Article

Comparison of Overlap and Grouping Functions

Songsong Dai ©

Citation: Dai, S. Comparison of Overlap and Grouping Functions. Axioms 2022, 11, 420. https:// doi.org/10.3390/axioms11080420

Academic Editor: Hsien-Chung Wu

Received: 17 July 2022
Accepted: 17 August 2022
Published: 20 August 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China; ssdai@tzc.edu.cn

Abstract

This paper investigates the pointwise comparability of overlap and grouping functions which obtained by Bustince et al.'s and Bedregal et al.'s generator pairs, respectively. Some necessary and sufficient conditions for the comparison of these functions are proved. We also introduce some compositions of these functions and study the order preservation of these compositions.

Keywords: overlap functions; grouping functions; comparison; composition; order preservation

1. Introduction

Overlap function introduced by Bustince et al. [1] is a particular type of aggregation function [2]. Its dual concept is the grouping function [3]. In recent years, those two concepts have attracted a wide range of interests. For applications, they have been successfully applied to many domains, such as image processing [1,4], classification [5,6] and decision making $[7,8]$. For theoretical research, general overlap and grouping functions [9,10], Ndimensional overlap functions [11], Archimedean overlap functions [12], general intervalvalued overlap functions [13], complex-valued overlap and grouping functions [14,15], quasi-homogeneous overlap functions [16], pseudo-homogeneous overlap and grouping functions [17], overlap functions on bounded lattices [18], overlap and grouping functions on complete lattices [19] have been introduced. Many fuzzy concepts derived from overlap and grouping functions, such as generalized interval-valued OWA operators [20], residual implications [21,22], (G,N)-implications [23], binary relations [24], (IO, O)-fuzzy rough sets [25] and so on.

In the study of overlap and grouping functions, the study of their properties accounts for a large proportion and play an important role. Bustince et al. [1] gave an alternative characterization of overlap functions by their generator pairs. Bedregal et al. [26] gave an alternative characterization of grouping functions in a similar way. Dimuro et al. [27] introduced the additive generators of overlap and grouping functions. Qiao and Hu [28] studied the interval additive generators of interval overlap and grouping functions. They [29] also introduced the multiplicative generators of overlap and grouping functions.

We have already known that there is a partial order between two t-norms T_{1} and T_{2}, i.e., $T_{1} \leq T_{2}$ if $T_{1}(a, b) \leq T_{2}(a, b)$ for all $(a, b) \in[0,1]^{2}$ (see [30], Chapter 6). Klement et al. [31] presented a necessary and sufficient condition for the comparability of continuous Archimedean t-norms. There also exist some pointwise comparison results of fuzzy implications (see [32], Chapter 1). However, comparatively little investigation has been made on the comparability of overlap/grouping functions. Bustince et al. [1] defined the pointwise order of two overlap functions O_{1} and O_{2}, i.e., $O_{1} \leq O_{2}$ if $O_{1}(a, b) \leq O_{2}(a, b)$ for all $(a, b) \in[0,1]^{2}$. Bedregal et al. [26] defined the pointwise order of two grouping functions in a similar way. Dai et al. [33] showed that the meet operation, join operation, convex combination, and \circledast-composition of overlap and grouping functions are order preserving. But the research on the pointwise comparability of overlap and grouping functions have not been studied in details. Therefore, in this paper, we study the pointwise comparability of overlap and grouping functions involving Bustince et al. [1] and Bedregal et al. [26] generators. We present some necessary and sufficient conditions for their comparability. We also investigate order preservation of some compositions of overlap and grouping functions.

The paper is organized as follows: In Section 2, we recall the concepts of overlap/grouping functions and their order relationship. In Section 3, we study the pointwise comparability of overlap functions involving Bustince et al. [1] generators. In Section 4, we study the pointwise comparability of grouping functions involving Bedregal et al. [26] generators. In Section 5, we introduce some compositions of overlap/grouping functions and study properties preservation of these compositions. In Section 6, our researches are concluded.

2. Preliminaries

2.1. Overlap and Grouping Functions

In this section, we recall the basic theory of overlap and grouping functions. More details can be found in $[1,11,26,28$].

Definition 1 ([1]). A bivariate function $O:[0,1]^{2} \rightarrow[0,1]$ is a overlap function if, for any $a, b \in[0,1]$, it has the following properties:
(O1) O is commutative;
(O2) $O(a, b)=0$ if and only if $a b=0$;
(O3) $O(a, b)=1$ if and only if $a b=1$;
(O4) O is non-decreasing;
(O5) O is continuous.
Definition 2 ([3]). A bivariate function $G:[0,1]^{2} \rightarrow[0,1]$ is a grouping function if, for any $a, b \in[0,1]$, it has the following properties:
(G1) G is commutative;
(G2) $G(a, b)=0$ if and only if $a=b=0$;
(G3) $G(a, b)=1$ if and only if $a=1$ or $b=1$.
(G4) G is non-decreasing;
(G5) G is continuous.
Denote by \mathcal{O} the set of all overlap functions, and \mathcal{G} the set of all grouping functions.
Let O be an overlap function, the dual grouping function of O is defined as $G_{O}(a, b)=$ $1-O(1-a, 1-b)$.

