shbeil ${ }^{1(1)}$, Abbas Kareem Wanas ${ }^{2(1)}$, Afis Saliu ${ }^{3,4}$ © and Adriana Cătaş ${ }^{5, *}$ (D)
1 Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
2 Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq
3 Department of Mathematics, University of the Gambia, Birkama Campus, MDI Road, Kanifing Serrekunda P.O. Box 3530, The Gambia
4 Department of Mathematics, Gombe State University, P.M.B 127, Gombe 760253, Nigeria
5 Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
* Correspondence: acatas@gmail.com

Citation: Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions.
Axioms 2022, 11, 451. https://
doi.org/10.3390/axioms11090451
Academic Editors: Hans J. Haubold and Georgia Irina Oros

Received: 7 July 2022
Accepted: 29 August 2022
Published: 2 September 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In the present paper, due to beta negative binomial distribution series and Laguerre polynomials, we investigate a new family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$ of normalized holomorphic and bi-univalent functions associated with Ozaki close-to-convex functions. We provide estimates on the initial Taylor-Maclaurin coefficients and discuss Fekete-Szegő type inequality for functions in this family.

Keywords: bi-univalent function; Laguerre polynomial; coefficient bound; Fekete-Szegő problem; beta negative binomial distribution; subordination

1. Introduction

Consider the set \mathcal{A} of functions f which are holomorphic in the unit disk $\mathbb{D}=\{|z|<1\}$ in the complex plane \mathbb{C}, of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

Let \mathcal{S} be the subset of \mathcal{A} which contains univalent functions in \mathbb{D} having the form (1). As we can see in [1], due to the Koebe one-quarter theorem, every function $f \in \mathcal{S}$ has an inverse f^{-1} such that $f^{-1}(f(z))=z,(z \in \mathbb{D})$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$. With f on the form (1), we have

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots, \quad|w|<r_{0}(f) \tag{2}
\end{equation*}
$$

We called a function $f \in \mathcal{A}$ as bi-univalent in \mathbb{D}, if both f and f^{-1} are univalent in \mathbb{D}. The set of bi-univalent functions in \mathbb{D} is denoted by Σ.

In recent years, Srivastava et al. [2] reconsidered the study of holomorphic and biunivalent functions. In this sense, we pursued a kind of surveys represented by those of Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and others (see, for example, [6-18]).

The polynomial solution $\phi(\tau)$ of the differential equation (see [19])

$$
\tau \phi^{\prime \prime}+(1+\gamma-\tau) \phi^{\prime}+n \phi=0
$$

consists on the generalized Laguerre polynomial $L_{n}^{\gamma}(\tau)$, where $\gamma>-1$ and n is nonnegative integers.

We defined by

$$
\begin{equation*}
H_{\gamma}(\tau, z)=\sum_{n=0}^{\infty} L_{n}^{\gamma}(\tau) z^{n}=\frac{e^{-\frac{\tau z}{1-z}}}{(1-z)^{\gamma+1}} \tag{3}
\end{equation*}
$$

the generating function of generalized Laguerre polynomial $L_{n}^{\gamma}(\tau)$, where $\tau \in \mathbb{R}$ and $z \in \mathbb{D}$. Similarly, the generalized Laguerre polynomials is given by the following recurrence relations:

$$
L_{n+1}^{\gamma}(\tau)=\frac{2 n+1+\gamma-\tau}{n+1} L_{n}^{\gamma}(\tau)-\frac{n+\gamma}{n+1} L_{n-1}^{\gamma}(\tau) \quad(n \geq 1)
$$

with the initial conditions

$$
\begin{equation*}
L_{0}^{\gamma}(\tau)=1, \quad L_{1}^{\gamma}(\tau)=1+\gamma-\tau \quad \text { and } \quad L_{2}^{\gamma}(\tau)=\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2} \tag{4}
\end{equation*}
$$

Obviously, if $\gamma=0$ the generalized Laguerre polynomial implies the simple Laguerre polynomial, i.e., $L_{n}^{0}(\tau)=L_{n}(\tau)$.

