
Citation: Feng, Y.; Pan, Q.; Jiang, J.

Existence and Uniqueness of Solution

to a Terminal Value Problem of

First-Order Differential Equation.

Axioms 2022, 11, 435. https://

doi.org/10.3390/axioms11090435

Academic Editor: Delfim F. M. Torres

Received: 29 July 2022

Accepted: 25 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Existence and Uniqueness of Solution to a Terminal Value
Problem of First-Order Differential Equation
Yuqiang Feng 1,*, Qian Pan 2 and Jun Jiang 2

1 School of Science, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan 430081, China
* Correspondence: yqfeng6@126.com

Abstract: The terminal value problem of differential equations has an important application back-
ground. In this paper, we are concerned with the terminal value problem of a first-order differential
equation. Some sufficient conditions are given to obtain the existence and uniqueness results of
solutions to the problem. Firstly, some comparison lemmas are established; secondly, an iterative
technique and fixed point method are used to set up the main results; Finally, an example is provided
to illustrate the application of the main results.
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1. Introduction

The terminal value problem (also called the final value problem, initial inverse problem,
backward in time problem, abbrev. TVP) is an exciting topic within differential equations.
It has important applications in many fields, such as aerospace science, mathematical
economics, optimal control, and differential games, etc. For example, in aerospace science,
the question of how to design the flight path of a spacecraft given its landing site on a
planet can be reduced to the terminal value problem of a differential equation.

With the development of nonlinear functional analysis, scholars have made significant
progress with the use of the fixed point theory method in the study of the terminal value
problem of differential equations. For example, Wang [1] transformed the terminal value
problem of fractional differential equations into initial value problems based on the shooting
method, and then used the theoretical results of the initial value problem of fractional
differential equations in solving the terminal value problem. Finally, the effectiveness
of this method to solve the final value problem of fractional differential equations was
verified by numerical simulation. Zhang [2] used Monch’s fixed point theorem to study
the terminal value problem of first-order differential equations in Banach space, obtained
a new existence theorem under looser conditions, and improved and generalized some
known results. Wang [3] studied the existence and uniqueness of the solution to the
terminal value problem of first-order differential equations with discontinuous terms in
Banach space by using semi-order theory and the mixed monotone iteration technique,
without involving compact conditions, and presented an error estimate of the iterative
sequence of approximations to the solution. Zhou [4] used the new comparison results
and semi-order theory to study the existence of the minimum and maximum solutions of
the terminal value problem of first-order nonlinear differential equations in Banach space,
and improved and generalized some known results. In [5], combining the generalized
quasi-linearization technique with the upper and lower solutions method, Yakar and Arslan
obtained a unique solution to the fractional causal terminal value problem. In [6], Shah and
Rehman established a sufficient condition for the existence and uniqueness of the solution
of a class of fractional differential equations over infinite intervals. In [7], the authors
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discussed the terminal value differential inequality, the existence of extreme value solutions
of differential equations, and the corresponding comparison principle. In [8], Benchohra
et al. presented the existence results and uniqueness of solutions for a class of boundary
value problems of the terminal type for fractional differential equations with the Hilfer–
Katugampola fractional derivative. The reasoning was mainly based upon different types of
classical fixed point theorems, such as the Banach contraction principle and Krasnoselskii’s
fixed point theorem. In [9], Li et al. were concerned with the well-posedness and efficient
numerical algorithm for a terminal value problem with a generalized Caputo fractional
derivative. They investigated the existence and uniqueness of the solution of the terminal
value problem and considered the continuous dependence of the solutions on the given
data. In [10], Babak and Wu tempered fractional differential equations with terminal value
problems. Discretized collocation methods on piecewise polynomial spaces were proposed
for solving these equations. Regularity results were constructed on weighted spaces, and
convergence order was studied.

The above results are mainly based on the properties of compact operators or increas-
ing operators.

In this paper, we are concerned with the following TVP,

u′(t) = f (t, u(t)) t ∈ [0, T], u(T) = uT ,

where T > 0, uT ∈ R are two constants and f : [0, T]× R→ R is continuous.
By the properties of decreasing operators, we obtain the existence and uniqueness of

the solution to this problem. Our contributions are the following:
(1) we present some comparison lemmas for (TVP);
(2) we establish the existence and uniqueness results of solutions for (TVP);
(3) we set up an iterative scheme of approximation solutions for (TVP).
The paper is organized as follows. In Section 2, some comparison lemmas are estab-

lished; the existence and uniqueness results of (TVP) are presented in Section 3 via the
iterative technique and fixed point method; an example shown in Section 4 illustrates the
application of the results obtained.