Example $1([1,26])$. The following are typical examples of overlap and grouping functions, where $p>0$,

- $O_{n m}(a, b)=\min (a, b) \max \left(a^{2}, b^{2}\right)$;
- $O_{p}(a, b)=a^{p} b^{p}$;
- $O_{m p}(a, b)=\min \left(a^{p}, b^{p}\right)$;
- $O_{M p}(a, b)=1-\max \left((1-a)^{p},(1-b)^{p}\right)$;
- $O_{D B}(a, b)= \begin{cases}\frac{2 a b}{a+b}, & \text { if } a+b \neq 0, \\ 0, & \text { if } a+b=0 .\end{cases}$
- $G_{n m}(a, b)=1-\min (1-a, 1-b) \max \left((1-a)^{2},(1-b)^{2}\right)$;
- $G_{p}(a, b)=1-(1-a)^{p}(1-b)^{p}$;
- $G_{m p}(a, b)=1-\min \left((1-a)^{p},(1-b)^{p}\right)$;
- $G_{M p}(a, b)=\max \left(a^{p}, b^{p}\right)$;
- $G_{D B}(a, b)= \begin{cases}\frac{a+b-2 a b}{2-a-b}, & \text { if } a \neq 1 \text { or } b \neq 1, \\ 1, & \text { if } a=b=1 .\end{cases}$

2.2. Orders of Overlap and Grouping Functions

Bustince et al. [1] and Bedregal et al. [26] introduced the following partial order for overlap and grouping functions, respectively.

Definition 3 ([1,26]). Let $f_{1}, f_{2} \in \mathcal{O}$ (or both $f_{1}, f_{2} \in \mathcal{G}$),
(i) we say that f_{1} is weaker than f_{2}, denote $f_{1} \preceq f_{2}$, if $f_{1}(a, b) \leq f_{2}(a, b)$ holds for all $(a, b) \in$ $[0,1]^{2}$.
(ii) we write $f_{1} \prec f_{2}$ if $f_{1} \preceq f_{2}$ and $f_{1} \neq f_{2}$.

Proposition 1. Let O_{1} and O_{2} be two overlap functions, if $O_{1} \preceq O_{2}$, then $G_{O_{2}} \preceq G_{O_{1}}$, where $G_{O_{1}}$ and $G_{O_{2}}$ are the dual grouping functions of O_{1} and O_{2}, respectively.

Proof. First $O_{1} \preceq O_{2}$ means $O_{1}(a, b) \leq O_{2}(a, b)$ holds for all $(a, b) \in[0,1]^{2}$. Then $O_{1}(1-$ $a, 1-b) \leq O_{2}(1-a, 1-b)$ holds for all $(a, b) \in[0,1]^{2}$.

Afterwards we have $1-O_{1}(1-a, 1-b) \geq 1-O_{2}(1-a, 1-b)$ holds for all $(a, b) \in$ $[0,1]^{2}$. Thus $G_{O_{2}} \preceq G_{O_{1}}$, i.e., $G_{O_{2}}(a, b) \leq G_{O_{1}}(a, b)$ holds for all $(a, b) \in[0,1]^{2}$.

Example 2. Consider the overlap and grouping functions in Example 1, we have

- $O_{n m} \preceq O_{m p}$, where $0<p \leq 1$;
- $O_{m p} \preceq O_{n m}$, where $p \geq 3$;
- $O_{p} \preceq O_{m p}$;
- $O_{p} \preceq O_{D B}$, where $p \geq 1$;
- $G_{m p} \preceq G_{n m}$, where $0<p \leq 1$;
- $G_{n m} \preceq G_{m p}$, where $p \geq 3$;
- $G_{m p} \preceq G_{p}$;
- $G_{D B} \preceq G_{p}$, where $p \geq 1$.

Remark 1. \preceq is a partial order, but not a linear order. For example, consider the $O_{m p}$ with $p=2$ and $O_{n m}, O_{m p}(a, b)=\min \left(a^{2}, b^{2}\right)$ and $O_{n m}$ are incomparable since $O_{m p}\left(1, \frac{1}{2}\right)=\frac{1}{4}<$ $O_{n m}\left(1, \frac{1}{2}\right)=\frac{1}{2}$ and $O_{m p}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{4}>O_{n m}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{8}$.

3. Comparison of Overlap Functions

Bustince et al. [1] gave an alternative characterization of overlap functions.
Theorem 1 ([1]). The bivariate function $O_{f g}:[0,1]^{2} \rightarrow[0,1]$ is an overlap function if and only if

$$
\begin{equation*}
O_{f g}(a, b)=\frac{f(a, b)}{f(a, b)+g(a, b)} \tag{1}
\end{equation*}
$$

for some $f, g:[0,1]^{2} \rightarrow[0,1]$ satisfying the following conditions
(F1) f and g are symmetric;
(F2) f is non decreasing and g is non increasing;
(F3) $f(a, b)=0$ if and only if $a b=0$;
(F4) $g(a, b)=0$ if and only if $a b=1$;
(F5) f and g are continuous functions.
For any overlap function $O_{f g}$ characterized by Equation (1), (f, g) is said to be the generator pair of $O_{f g}$.

We give the following necessary and sufficient condition for the comparison of overlap functions characterized by different generator pairs.