Consider two functions f and g holomorphic in \mathbb{D}. We say that the function f is subordinate to g, if there exists a function w, holomorphic in \mathbb{D} with $w(0)=0$, and $|w(z)|<$ $1,(z \in \mathbb{D})$ such that $f(z)=g(w(z))$. We denote this relation by $f \prec g$ or $f(z) \prec g(z)(z \in$ $\mathbb{D})$. In addition, if the function g is univalent in \mathbb{D}, then we get the following equivalence (see [20]), $f(z) \prec g(z) \Longleftrightarrow f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.

From a theoretical standpoint, the Poisson, Pascal, logarithmic, binomial and Borel distributions have all been examined in some depth in geometric function theory (see for example [21-26]).

For a discrete random variable x, we say that it has a beta negative binomial distribution if it takes the values $0,1,2,3, \cdots$ with the probabilities

$$
\frac{B(\eta+\theta, \lambda)}{B(\eta, \lambda)}, \theta \frac{B(\eta+\theta, \lambda+1)}{B(\eta, \lambda)}, \frac{1}{2} \theta(\theta+1) \frac{B(\eta+\theta, \lambda+2)}{B(\eta, \lambda)}, \cdots,
$$

respectively, where η, θ and λ are the parameters.

$$
\begin{aligned}
\operatorname{Prob}(x=\tau) & =\binom{\theta+\tau-1}{\tau} \frac{B(\eta+\theta, \lambda+\tau)}{B(\eta, \lambda)} \\
& =\frac{\Gamma(\theta+\tau)}{\tau!\Gamma(\theta)} \frac{\Gamma(\eta+\theta) \Gamma(\lambda+\tau) \Gamma(\eta+\lambda)}{\Gamma(\eta+\theta+\lambda+\tau) \Gamma(\eta) \Gamma(\lambda)} \\
& =\frac{(\eta)_{\theta}(\theta)_{\tau}(\lambda)_{\tau}}{(\eta+\lambda)_{\theta}(\theta+\eta+\lambda)_{\tau} \tau!}
\end{aligned}
$$

where $(\alpha)_{n}$ is the Pochhammer symbol defined by

$$
(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}= \begin{cases}1 & (n=0) \\ \alpha(\alpha+1) \ldots(\alpha+n-1) & (n \in \mathbb{N})\end{cases}
$$

Wanas and Al-Ziadi [27] developed the following power series whose coefficients are beta negative binomial distribution probabilities:

$$
\mathfrak{X}_{\eta, \lambda}^{\theta}(z)=z+\sum_{n=2}^{\infty} \frac{(\eta)_{\theta}(\theta)_{n-1}(\lambda)_{n-1}}{(\eta+\lambda)_{\theta}(\theta+\eta+\lambda)_{n-1}(n-1)!} z^{n} \quad(z \in \mathbb{D} ; \eta, \lambda, \theta>0) .
$$

By the well-known ratio test, we deduce that the radius of convergence of the above power series is infinity.

We recall the linear operator $\mathfrak{B}_{\eta, \lambda}^{\theta}: \mathcal{A} \longrightarrow \mathcal{A}$, as can be found in (see [27])

$$
\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)=\mathfrak{X}_{\eta, \lambda}^{\theta}(z) * f(z)=z+\sum_{n=2}^{\infty} \frac{(\eta)_{\theta}(\theta)_{n-1}(\lambda)_{n-1}}{(\eta+\lambda)_{\theta}(\theta+\eta+\lambda)_{n-1}(n-1)!} a_{n} z^{n} \quad z \in \mathbb{D},
$$

where $(*)$ represents the Hadamard product (or convolution) of two series.

2. Main Results

We open the main section by introducing the family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$ as follows:
Definition 1. Suppose that $\frac{1}{2} \leq \delta \leq 1, \eta, \lambda, \theta>0$ and h is analytic in $\mathbb{D}, h(0)=1$. We say that the function $f \in \Sigma$ is in the family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$ if the following subordinations hold:

$$
\frac{2 \delta-1}{2 \delta+1}+\frac{2}{2 \delta+1}\left(1+\frac{z\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime}}\right) \prec h(z)
$$

and

$$
\frac{2 \delta-1}{2 \delta+1}+\frac{2}{2 \delta+1}\left(1+\frac{w\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime}}\right) \prec h(w),
$$

where f^{-1} is given by (2).
For $\delta=\frac{1}{2}$ in Definition 1 , the family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$ reduces to the family $\mathcal{S}_{\Sigma}(\eta, \lambda, \theta ; h)$ of bi-starlike functions such that the following subordinations hold:

$$
1+\frac{z\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime}} \prec h(z)
$$

and

$$
1+\frac{w\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime}} \prec h(w) .
$$