2. Comparison Lemmas

The following comparison lemmas are of importance throughout this paper.

Lemma 1. If v ∈ C1[0, T] satisfies

v′(t) + λv(t) > 0 v(T) 6 0 t ∈ [0, T]

where λ ∈ R is a constant, then v(t) 6 0 for t ∈ [0, T].

Proof. Since v′(t) + λv(t) > 0, we have

eλt(v′(t) + λv(t)
)
> 0

that is, (
v(t)eλt

)′
> 0

which implies that v(t)eλt is increasing on [0, T]. Hence, for ∀t ∈ [0, T],

v(t)eλt 6 v(T)eλT 6 0

i.e., v(t) 6 0, t ∈ [0, T].

Lemma 2. Let v, w ∈ C1[0, T], and λ ∈ R be a constant. If

w′(t) + λw(t) 6 v′(t) + λv(t) v(T) ≤ uT ≤ w(T) t ∈ [0, T],
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then v(t) 6 w(t) for t ∈ [0, T].

Proof. Let h(t) = v(t)− w(t), then we have

h′(t) + λh(t) > 0 h(T) 6 0 t ∈ [0, T].

By Lemma 1, we know h(t) 6 0, t ∈ [0, T], i.e., v(t) 6 w(t) for t ∈ [0, T].

Lemma 3. Let w ∈ C1[0, T], h ∈ C[0, 1], and λ ∈ R be a constant. If

w′(t) + λw(t) 6 h(t) w(T) ≥ uT t ∈ [0, T],

then

w(t) ≥ uTeλ(T−t) −
∫ T

t
eλ(s−t)h(s) ds

for t ∈ [0, T].

Proof. If v ∈ C1[0, 1] is a solution to the following terminal value problem

v′(t) + λv(t) = h(t) v(T) = uT t ∈ [0, T],

then we have

1.

v(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)h(s) ds

2.
w′(t) + λw(t) ≤ v′(t) + λv(t), v(T) = uT ≤ w(T) t ∈ [0, T].

By Lemma 2, we obtain

w(t) ≥ v(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)h(s) ds.

3. Main Results

In this section, we give some sufficient conditions to ensure the existence and unique-
ness of the (TVP).

Firstly, we transform the (TVP) to a fixed point problem; secondly, we construct an
iterative sequence by the integral operator; finally, by using comparison lemmas, we verify
that the sequence is uniformly convergent to the unique solution of the (TVP).

Let u, v ∈ C[0, T]; if u(t) ≤ v(t) for ∀t ∈ [0, T], we denote u ≤ v. The order interval
[u, v] = {x ∈ C[0, T]|u(t) ≤ x(t) ≤ v(t), ∀t ∈ [0, T]}.

The main result of this paper is the following.

Theorem 1. Let us say that there exist v, w ∈ C1[0, T], v 6 w and a constant λ such that

1. for ∀t ∈ [0, T], x, y ∈ [v, w], x 6 y,

f (t, y(t))− f (t, x(t)) > −λ(y(t)− x(t))

2. for ∀t ∈ [0, T], 0 6 ` 6 1 and x, y ∈ [v, w],

f (t, lx(t) + (1− l)y(t)) > l f (t, x(t)) + (1− l) f (t, y(t))
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3. for ∀t ∈ [0, T],
(v + w)′(t) + λ(v− w)(t) > 2 f (t, w(t))

f (t, v(t)) > w′(t) + λ(w− v)(t)
(1)

4. v(T) = uT = w(T).

Then, (TVP) has a unique solution x̃ satisfying v(t) ≤ x̃(t) ≤ w(t), t ∈ [0, T] (abbr. x̃ ∈ [v, w]).

Proof. Let x ∈ C[0, 1]. If h ∈ C1[0, T] be a solution to the following terminal value problem:

h′(t) + λh(t) = f (t, x(t)) + λx(t), h(t) = uT

Then,

h(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)[ f (s, x(s)) + λx(s)] ds

Define a mapping T on C[0, T] as follows:

(Tx)(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x(s)) + λx(s)] ds, x ∈ C[0, 1].

It is easy to verify that T maps C[0, T] into C[0, T], and (TVP) has a solution if and only
if T has a fixed point in C[0, T].