Theorem 2. Let $O_{f_{1} g_{1}}$ and $O_{f_{2} g_{2}}$ be two overlap functions with generator pair $f_{1}, g_{1}:[0,1]^{2} \rightarrow$ $[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$ if and only if $f_{1} g_{2} \leq f_{2} g_{1}$, i.e., for all $a, b \in[0,1]$,

$$
\begin{equation*}
f_{1}(a, b) g_{2}(a, b) \leq f_{2}(a, b) g_{1}(a, b) \tag{2}
\end{equation*}
$$

Proof. (\Rightarrow) From the definition of the generator pair in Equation (1), if $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$, then for all $a, b \in[0,1]$, by Definition 3,

$$
\frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)} \leq \frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)} .
$$

From Theorem 1 (F3) and (F4), we have $f_{1}(a, b)+g_{1}(a, b)>0$ and $f_{2}(a, b)+g_{2}(a, b)>$ 0 for all $a, b \in[0,1]$, and we have

$$
f_{1}(a, b)\left[f_{2}(a, b)+g_{2}(a, b)\right] \leq f_{2}(a, b)\left[f_{1}(a, b)+g_{1}(a, b)\right]
$$

Then for all $a, b \in[0,1]$, it holds that

$$
f_{1}(a, b) g_{2}(a, b) \leq f_{2}(a, b) g_{1}(a, b)
$$

Thus $f_{1} g_{2} \leq f_{2} g_{1}$.
(\Leftarrow) If $f_{1} g_{2} \leq f_{2} g_{1}$, i.e., for all $a, b \in[0,1]$, it holds that

$$
f_{1}(a, b) g_{2}(a, b) \leq f_{2}(a, b) g_{1}(a, b)
$$

By adding $f_{1}(a, b) f_{2}(a, b)$ in both sides of this inequality, we obtain

$$
f_{1}(a, b) f_{2}(a, b)+f_{1}(a, b) g_{2}(a, b) \leq f_{1}(a, b) f_{2}(a, b)+f_{2}(a, b) g_{1}(a, b)
$$

i.e.,

$$
f_{1}(a, b)\left[f_{2}(a, b)+g_{2}(a, b)\right] \leq f_{2}(a, b)\left[f_{1}(a, b)+g_{1}(a, b)\right]
$$

From $f_{1}(a, b)+g_{1}(a, b)>0$ and $f_{2}(a, b)+g_{2}(a, b)>0$ for all $a, b \in[0,1]$, one has that $\left[f_{2}(a, b)+g_{2}(a, b)\right]\left[f_{1}(a, b)+g_{1}(a, b)\right]>0$ for all $a, b \in[0,1]$.

Then by dividing both sides of the equation by $\left[f_{2}(a, b)+g_{2}(a, b)\right]\left[f_{1}(a, b)+g_{1}(a, b)\right]$, we get for all $a, b \in[0,1]$

$$
\frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)} \leq \frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)}
$$

Thus by Definition 3, $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$.
Corollary 1. Let $O_{f_{1} g_{1}}$ and $O_{f_{2} g_{2}}$ be two overlap functions with generator pair $f_{1}, g_{1}:[0,1]^{2} \rightarrow$ $[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$ if and only if $\frac{f_{1}}{f_{2}} \leq \frac{g_{1}}{g_{2}}$, i.e., for all $(a, b) \in(0,1]^{2} \backslash\{(1,1)\}$,

$$
\begin{equation*}
\frac{f_{1}(a, b)}{f_{2}(a, b)} \leq \frac{g_{1}(a, b)}{g_{2}(a, b)} \tag{3}
\end{equation*}
$$

Corollary 2. Let $O_{f_{1} g}$ and $O_{f_{2} g}$ be two overlap functions with generator pair $\left(f_{1}, g\right)$ and $\left(f_{2}, g\right)$, respectively. If $f_{1} \leq f_{2}$, i.e., $f_{1}(a, b) \leq f_{2}(a, b)$ for all $a, b \in[0,1]$. Then $O_{f_{1} g} \preceq O_{f_{2} g}$.

Corollary 3. Let $O_{f g_{1}}$ and $O_{f g_{2}}$ be two overlap functions with generator pair $\left(f, g_{1}\right)$ and $\left(f, g_{2}\right)$, respectively. If $g_{1} \leq g_{2}$, i.e., $g_{1}(a, b) \leq g_{2}(a, b)$ for all $a, b \in[0,1]$. Then $O_{f g_{2}} \preceq O_{f g_{1}}$.

Example 3. Consider the following functions $f_{1}, g_{1}, f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, defined by

$$
\begin{align*}
& f_{1}(a, b)=\sqrt{a b} \tag{4}\\
& f_{2}(a, b)=a^{2} b^{2} \tag{5}\\
& g_{1}(a, b)=1-a b \tag{6}\\
& g_{2}(a, b)=\max (1-a, 1-b) \tag{7}
\end{align*}
$$

Obviously, they satify the conditions of Theorem 1. We also have $f_{2} \leq f_{1}$ and $g_{2} \leq g_{1}$. Then it holds that $f_{2} g_{2} \leq f_{1} g_{1}$.

From Theorem 2, we obtain $O_{f_{2} g_{1}} \preceq O_{f_{1} g_{2}}$, i.e.,

$$
\frac{a^{2} b^{2}}{a^{2} b^{2}+1-a b} \leq \frac{\sqrt{a b}}{\sqrt{a b}+\max (1-a, 1-b)}
$$

for all $a, b \in[0,1]$.
Moreover,

$$
\frac{f_{1}(a, b)}{f_{2}(a, b)}=\frac{\sqrt{a b}}{a^{2} b^{2}}=\frac{1}{a^{3 / 2} b^{3 / 2}}
$$

and

$$
\frac{g_{1}(a, b)}{g_{2}(a, b)}=\frac{1-a b}{\max (1-a, 1-b)}
$$

are incomparable since

$$
\frac{f_{1}(0.9,0.9)}{f_{2}(0.9,0.9)}=\frac{1}{0.9^{3}} \approx 1.372<\frac{g_{1}(0.9,0.9)}{g_{2}(0.9,0.9)}=1.9
$$

and

$$
\frac{f_{1}(0.1,0.1)}{f_{2}(0.1,0.1)}=\frac{1}{0.1^{3}}=1000>\frac{g_{1}(0.1,0.1)}{g_{2}(0.1,0.1)}=1.1
$$

Then $O_{f_{1} g_{1}}(a, b)=\frac{\sqrt{a b}}{\sqrt{a b}+1-a b}$ and $O_{f_{2} g_{2}}(a, b)=\frac{a^{2} b^{2}}{a^{2} b^{2}+\max (1-a, 1-b)}$ are incomparable because of Corollary 1.