Theorem 1. Suppose that $\frac{1}{2} \leq \delta \leq 1$ and $\eta, \lambda, \theta>0$. If $f \in \Sigma$ of the form (1) is in the family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$, with $h(z)=1+e_{1} z+e_{2} z^{2}+\cdots$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(2 \delta+1) \Gamma(\eta+\theta+\lambda+1) \Gamma(\eta) \Gamma(\lambda)\left|e_{1}\right|}{4 \theta \Gamma(\eta+\theta) \Gamma(\lambda+1) \Gamma(\eta+\lambda)}=\frac{\left|e_{1}\right|}{\mathrm{Y}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\max \left\{\left|\frac{e_{1}}{\Phi}\right|,\left|\frac{e_{2}}{\Phi}+\frac{\Psi e_{1}^{2}}{\mathrm{Y}^{2} \Phi}\right|\right\}, \max \left\{\left|\frac{e_{1}}{\Phi}\right|,\left|\frac{e_{2}}{\Phi}-\frac{(2 \Phi-\Psi) e_{1}^{2}}{\mathrm{Y}^{2} \Phi}\right|\right\}\right\} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{Y}=\frac{4 \theta \Gamma(\eta+\theta) \Gamma(\lambda+1) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+1) \Gamma(\eta) \Gamma(\lambda)}, \\
& \Phi=\frac{6 \theta(\theta+1) \Gamma(\eta+\theta) \Gamma(\lambda+2) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+2) \Gamma(\eta) \Gamma(\lambda)}, \tag{7}\\
& \Psi=\frac{8 \theta^{2} \Gamma^{2}(\eta+\theta) \Gamma^{2}(\lambda+1) \Gamma^{2}(\eta+\lambda)}{(2 \delta+1) \Gamma^{2}(\eta+\theta+\lambda+1) \Gamma^{2}(\eta) \Gamma^{2}(\lambda)} .
\end{align*}
$$

Proof. Assume that $f \in \mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$. Then, there exist two holomorphic functions $\phi, \psi: \mathbb{D} \longrightarrow \mathbb{D}$ given by

$$
\begin{equation*}
\phi(z)=r_{1} z+r_{2} z^{2}+r_{3} z^{3}+\cdots \quad(z \in \mathbb{D}) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots \quad(w \in \mathbb{D}) \tag{9}
\end{equation*}
$$

with $\phi(0)=\psi(0)=0,|\phi(z)|<1,|\psi(w)|<1, z, w \in \mathbb{D}$ such that

$$
\begin{equation*}
1+\frac{2}{2 \delta+1} \frac{z\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime}}=1+e_{1} \phi(z)+e_{2} \phi^{2}(z)+\cdots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{2}{2 \delta+1} \frac{w\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime}}=1+e_{1} \psi(w)+e_{2} \psi^{2}(w)+\cdots \tag{11}
\end{equation*}
$$

Using (8)-(11), one obtains

$$
\begin{equation*}
1+\frac{2}{2 \delta+1} \frac{z\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f(z)\right)^{\prime}}=1+e_{1} r_{1} z+\left[e_{1} r_{2}+e_{2} r_{1}^{2}\right] z^{2}+\cdots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{2}{2 \delta+1} \frac{w\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime \prime}}{\left(\mathfrak{B}_{\eta, \lambda}^{\theta} f^{-1}(w)\right)^{\prime}}=1+e_{1} s_{1} w+\left[e_{1} s_{2}+e_{2} s_{1}^{2}\right] w^{2}+\cdots \tag{13}
\end{equation*}
$$

Since $|\phi(z)|<1$ and $|\psi(w)|<1, z, w \in \mathbb{D}$, we deduce

$$
\begin{equation*}
\left|r_{j}\right| \leq 1 \quad \text { and } \quad\left|s_{j}\right| \leq 1(j \in \mathbb{N}) \tag{14}
\end{equation*}
$$