By Assumptions (1) and (2), we know that T is decreasing and convex on [v, w].
By the first inequality in (1), we have

(
v + w

2

)′
(t) + λ

(
v + w

2

)
> f (t · w(t)) + λw(t),(

v + w
2

)
(T) = uT .

Due to the second inequality in (1), we obtain{
w′(t) + λw(t) 6 f (t, v(t)) + λv(t),
w(T) = uT .

Let x0(t) be a solution to the following terminal value problem:{
u′(t) + λu(t) = f (t, w(t)) + λw(t),
u(T) = uT ,

Then,

x0(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, w(s)) + λw(s)] ds.

Construct an iterative sequence {xn(t)} as follows:{
x′n+1(t) + λxn+1(t) = f (t, xn(t)) + λxn(t)
xn+1(T) = uT

n = 0, 1, 2, · · ·

i.e.,

xn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, xn(s)) + λxn(s)] ds.

In what follows, we prove that {xn} is a Cauchy sequence in C[0, T], and converges to
the solution of the (TVP) in C[0, T].
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Step 1. We assert

w(t) > x0(t) >
(

w + v
2

)
(t) > v(t) t ∈ [0, T].

In virtue of (
w + v

2

)′
(t) + λ

(
v + w

2

)
(t) > x′0(t) + λx0(t)

and (
u + v

2

)
(T) = uT = x0(T)

and Lemma 2, we obtain

x0(t) >
(

w + v
2

)
(t).

Moreover,

w′(t) + λw(t) 6 f (t, v(t)) + λv(t)

6 f (t, w(t)) + λw(t)

=x′0(t) + λx0(t),

w(T) =uT = x0(T).

Hence, by Lemma 2, we have x0(t) 6 w(t), and

w > x0 >
w + v

2
> v.

Step 2. For n = 0, 1, 2, · · · ,

w(t) > x2n+1(t) > x2n(t) >
(

w + v
2

)
(t) > v(t).

On the one hand, since

x1(t) =uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x0(s)) + λx0(s)] ds

=(Tx0)(t)

and T is decreasing, we obtain

Tw 6 Tx0 = x1 6 T
(

ω + v
2

)
6 Tv.

Noting that x0 = Tw, we have
x0 6 x1.

On the other hand, by the second inequality in (1), we have

w′(t) + λw(t) 6 f (t, v(t)) + λv(t) 6 x′1(t) + λx1t = f (t1, x0(t)) + λx0(t)

which means
x′1(t) + λx1(t) > w′(t) + λw′(t)

By the comparison Lemma 2, there holds x1(t) 6 w(t). Hence,

x0 6 x1 6 w.

Noting that x0 > w+v
2 , we have w > x1 > x0 > w+v

2 > v, which implies that the
assertion holds for n = 0.
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Suppose that when n = k,

w(t) > x2k+1(t) > x2k(t) >
(

v + w
2

)
(t) > v(t)

then

f (t, w(t)) + λw(t) > f (t, x2k+1(t)) + λx2k+1(t)

> f (t, x2k(t)) + λx2k(t)

> f (t · v(t)) + λv(t).

Hence, we have(
v + w

2

)′
(t) + λ

(
v + w

2

)
(t) > x′2k+2(t) + λx2k+2(t)

> x′2k+1(t) + λx2k+1(t)

> w′(t) + λw(t).

By the comparison Lemma 2,

v + w
2

6 x2k+2(t) 6 x2k+1(t) 6 w(t).

Repeating this process, we can verify

v + w
2

6 x2k+2(t) 6 x2k+3(t) 6 w(t),

which means the assertion holds for n = k + 1.
Hence, for all n, there holds

w(t) > x2n+1(t) > x2n(t) >
(

v + w
2

)
(t) > v(t)

Step 3. {x2n(t)} is increasing, while {x2n+1(t)} is decreasing.
Since

u(t) 6
(

v + w
2

)
(t) 6 x1(t) 6 w(t),

then
f (t, v(t)) + λv(t) 6 f (t, x1(t)) + λx1(t)

6 f (t, λw(t)) + λw(t))

and
w′(t) + λw(t) 6 x′2(t) + λx2(t) 6 x′0(t) + λx0(t)

By the comparison Lemma 2,

x0(t) 6 x2(t) 6 w(t)

In a similar way to Step 2, we can prove

{x2n(t)} is increasing , {x2n+1(t)} is decreasing.