4. Comparison of Grouping Functions

Bedregal et al. [26] gave an alternative characterization of grouping functions.
Theorem 3 ([26]). The bivariate function $G_{f g}:[0,1]^{2} \rightarrow[0,1]$ is a grouping function if and only if

$$
\begin{equation*}
G_{f g}(a, b)=1-\frac{f(a, b)}{f(a, b)+g(a, b)} \tag{8}
\end{equation*}
$$

for some $f, g:[0,1]^{2} \rightarrow[0,1]$ satisfying the following conditions
(T1) f and g are symmetric;
(T2) f is non increasing and g is non decreasing;
(T3) $f(a, b)=0$ if and only if $a=1$ or $b=1$;
(T4) $g(a, b)=0$ if and only if $a=b=0$;
(T5) f and g are continuous functions.
For any grouping function $G_{f g}$ characterized by Equation (8), (f, g) is said to be the generator pair of $G_{f g}$.

We give the following necessary and sufficient condition for the comparison of grouping functions characterized by different generator pairs.

Theorem 4. Let $G_{f_{1} g_{1}}$ and $G_{f_{2} g_{2}}$ be two grouping functions with generator pair $f_{1}, g_{1}:[0,1]^{2} \rightarrow$ $[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$ if and only if $f_{2} g_{1} \leq f_{1} g_{2}$, i.e., for all $a, b \in[0,1]$,

$$
\begin{equation*}
f_{2}(a, b) g_{1}(a, b) \leq f_{1}(a, b) g_{2}(a, b) \tag{9}
\end{equation*}
$$

Proof. (\Rightarrow) From the definition of the generator pair in Equation (8), if $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$, then for all $a, b \in[0,1]$, by Definition 3,

$$
1-\frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)} \leq 1-\frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)}
$$

This is

$$
\frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)} \leq \frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)}
$$

From Theorem 3 (T3) and (T4), we have $f_{1}(a, b)+g_{1}(a, b)>0$ and $f_{2}(a, b)+g_{2}(a, b)>$ 0 for all $a, b \in[0,1]$, and we have

$$
f_{2}(a, b)\left[f_{1}(a, b)+g_{1}(a, b)\right] \leq f_{1}(a, b)\left[f_{2}(a, b)+g_{2}(a, b)\right]
$$

Then for all $a, b \in[0,1]$, it holds that

$$
f_{2}(a, b) g_{1}(a, b) \leq f_{1}(a, b) g_{2}(a, b)
$$

Thus $f_{2} g_{1} \leq f_{1} g_{2}$.
(\Leftarrow) If $f_{2} g_{1} \leq f_{1} g_{2}$, i.e., for all $a, b \in[0,1]$, it holds that

$$
f_{2}(a, b) g_{1}(a, b) \leq f_{1}(a, b) g_{2}(a, b)
$$

By adding $f_{1}(a, b) f_{2}(a, b)$ in both sides of this inequality, we obtain

$$
f_{1}(a, b) f_{2}(a, b)+f_{2}(a, b) g_{1}(a, b) \leq f_{1}(a, b) f_{2}(a, b)+f_{1}(a, b) g_{2}(a, b)
$$

i.e.,

$$
f_{2}(a, b)\left[f_{1}(a, b)+g_{1}(a, b)\right] \leq f_{1}(a, b)\left[f_{2}(a, b)+g_{2}(a, b)\right]
$$

From $f_{1}(a, b)+g_{1}(a, b)>0$ and $f_{2}(a, b)+g_{2}(a, b)>0$ for all $a, b \in[0,1]$, one has that $\left[f_{2}(a, b)+g_{2}(a, b)\right]\left[f_{1}(a, b)+g_{1}(a, b)\right]>0$ for all $a, b \in[0,1]$.

Then by dividing both sides of the equation by $\left[f_{2}(a, b)+g_{2}(a, b)\right]\left[f_{1}(a, b)+g_{1}(a, b)\right]$, we get for all $a, b \in[0,1]$

$$
\frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)} \leq \frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)} .
$$

So we have, for all $a, b \in[0,1]$

$$
1-\frac{f_{1}(a, b)}{f_{1}(a, b)+g_{1}(a, b)} \leq 1-\frac{f_{2}(a, b)}{f_{2}(a, b)+g_{2}(a, b)}
$$

Thus by Definition 3, $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$.
Corollary 4. Let $G_{f_{1} g_{1}}$ and $G_{f_{2} g_{2}}$ be two grouping functions with generator pair $f_{1}, g_{1}:[0,1]^{2} \rightarrow$ $[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$ if and only if $\frac{g_{1}}{g_{2}} \leq \frac{f_{1}}{f_{2}}$, i.e., for all $(a, b) \in[0,1)^{2} \backslash\{(0,0)\}$,

$$
\begin{equation*}
\frac{g_{1}(a, b)}{g_{2}(a, b)} \leq \frac{f_{1}(a, b)}{f_{2}(a, b)} \tag{10}
\end{equation*}
$$

Corollary 5. Let $G_{f_{1} g}$ and $G_{f_{2} g}$ be two grouping functions with generator pair $\left(f_{1}, g\right)$ and $\left(f_{2}, g\right)$, respectively. If $f_{1} \leq f_{2}$, then $G_{f_{2} g} \preceq G_{f_{1} g}$.