In view of (12) and (13), after simplifying, we obtain

$$
\begin{equation*}
\frac{4 \theta \Gamma(\eta+\theta) \Gamma(\lambda+1) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+1) \Gamma(\eta) \Gamma(\lambda)} a_{2}=e_{1} r_{1} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \frac{6 \theta(\theta+1) \Gamma(\eta+\theta) \Gamma(\lambda+2) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+2) \Gamma(\eta) \Gamma(\lambda)} a_{3}-\frac{8 \theta^{2} \Gamma^{2}(\eta+\theta) \Gamma^{2}(\lambda+1) \Gamma^{2}(\eta+\lambda)}{(2 \delta+1) \Gamma^{2}(\eta+\theta+\lambda+1) \Gamma^{2}(\eta) \Gamma^{2}(\lambda)} a_{2}^{2} \tag{16}\\
& =e_{1} r_{2}+e_{2} r_{1}^{2}
\end{align*}
$$

$$
\begin{equation*}
-\frac{4 \theta \Gamma(\eta+\theta) \Gamma(\lambda+1) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+1) \Gamma(\eta) \Gamma(\lambda)} a_{2}=e_{1} s_{1} \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{6 \theta(\theta+1) \Gamma(\eta+\theta) \Gamma(\lambda+2) \Gamma(\eta+\lambda)}{(2 \delta+1) \Gamma(\eta+\theta+\lambda+2) \Gamma(\eta) \Gamma(\lambda)}\left(2 a_{2}^{2}-a_{3}\right)-\frac{8 \theta^{2} \Gamma^{2}(\eta+\theta) \Gamma^{2}(\lambda+1) \Gamma^{2}(\eta+\lambda)}{(2 \delta+1) \Gamma^{2}(\eta+\theta+\lambda+1) \Gamma^{2}(\eta) \Gamma^{2}(\lambda)} a_{2}^{2} \tag{18}\\
& =e_{1} s_{2}+e_{2} s_{1}^{2} .
\end{align*}
$$

From (15) and (17), we derive inequality (5). Applying (7), then (15) and (16) become

$$
\begin{equation*}
\mathrm{Y} a_{2}=e_{1} r_{1}, \quad \Phi a_{3}-\Psi a_{2}^{2}=e_{1} r_{2}+e_{2} r_{1}^{2} \tag{19}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{\Phi}{e_{1}} a_{3}=r_{2}+\left(\frac{e_{2}}{e_{1}}+\frac{\Psi e_{1}}{\mathrm{Y}^{2}}\right) r_{1}^{2} \tag{20}
\end{equation*}
$$

and on using the known sharp result ([28], p. 10):

$$
\begin{equation*}
\left|r_{2}-\mu r_{1}^{2}\right| \leq \max \{1,|\mu|\} \tag{21}
\end{equation*}
$$

for all $\mu \in \mathbb{C}$, we obtain

$$
\begin{equation*}
\left|\frac{\Phi}{e_{1}}\right|\left|a_{3}\right| \leq \max \left\{1,\left|\frac{e_{2}}{e_{1}}+\frac{\Psi e_{1}}{\mathrm{Y}^{2}}\right|\right\} . \tag{22}
\end{equation*}
$$

Similarly, (17) and (18) become

$$
\begin{equation*}
-Y a_{2}=e_{1} s_{1}, \quad \Phi\left(2 a_{2}^{2}-a_{3}\right)-\Psi a_{2}^{2}=e_{1} s_{2}+e_{2} s_{1}^{2} . \tag{23}
\end{equation*}
$$

These equalities provide

$$
\begin{equation*}
-\frac{\Phi}{e_{1}} a_{3}=s_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{(2 \Phi-\Psi) e_{1}}{\mathrm{Y}^{2}}\right) s_{1}^{2} \tag{24}
\end{equation*}
$$

Applying (21), we deduce

$$
\begin{equation*}
\left|\frac{\Phi}{e_{1}}\right|\left|a_{3}\right| \leq \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 \Phi-\Psi) e_{1}}{\mathrm{Y}^{2}}\right|\right\} \tag{25}
\end{equation*}
$$

Inequality (6) follows from (22) and (25).
Furthermore, we use the generating function (3) of the generalized Laguerre polynomials $L_{n}^{\gamma}(\tau)$ as $h(z)$. As a consequence, from (4), we obtain $e_{1}=1+\gamma-\tau$ and $e_{2}=\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2}$, and then, Theorem 1 is reduced to the following corollary.