Step 4. {xn(t)} is uniformly convergent on [0, 1].
By Steps 1–3, we know that {xn(t)} satisfies

v(t) 6
(

v + w
2

)
(t) 6 x0(t) 6 x2(t) 6 · · · 6 x2n(t) 6 · · · 6 x2n+1(t) 6 · · · 6 x1(t) 6 w(t)
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Let Zn(t) = xn(t)− v(t). We have

0 6
(

w− v
2

)
(t) 6 Z0(t) 6 Z2t 6 · · · 6 Z2n(t) 6 · · · 6 Z2n+1(t) 6 · · · 6 Z1(t)

6 (w− v)(t).

Define
rn = sup{r ∈ R | Z2n(t) > rZ2n+1(t)}

Then, the sequence {rn} is well defined, 1
2 6 rn 6 1, and {rn} is increasing.

Since

1.

Z2n(t) >
1
2
(w− v)(t) >

1
2

Z2n+1(t)

we have rn > 1
2

2.
Z2n(t) > Z2n+1(t)

and we obtain rn 6 1.
3. If r satisfies Z2n(t) > rZ2n+1(t), then the monotonicity of {Z2n} and {Z2n+1} implies

Z2n+2(t) > Z2n(t) > rZ2n+1(t) > rZ2n+3(t)

i.e., {r ∈ R | Z2n(t) > rZ2n+1(t)} ⊂ {r ∈ R | Z2n+2(t) > rZ2n+3(t)}.
By (1–3), we know that {rn} is convergent. Denote r0 = lim

n→∞
rn.

By the comparison Lemma 3,

Z2n+3(t) 6 Z2n+1(t) = x2n+1(t)− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x2n(s)) + λx2n(s)] ds− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, Z2n(s) + v(s))) + λ(Z2n + v(s)) ds− v(t)

6 uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, (rnZ2n+1 + v)(s)) + λ(rnZ2n+1 + v)(s)] ds− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)

[
f (s, (rnx2n+1 + (1− rn)v(s)))+

λ(rnx2n+1 + (1− rn)v(s))

]
ds− v(t)

6 uTeλ(T−t) −
∫ T

t
eλ(s−t)

[
rn( f (s, x2n+1(s)) + λx2n+1(s))+

(1− rn)( f (s, v(s)) + λv(s)))

]
ds− v(t)

= rn

[
uTeλ(T−t) −

∫ T

t
eλ(s−t)[ f (s, x2n+1(s)) + λx2n+1(s) ds− v(t)]

]
+ (1− rn)

[
uTeλ(T−t) −

∫ T

t
eλ(s−t)[ f (s, v(s)) + λv(s)] ds− v(t)

]
6 rn[x2n+2(t)− v(t)] + (1− rn)[w(t)− v(t)]

= rnZ2n+2 + 2(1− rn)(
w− v

2
)(t)

6 rnZ2n+2 + 2(1− rn)Z2n+2

= (2− rn)Z2n+2,

then
rn+1 = sup{r ∈ R | Z2n+3(t) > rZ2n+2(t)} >

1
2− rn

.
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Taking the limit on both sides, we obtain

r0 >
1

2− r0
.

Noting that 1
2 6 r0 6 1, we know r0 = 1.

Then, for an even number p,

0 6 Z2n+p − Z2n 6 Z2n+1 − Z2n 6 (1− rn)Z2n+1 6 (1− rn)(v− u).

Since rn → 1, {Z2n} is convergent. In a similar way, we obtain that {Z2n+1} is
convergent, and

lim
n→∞

Z2n = lim
n→∞

Z2n+1.

Hence, {Zn} is convergent.
Let Z = lim

n→∞
Zn and x̄ = Z + v, and then

lim
n→∞

xn(t) =x̄(t)

= lim
n→∞

xn+1(t)

= lim
n→∞

[
uTeλ(T−t) −

∫ T

t
[ f (s, xn(s)) + λxn(s)] ds

]
=uTeλ(T−t) −

∫ T

t
[ f (s, x̄(s)) + λx̄(s)] ds

=(Tx̄)(t),

which means that x̄(t) is a fixed point of T.
Step 5. x̄ is the unique fixed point of T in [v, w].
In fact, if x̃ is a fixed point of T in [v, w], then

v 6 x̃ 6 w⇒Tv > Tx̃ > Tw

⇒w > Tv > x̃ > x0.