Corollary 6. Let $G_{f g_{1}}$ and $G_{f g_{2}}$ be two grouping functions with generator pair $\left(f, g_{1}\right)$ and $\left(f, g_{2}\right)$, respectively. If $g_{1} \leq g_{2}$, then $G_{f g_{1}} \preceq G_{f g_{2}}$.

Example 4. Consider the following functions $f_{1}, g_{1}, f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, defined by

$$
\begin{align*}
& f_{1}(a, b)=(1-a)(1-b), \tag{11}\\
& f_{2}(a, b)=\left(1-a^{2}\right)\left(1-b^{2}\right), \tag{12}\\
& g_{1}(a, b)=\frac{a+b}{2}, \tag{13}\\
& g_{2}(a, b)=\min (a, b) . \tag{14}
\end{align*}
$$

Obviously, they satify the conditions of Theorem 3. We also have $f_{1} \leq f_{2}$ and $g_{2} \leq g_{1}$. Then it holds that $f_{1} g_{2} \leq f_{2} g_{1}$.

From Theorem 4, we obtain $G_{f_{2} g_{2}} \preceq G_{f_{1} g_{1}}$, i.e.,

$$
1-\frac{\left(1-a^{2}\right)\left(1-b^{2}\right)}{\left(1-a^{2}\right)\left(1-b^{2}\right)+\min (a, b)} \leq 1-\frac{(1-a)(1-b)}{(1-a)(1-b)+\frac{a+b}{2}}
$$

for all $a, b \in[0,1]$.
Moreover, for all $(a, b) \in[0,1)^{2} \backslash\{(0,0)\}$

$$
\frac{f_{1}(a, b)}{f_{2}(a, b)}=\frac{(1-a)(1-b)}{\left(1-a^{2}\right)\left(1-b^{2}\right)}=\frac{1}{(1+a)(1+b)}
$$

and

$$
\frac{g_{2}(a, b)}{g_{1}(a, b)}=\frac{\min (a, b)}{\frac{a+b}{2}}=\frac{2 \min (a, b)}{a+b}
$$

are incomparable since

$$
\frac{f_{1}(0.25,0.25)}{f_{2}(0.25,0.25)}=\frac{1}{1.25^{2}}=0.64<\frac{g_{2}(0.25,0.25)}{g_{1}(0.25,0.25)}=1
$$

and

$$
\frac{f_{1}(0.1,0.9)}{f_{2}(0.1,0.9)}=\frac{1}{1.1 * 1.9} \approx 0.4785>\frac{g_{1}(0.1,0.9)}{g_{2}(0.1,0.9)}=0.2
$$

Then $G_{f_{1} g_{2}}(a, b)=1-\frac{(1-a)(1-b)}{(1-a)(1-b)+\min (a, b)}$ and $G_{f_{2} g_{1}}(a, b)=1-\frac{\left(1-a^{2}\right)\left(1-b^{2}\right)}{\left(1-a^{2}\right)\left(1-b^{2}\right)+\frac{a+b}{2}}$ are incomparable because of Corollary 4.
5. Order Preservation of Some Compositions of Overlap and Grouping Functions

In this section, we consider the following problem.
Problem 1. Whether we have

$$
\begin{equation*}
H_{f_{1} g_{1}} \preceq H_{f_{2} g_{2}}, H_{f_{3} g_{3}} \preceq H_{f_{4} g_{4}} \Rightarrow H_{\left(f_{1} \circ_{1} f_{3}\right)\left(g_{1} \circ_{1} g_{3}\right)} \preceq H_{\left(f_{2} \circ_{2} f_{4}\right)\left(g_{2} \circ_{2} g_{4}\right)} \tag{15}
\end{equation*}
$$

for some operations \circ_{1} and \circ_{2} of bivariate functions, where $H_{f_{i} g_{i}}$, with $i=1, \ldots, 4$ are all overlap functions or all grouping functions?

Let h_{1} and h_{2} be two bivariate functions, their meet, join and product operations are defined as

$$
\begin{align*}
& \left(h_{1} \vee h_{2}\right)(a, b)=\max \left(h_{1}(a, b), h_{2}(a, b)\right) \tag{16}\\
& \left(h_{1} \wedge h_{2}\right)(a, b)=\min \left(h_{1}(a, b), h_{2}(a, b)\right), \tag{17}\\
& \left(h_{1} \times h_{2}\right)(a, b)=h_{1}(a, b) h_{2}(a, b) \tag{18}
\end{align*}
$$

for all $(a, b) \in[0,1]^{2}$.
First, we prove the closures of the proposed compositions of overlap (or grouping) functions $H_{\left(f_{1} \circ f_{2}\right)\left(g_{1} \circ g_{2}\right)}$, where $\circ \in\{\vee, \wedge, \times\}$.

Lemma 1. If $f_{1}, g_{1}:[0,1]^{2} \rightarrow[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$ satisfy the following conditions (F1)-(F5) of Theorem 1. Then $\left(f_{1} \vee f_{2}, g_{1} \vee g_{2}\right),\left(f_{1} \wedge f_{2}, g_{1} \wedge g_{2}\right)$ and $\left(f_{1} \times f_{2}, g_{1} \times g_{2}\right)$ also satisfy these conditions.

Proof. The cases for (F1), (F2), and (F5) are straightforward.
$(\mathrm{F} 3)(\Rightarrow)$ If $\left(f_{1} \vee f_{2}\right)(a, b)=\max \left(f_{1}(a, b), f_{2}(a, b)\right)=0$. Then, $f_{1}(a, b)=f_{2}(a, b)=0$, thus $a b=0$.