Corollary 1. If $f \in \Sigma$ of the form (1) is in the class $\mathcal{F}_{\Sigma}\left(\delta, \eta, \lambda, \theta ; H_{\gamma}(\tau, z)\right)$, then

$$
\left|a_{2}\right| \leq \frac{(2 \delta+1) \Gamma(\eta+\theta+\lambda+1) \Gamma(\eta) \Gamma(\lambda)|1+\gamma-\tau|}{4 \theta \Gamma(\eta+\theta) \Gamma(\lambda+1) \Gamma(\eta+\lambda)}=\frac{|1+\gamma-\tau|}{\mathrm{Y}}
$$

and

$$
\begin{aligned}
\left|a_{3}\right| \leq & \min \left\{\max \left\{\left|\frac{1+\gamma-\tau}{\Phi}\right|,\left|\frac{\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2}}{\Phi}+\frac{\Psi(1+\gamma-\tau)^{2}}{\mathrm{Y}^{2} \Phi}\right|\right\}\right. \\
& \left.\max \left\{\left|\frac{1+\gamma-\tau}{\Phi}\right|, \left.\frac{\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2}}{\Phi}-\frac{(2 \Phi-\Psi)(1+\gamma-\tau)^{2}}{\mathrm{Y}^{2} \Phi} \right\rvert\,\right\}\right\}
\end{aligned}
$$

for all $\delta, \eta, \lambda, \theta$ such that $\frac{1}{2} \leq \delta \leq 1$ and $\eta, \lambda, \theta>0$, where Y, Φ, Ψ are defined by (7) and $H_{\gamma}(\tau, z)$ is given by (3).

In the following theorem, we develop "the Fekete-Szegő Problem" for the family $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$.

Theorem 2. If $f \in \Sigma$ of the form (1) is in the class $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$, then

$$
\begin{equation*}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{\left|e_{1}\right|}{\Phi} \min \left\{\max \left\{1,\left|\frac{e_{2}}{e_{1}}+\frac{(\Psi+\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right|\right\}, \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 \Phi-\Psi-\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right|\right\}\right\} \tag{26}
\end{equation*}
$$

for all $\delta, \eta, \lambda, \theta$ such that $\frac{1}{2} \leq \delta \leq 1$ and $\eta, \lambda, \theta>0$, where Y, Φ, Ψ are defined by (7).
Proof. According to the notations from the proof of Theorem 1 and from (19) and (20), we obtain

$$
\begin{equation*}
a_{3}-\eta a_{2}^{2}=\frac{e_{1}}{\Phi}\left(r_{2}+\left(\frac{e_{2}}{e_{1}}+\frac{(\Psi+\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right) r_{1}^{2}\right) \tag{27}
\end{equation*}
$$

Applying the well-known sharp result $\left|r_{2}-\mu r_{1}^{2}\right| \leq \max \{1,|\mu|\}$, one obtains

$$
\begin{equation*}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{\left|e_{1}\right|}{\Phi} \max \left\{1,\left|\frac{e_{2}}{e_{1}}+\frac{(\Psi+\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right|\right\} \tag{28}
\end{equation*}
$$

Similarly, from (23) and (24), we derive

$$
\begin{equation*}
a_{3}-\eta a_{2}^{2}=-\frac{e_{1}}{\Phi}\left(s_{2}+\left(\frac{e_{2}}{e_{1}}-\frac{(2 \Phi-\Psi-\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right) s_{1}^{2}\right) \tag{29}
\end{equation*}
$$

and in view of $\left|s_{2}-\mu s_{1}^{2}\right| \leq \max \{1,|\mu|\}$, we get

$$
\begin{equation*}
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{\left|e_{1}\right|}{\Phi} \max \left\{1,\left|\frac{e_{2}}{e_{1}}-\frac{(2 \Phi-\Psi-\eta \Phi) e_{1}}{\mathrm{Y}^{2}}\right|\right\} \tag{30}
\end{equation*}
$$