Continuing this process, we have

x2n(t) 6 x̃(t) 6 x2n+1(t).

Taking the limit on both sides, we obtain

x̃(t) = x̄(t).

Hence, x̄ is the unique fixed point of T in [v, w], i.e., x̄ is the unique solution of (TVP)
in [v, w].

Remark 1. Let

y0(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, v(s)) + λv(s)] ds

Define

yn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, yn(s)) + λyn(s)]ds, n = 0, 1, 2, · · ·

In the same way as in Theorem 1, we can prove that {yn} is uniformly convergent to x̄ on [0, 1].
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Corollary 1. Assume that there exist two constants c > 0 and λ ∈ R satisfying the following:

1. f (t, 0)− λc(T − t) > −c > 2 f (t, c(T − t)) + λc(T − t);
2. for ∀t ∈ [0, T], f (t, ·) is concave;
3. for ∀t ∈ [0, T], x, y ∈ [0, c(T − t)], x 6 y,

f (t, y)− f (t, x) > −λ(y− x),

and then (TVP) {
x′(t) = f (t, x(t))
x(T) = 0

has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 c(T − t), t ∈ [0, T].

Proof. Choose v(t) = 0, w(t) = c(T− t), and we can verify that all conditions of Theorem 1
are fulfilled.

Consider the following terminal value problem.{
x′(t) = t + g(x(t)) t ∈ [0, 1]
x(1) = 0

Corollary 2. Let g ∈ C2[0, 1]. If the following conditions are satisfied

1. g(0) ≥ −2;
2. for ∀x ∈ [0, 1], g(x) ≤ 3

2 x− 3
2 ;

3. for ∀x ∈ [0, 1], g′(x) ≥ 1;
4. for ∀x ∈ [0, 1], g′′(x) ≤ 0.

Then the above (TVP) has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 1− t, t ∈ [0, 1].

Proof. Let
f (t, x) = t + g(x).

and c = T = 1, λ = −1; we can verify that

f (t, 0)− λc(T − t) ≥t + (−2) + 1− t

=− 1 = −c

2 f (t, c(T − t)) + λc(T − t) =2[t + g(1− t)]− (1− t)

≤2[t +
3
2
(1− t)− 3

2
]− (1− t) 6 −1 = −c,

which implies that assumption (1) of Corollary 1 is satisfied.
Moreover,

f ′′xx(t, x) = g′′(x) ≤ 0

means that f (t, .) is concave, i.e., Assumption (2) of Corollary 1 is fulfilled. Noting that

f ′x(t, x) = g′(x) > 1, x ∈ [0, 1],

hence, f meets condition (3) of Corollary 1.
By Corollary 1, we know that this terminal problem has a unique solution x̄(t) satisfying
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0 6 x̄(t) 6 1− t.

4. Application

Example 1. Let g(x) = x + sinx − 2. We can verify that all assumptions of Corollary 2 hold.
Hence, the terminal value problem{

x′(t) = t + x(t) + sinx(t)− 2
x(1) = 0

has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 1− t.

Let T = 1, λ = −1, v0(t) = 0. Define

vn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, vn(s)) + λvn(s)]ds, n = 0, 1, 2, · · · .

Then, the approximate solutions of the above TVP are

v1(t) = (t− 2)
[
e(t−1) − 1

]
v2(t) =

{
t + sin

{
(t− 2)

[
e(t−1) − 1

]}
− 2
}
·
[
e(t−1) − 1

]
· · ·

The image of the approximate solutions of v1, v2 is the Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1(t)

V2(t)

Figure 1. Image of the approximate solutions of v1, v2.
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5. Discussion

In this paper, we have constructed an iterative monotone sequence and verified that
this sequence is convergent to a solution of problem (TVP). Other assumptions ensure the
uniqueness of this solution. Our uniqueness result is a local result, which means that the
problem may have multiple solutions in the space C[0, T].

6. Conclusions

In this paper, we have used comparison lemmas, an iterative technique and a fixed
point method to obtain the existence and uniqueness results of solutions for a terminal
value problem of the first-order differential equation. Our discussion lies in a bounded
interval. It is an interesting problem to extend the study to an unbounded interval, i.e.,{

x′(t) = f (t, x(t))
x(∞) = limt→∞ x(t) = u∞

We will try to find appropriate conditions to ensure the existence and uniqueness of
the solution to the above problem.
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