If $\left(f_{1} \wedge f_{2}\right)(a, b)=\min \left(f_{1}(a, b), f_{2}(a, b)\right)=0$. Case I, $f_{1}(a, b)=0$ then $a b=0$. Case II, $f_{2}(a, b)=0$ then $a b=0$.

If $\left(f_{1} \times f_{2}\right)(a, b)=f_{1}(a, b) f_{2}(a, b)=0$. Case I, $f_{1}(a, b)=0$ then $a b=0$. Case II, $f_{2}(a, b)=0$ then $a b=0$.
(\Leftarrow) is straightforward.
$(\mathrm{F} 4)(\Rightarrow)$ If $\left(g_{1} \vee g_{2}\right)(a, b)=\max \left(g_{1}(a, b), g_{2}(a, b)\right)=0$. Then $g_{1}(a, b)=g_{2}(a, b)=0$, thus $a b=1$.

If $\left(g_{1} \wedge g_{2}\right)(a, b)=\min \left(g_{1}(a, b), g_{2}(a, b)\right)=0$. Case I, $g_{1}(a, b)=0$ then $a b=1$. Case II, $g_{2}(a, b)=0$ then $a b=1$.

If $\left(g_{1} \times g_{2}\right)(a, b)=g_{1}(a, b) g_{2}(a, b)=0$. Case I, $g_{1}(a, b)=0$ then $a b=1$. Case II, $g_{2}(a, b)=0$ then $a b=1$.
(\Leftarrow) is straightforward.
Corollary 7. If $O_{f_{1} g_{1}}$ and $O_{f_{2} g_{2}}$ be two overlap fuction functions with generator pair f_{1}, g_{1} : $[0,1]^{2} \rightarrow[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $O_{\left(f_{1} \circ f_{2}\right)\left(g_{1} \circ g_{2}\right)}$ is an overlap function, where $\circ \in\{\vee, \wedge, \times\}$

Lemma 2. If $f_{1}, g_{1}:[0,1]^{2} \rightarrow[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$ satisfy the following conditions (T1)-(T5) of Theorem 3. Then $\left(f_{1} \vee f_{2}, g_{1} \vee g_{2}\right),\left(f_{1} \wedge f_{2}, g_{1} \wedge g_{2}\right)$ and $\left(f_{1} \times f_{2}, g_{1} \times g_{2}\right)$ also satisfy these conditions.

Proof. The cases for (T1), (T2), and (T5) are straightforward.
$(\mathrm{T} 3)(\Rightarrow)$ If $\left(f_{1} \vee f_{2}\right)(a, b)=\max \left(f_{1}(a, b), f_{2}(a, b)\right)=0$. Then, $f_{1}(a, b)=f_{2}(a, b)=0$, thus $a=1$ or $b=1$.

If $\left(f_{1} \wedge f_{2}\right)(a, b)=\min \left(f_{1}(a, b), f_{2}(a, b)\right)=0$. Case I, $f_{1}(a, b)=0$ then $a=1$ or $b=1$. Case II, $f_{2}(a, b)=0$ then $a=1$ or $b=1$.

If $\left(f_{1} \times f_{2}\right)(a, b)=f_{1}(a, b) f_{2}(a, b)=0$. Case I, $f_{1}(a, b)=0$ then $a=1$ or $b=1$. Case II, $f_{2}(a, b)=0$ then $a=1$ or $b=1$.
(\Leftarrow) is straightforward.
$(\mathrm{T} 4)(\Rightarrow)$ If $\left(g_{1} \vee g_{2}\right)(a, b)=\max \left(g_{1}(a, b), g_{2}(a, b)\right)=0$. Then $g_{1}(a, b)=g_{2}(a, b)=0$, thus $a=b=0$.

If $\left(g_{1} \wedge g_{2}\right)(a, b)=\min \left(g_{1}(a, b), g_{2}(a, b)\right)=0$. Case I, $g_{1}(a, b)=0$ then $a=b=0$. Case II, $g_{2}(a, b)=0$ then $a=b=0$.

If $\left(g_{1} \times g_{2}\right)(a, b)=g_{1}(a, b) g_{2}(a, b)=0$. Case I, $g_{1}(a, b)=0$ then $a=b=0$. Case II, $g_{2}(a, b)=0$ then $a=b=0$.
(\Leftarrow) is straightforward.

Corollary 8. If $G_{f_{1} g_{1}}$ and $G_{f_{2} g_{2}}$ be two grouping functions with generator pair $f_{1}, g_{1}:[0,1]^{2} \rightarrow$ $[0,1]$ and $f_{2}, g_{2}:[0,1]^{2} \rightarrow[0,1]$, respectively. Then $G_{\left(f_{1} \circ f_{2}\right)\left(g_{1} \circ g_{2}\right)}$ is a grouping function, where $\circ \in\{\vee, \wedge, \times\}$

Lemma 3. Let $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4} \in[0,1]$. If $a_{1} b_{2} \leq a_{2} b_{1}$ and $a_{3} b_{4} \leq a_{4} b_{3}$. Then
(1) $\left(a_{1} a_{3}\right)\left(b_{2} b_{4}\right) \leq\left(a_{2} a_{4}\right)\left(b_{1} b_{3}\right)$.
(2) $\left(a_{1} \wedge a_{3}\right)\left(b_{2} \wedge b_{4}\right) \leq\left(a_{2} \vee a_{4}\right)\left(b_{1} \vee b_{3}\right)$.