Inequality (26) follows from (28) and (30).
Corollary 2. If $f \in \Sigma$ of the form (1) is in the class $\mathcal{F}_{\Sigma}\left(\delta, \eta, \lambda, \theta ; H_{\gamma}(\tau, z)\right)$, then

$$
\begin{aligned}
& \left|a_{3}-\eta a_{2}^{2}\right| \\
\leq & \frac{|1+\gamma-\tau|}{\Phi} \min \left\{\max \left\{1, \left.\frac{\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2}}{1+\gamma-\tau}+\frac{(\Psi+\eta \Phi)(1+\gamma-\tau)}{\mathrm{Y}^{2}} \right\rvert\,\right\}\right. \\
& \left.\max \left\{1,\left|\frac{\frac{\tau^{2}}{2}-(\gamma+2) \tau+\frac{(\gamma+1)(\gamma+2)}{2}}{1+\gamma-\tau}-\frac{(2 \Phi-\Psi-\eta \Phi)(1+\gamma-\tau)}{\mathrm{Y}^{2}}\right|\right\}\right\}
\end{aligned}
$$

for all $\delta, \eta, \lambda, \theta$ such that $\frac{1}{2} \leq \delta \leq 1$ and $\eta, \lambda, \theta>0$, where Y, Φ, Ψ are given by (7) and $H_{\gamma}(\tau, z)$ is given by (3).

3. Conclusions

In the present survey, we considered a certain class of bi-univalent functions, denoted by $\mathcal{F}_{\Sigma}(\delta, \eta, \lambda, \theta ; h)$, representable in the form of a Hadamard product of two power series. The coefficients of the first one, developed by Wanas and Al-Ziadi in [27], are beta negative binomial distribution probabilities. Furthermore, the Fekete-Szegő Problem was developed, by making use of the newly introduced family. Consequently, inequalities of Fekete-Szegő type were obtained in the special case of generalized Laguerre polynomials.

Author Contributions: Conceptualization, I.A.-S., A.K.W. and A.C.; Formal analysis, I.A.-S., A.K.W., A.C. and A.S.; Investigation, I.A.-S., A.K.W., A.C. and A.S.; Methodology, I.A.-S., A.K.W. and A.C.; Validation, I.A.-S., A.K.W. and A.C.; Writing-original draft, I.A.-S., A.K.W.; Writing-review and editing, I.A.-S., A.K.W. and A.C. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
2. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188-1192. [CrossRef]
3. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344-351. [CrossRef]
4. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32-39.
5. Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [CrossRef]
6. Akgül, A. (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class. Turkish J. Math. 2019, 43, 2170-2176. [CrossRef]
7. Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865-2875. [CrossRef]
8. Altınkaya, Ş. Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator. Turkish J. Math. 2019, 43, 620-629. [CrossRef]
9. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642-10651. [CrossRef]
10. Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70-84. [CrossRef]
11. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024-1039. [CrossRef]
12. Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [CrossRef]
13. Wanas, A.K. Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions. Filomat 2020, 34, 3361-3368. [CrossRef]
14. Wanas, A.K.; Cotîrlǎ, L.-I. Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by $(p-q)$-Wanas operator. Symmetry 2021, 13, 2118. [CrossRef]
15. Wanas, A.K.; Cotîrlǎ, L.-I. Applications of $(M-N)$-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [CrossRef]
16. Wanas, A.K.; Lupaş, A.A. Applications of Laguerre polynomials on a new family of bi-prestarlike functions. Symmetry 2022, 14, 645. [CrossRef]
17. Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi- Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495-502.
18. Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order $\vartheta+i \delta$ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296-4305. [CrossRef]
19. Lebedev, N.N. Special Functions and Their Applications; Translated from the revised Russian edition (Moscow, 1963) by Richard A. Silverman; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965.
20. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA, 2000; Volume 225.
21. Altınkaya, Ş.; Yalçin, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Ann. Oradea Univ. Math. Fasc. 2017, 24, 5-8.
22. El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301-314.
23. Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11-17.
24. Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [CrossRef]
25. Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10-21. [CrossRef]
26. Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71-82. [CrossRef]
27. Wanas, A.K.; Al-Ziadi, N.A. Applications of Beta negative binomial distribution series on holomorphic functions. Earthline J. Math. Sci. 2021, 6, 271-292. [CrossRef]
28. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8-12. [CrossRef]