Theorem 5. Let $O_{f_{1} g_{1}}, O_{f_{2 g_{2}}}, O_{f_{3} g_{3}}$ and $O_{f_{4} g_{4}}$ be four overlap functions with generator pair $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2},\left(f_{3}, g_{3}\right)\right.$ and $\left(f_{4}, g_{4}\right)$, respectively. If $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$ and $O_{f_{3} g_{3}} \preceq O_{f_{4} g_{4}}$, then
(1) $O_{\left(f_{1} \times f_{3}\right)\left(g_{1} \times g_{3}\right)} \preceq O_{\left(f_{2} \times f_{4}\right)\left(g_{2} \times g_{4}\right)}$;
(2) $O_{\left(f_{1} \wedge f_{3}\right)\left(g_{1} \wedge g_{3}\right)} \preceq O_{\left(f_{2} \vee f_{4}\right)\left(g_{2} \vee g_{4}\right)}$.

Proof. From $O_{f_{1} g_{1}} \preceq O_{f_{2} g_{2}}$ and $O_{f_{3} g_{3}} \preceq O_{f_{4} g_{4}}$, by Theorem 1, it hold that $f_{1} g_{2} \leq f_{2} g_{1}$ and $f_{3} g_{4} \leq f_{4} g_{3}$. By Lemma 3(1) and (2), we have $\left(f_{1} \times f_{3}\right)\left(g_{2} \times g_{4}\right) \leq\left(f_{2} \times f_{4}\right)\left(g_{1} \times g_{3}\right)$ and $\left(f_{1} \wedge f_{3}\right)\left(g_{2} \wedge g_{4}\right) \leq\left(f_{2} \vee f_{4}\right)\left(g_{1} \vee g_{3}\right)$, respectively. Thus we obtain $O_{\left(f_{1} \times f_{3}\right)\left(g_{1} \times g_{3}\right)} \preceq$ $O_{\left(f_{2} \times f_{4}\right)\left(g_{2} \times g_{4}\right)}$ and $O_{\left(f_{1} \wedge f_{3}\right)\left(g_{1} \wedge g_{3}\right)} \preceq O_{\left(f_{2} \vee f_{4}\right)\left(g_{2} \vee g_{4}\right)}$.

Theorem 6. Let $G_{f_{1} g_{1}}, G_{f_{2} g_{2}}, G_{f_{3} g_{3}}$ and $G_{f_{4} g_{4}}$ be four grouping functions with generator pair $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2},\left(f_{3}, g_{3}\right)\right.$ and $\left(f_{4}, g_{4}\right)$, respectively. If $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$ and $G_{f_{3} g_{3}} \preceq G_{f_{4} g_{4}}$, then
(1) $\quad G_{\left(f_{1} \times f_{3}\right)\left(g_{1} \times g_{3}\right)} \preceq G_{\left(f_{2} \times f_{4}\right)\left(g_{4} \times g_{4}\right)}$;
(2) $G_{\left(f_{1} \vee f_{3}\right)\left(g_{1} \wedge g_{3}\right)} \preceq G_{\left(f_{2} \wedge f_{4}\right)\left(g_{2} \vee g_{4}\right)}$.

Proof. From $G_{f_{1} g_{1}} \preceq G_{f_{2} g_{2}}$ and $G_{f_{3} g_{3}} \preceq G_{f_{4} g_{4}}$, by Theorem 4, it hold that $f_{2} g_{1} \leq f_{1} g_{2}$ and $f_{4} g_{3} \leq f_{3} g_{4}$. By Lemma 3(1) and (2), we have $\left(f_{2} \times f_{4}\right)\left(g_{1} \times g_{3}\right) \leq\left(f_{1} \times f_{3}\right)\left(g_{2} \times g_{4}\right)$ and $\left(f_{2} \wedge f_{4}\right)\left(g_{1} \wedge g_{3}\right) \leq\left(f_{1} \vee f_{3}\right)\left(g_{2} \vee g_{4}\right)$, respectively. Thus we obtain $G_{\left(f_{1} \times f_{3}\right)\left(g_{1} \times g_{3}\right)} \preceq$ $G_{\left(f_{2} \times f_{4}\right)\left(g_{2} \times g_{4}\right)}$ and $G_{\left(f_{1} \vee f_{3}\right)\left(g_{1} \wedge g_{3}\right)} \preceq G_{\left(f_{2} \wedge f_{4}\right)\left(g_{2} \vee g_{4}\right)}$.

6. Conclusions

This paper studies the pointwise comparability of overlap and grouping functions, respectively. We give some necessary and sufficient conditions for the comparison of overlap functions characterized by Bustince et al. generator pairs [1] and grouping functions characterized by Bedregal et al. generator pairs [26]. We present some more general results on order preservation with respect to some compositions of overlap and grouping functions.

In this paper, we only focus on overlap and grouping functions characterized by Bustince et al. [1] and Bedregal et al. [26] generators, respectively. Naturally, a more detailed discussion of other generators of overlap and grouping functions, such as additive generators proposed by Dimuro et al. [27] and multiplicative generators proposed by Qiao and Hu [29], will be both necessary and interesting.

It was observed that there are various compositions of overlap and grouping functions. Obviously, the results presented in this paper are particular cases of order preservation with respect to some compositions of overlap and grouping functions. Therefore, it will be meaningful to further discuss order preservation of other compositions.

Funding: This research was funded by the National Science Foundation of China under Grant No. 62006168 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ21A010001.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Bustince, H.; Fernández, J.; Mesiar, R.; Montero, J.; Orduna, R. Overlap functions. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1488-1499. [CrossRef]
2. Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Berlin/Heidelberg, Germany, 2007.
3. Bustince, H.; Pagola, M.; Mesiar, R.; Hüllermeier, E.; Herrera, F. Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 2012, 20, 405-415. [CrossRef]
4. Jurio, A.; Bustince, H.; Pagola, M.; Pradera, A.; Yager, R. Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets Syst. 2013, 229, 69-90. [CrossRef]
5. Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method. Inf. Sci. 2016, 332, 94-114. [CrossRef]
6. Elkano, M.; Galar, M.; Sanz, J.; Fernández, A.; Barrenechea, E.; Herrera, F.; Bustince, H. Enhancing multi-class classification in FARC-HD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies. IEEE Trans. Fuzzy Syst. 2015, 23, 1562-1580. [CrossRef]
7. Elkano, M.; Galar, M.; Sanz, J.A.; Schiavo, P.F.; Pereira, S.; Dimuro, G.P.; Borges, E.N.; Bustince, H. Consensus via penalty functions for decision making in ensembles in fuzzy rule-based classification systems. Appl. Soft Comput. 2018, 67, 728-740. [CrossRef]
8. Santos, H.; Lima, L.; Bedregal, B.; Dimuro, G.P.; Rocha, M.; Bustince, H. Analyzing subdistributivity and superdistributivity on overlap and grouping functions. In Proceedings of the 8th International Summer School on Aggregation Operators (AGOP 2015), Katowice, Poland, 7-10 July 2015; pp. 211-216.
9. De Miguel, L.; Gomez, D.; Rodríguez, J.T.; Montero, J.; Bustince, H.; Dimuro, G.P.; Sanz, J.A. General overlap functions. Fuzzy Sets Syst. 2019, 372, 81-96. [CrossRef]
10. Santos, H.; Dimuro, G.P.; Asmus, T.C.; Lucca, G.; Bueno, E.; Bedregal, B.; Bustince, H. General grouping functions. In Proceedings of 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15-19 June 2020.
11. Gómez, D.; Rodríguez, J.T.; Montero, J.; Bustince, H.; Barrenechea, E. N-dimensional overlap functions. Fuzzy Sets Syst. 2016, 287, 57-75. [CrossRef]
12. Dimuro, G.P.; Bedregal, B. Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Syst. 2014, 252, 39-54. [CrossRef]
13. Asmus, T.C.; Dimuro, G.P.; Bedregal, B.; Sanz, J.A.; Pereira, S.; Bustince, H. General interval-valued overlap functions and interval-valued overlap indices. Inf. Sci. 2020, 527, 27-50. [CrossRef]
14. Chen, Y.; Bi, L.; Hu, B.; Dai, S. General Complex-Valued Overlap Functions. J. Math. 2021, 2021, 6613730. [CrossRef]
15. Chen, Y.; Bi, L.; Hu, B.; Dai, S. General Complex-Valued Grouping Functions. J. Math. 2021, 2021, 5793151. [CrossRef]
16. Costa, L.M.; Bedregal, B.R.C. Quasi-homogeneous overlap functions. In Decision Making and Soft Computing; World Scientific: Singapore, 2014; pp. 294-299.
17. Qiao, J.; Hu, B.Q. On homogeneous, quasi-homogeneous and pseudo-homogeneous overlap and grouping functions. Fuzzy Sets Syst. 2019, 357, 58-90. [CrossRef]
18. Wang, H. Constructions of overlap functions on bounded lattices. Int. J. Approx. Reason. 2020, 125, 203-217. [CrossRef]
19. Qiao, J. Overlap and grouping functions on complete lattices. Inf. Sci. 2021, 542, 406-424. [CrossRef]
20. Bedregal, B.; Bustince, H.; Palmeira, E.; Dimuro, G.; Fernandez, J. Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions. Int. J. Approx. Reason. 2017, 90, 1-16. [CrossRef]
21. Dimuro, G.P.; Bedregal, B. On residual implications derived from overlap functions. Inf. Sci. 2015, 312, 78-88. [CrossRef]
22. Dimuro, G.P.; Bedregal, B. On the laws of contraposition for residual implications derived from overlap functions. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2-5 August 2015; pp. 1-7.
23. Dimuro, G.P.; Bedregal, B.; Santiago, R.H.N. On (G,N)-implications derived from grouping functions. Inf. Sci. 2014, $279,1-17$. [CrossRef]
24. Qiao, J. On binary relations induced from overlap and grouping functions. Int. J. Approx. Reason. 2019, 106, 155-171. [CrossRef]
25. Qiao, J. On (IO, O)-fuzzy rough sets based on overlap functions. Int. J. Approx. Reason. 2021, 132, 26-48. [CrossRef]
26. Bedregal, B.; Dimuro, G.P.; Bustince, H.; Barrenechea, E. New results on overlap and grouping functions. Inf. Sci. 2013, 249, 148-170. [CrossRef]
27. Dimuro, G.P.; Bedregal, B.; Bustince, H.; Asiáin, M.J.; Mesiar, R. On additive generators of overlap functions. Fuzzy Sets Syst. 2016, 287, 76-96. [CrossRef]
28. Qiao, J.; Hu, B.Q. On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 2017, 323, 19-55. [CrossRef]
29. Qiao, J.; Hu, B.Q. On multiplicative generators of overlap and grouping functions. Fuzzy Sets Syst. 2018, 332, 1-24. [CrossRef]
30. Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Kluwer: Dordrecht, The Netherlands, 2000.
31. Klement, E.P.; Mesiar, R.; Pap, E. A characterization of the ordering of continuous t-norms. Fuzzy Sets Syst. 1997, 86, 189-195. [CrossRef]
32. Baczyński, M.; Jayaram, B. Fuzzy Implications; Springer: Berlin/Heidelberg, Germany, 2008.
33. Dai, S.; Du, L.; Song, H.; Xu, Y. On the Composition of Overlap and Grouping Functions. Axioms 2021, 10, 272. [CrossRef]
