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Abstract: As is well known, complex intuitionistic fuzzy preference relation can describe the fuzzy
characters of things in more detail and comprehensively and is very useful in dealing with decision-
making problems that include periodic or recurring phenomena. However, sometimes, a decision-
maker may provide incomplete judgments in a complex intuitionistic fuzzy preference relation
because of a lack of knowledge, time pressure, and the decision-makers’ limited expertise related
to the problem domain. In such cases, it would be sensible not to force the expert to express “false”
preferences over these objects. Consequently, how to define incomplete complex intuitionistic fuzzy
preference relations and to estimate their missing elements in an incomplete complex intuitionistic
fuzzy preference relation becomes a necessary step in a decision-making process. In this paper,
the concept of incomplete complex intuitionistic fuzzy preference relation is introduced and its
properties are discussed. Meanwhile, the multiplicative consistent incomplete complex intuitionistic
fuzzy preference relations are defined. Secondly, estimating algorithms are developed to estimate
the missing elements in the acceptable incomplete complex intuitionistic fuzzy preference relations.
Finally, an expert weight determination algorithm and the group decision-making algorithms based
on incomplete complex intuitionistic fuzzy preference relations are established. The solving process
of the algorithms is illustrated by an example, the practicability of the algorithms is verified, the
advantages and disadvantages of two group decision-making algorithms are compared and analyzed,
and the simulation verification of incomplete complex intuitionistic fuzzy system is carried out by
MATLAB software. The framework proposed in this paper effectively generalizes and enriches the
previous works and has a good application prospect.

Keywords: complex intuitionistic fuzzy set; incomplete complex intuitionistic fuzzy preference
relation; algorithms; group decision-making

MSC: 03B52; 03E72; 28E10

1. Introduction

Preference relation, as one of the effective decision-making methods, has received great
attention from researchers and has been widely applied in many practical decision-making
fields, such as forecast projects, economic analysis, management information systems,
decision support systems, and so on [1–6]. In the decision-making process, decision-makers
provide their preference values over alternatives by comparing them pairwise and then
constructing a preference relation. With the different types of decision-making problems,
there exist distinct types of preference relations. Xu [7] gave a systematic and exhaustive
survey of the existing preference relations, which mainly include multiplicative prefer-
ence relations, fuzzy preference relations, linguistic preference relations, and intuitionistic
preference relations. These four types of preference relations have been systematically
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investigated over the past decades and applied extensively in a variety of fields, such as
medicine, economy, management, and military affairs [8–22].

Note that the above-cited studies of decision-making issues based on preference
relations can only deal with one-dimensional decision-making problems. However, many
real-world complex problems include two-dimensional data, that is, the properties and
periodicity of the parameters associated with the problem. To characterize such two-
dimensional information using the above theories, the decision-maker will have to consider
two or more fuzzy sets or intuitionistic fuzzy sets, which may increase execution time
and the amount of computation required to solve the problem. Consequently, to depict
some periodic information in the judgment values, in 2002, Ramot et al. [23] proposed
an important concept and called it a complex fuzzy set, where the membership function,
instead of being a real-valued function with the range of [0, 1] is replaced by a complex-
valued function with codomain unit disc in the complex plane. In 2018, Yazdanbakhsh and
Dick [24] made a systematic review of complex fuzzy sets and logic and highlighted several
applications of complex fuzzy sets. Furthermore, to incorporate the hesitation degree and
the periodicity information into the analysis, Alkouri and Salleh proposed the theory of
complex intuitionistic fuzzy sets and discussed several operations of complex intuitionistic
fuzzy sets [25,26]. They also defined a distance between two complex intuitionistic fuzzy
sets and gave its application in a decision-making problem [27]. Subsequently, Rani and
Garg gave a systematic and exhaustive investigation of complex intuitionistic fuzzy set
theories [28–34]. In 2021, Rani and Garg [35] utilized complex intuitionistic fuzzy numbers
to describe complex intuitionistic fuzzy preference relations and developed individual and
group decision-making methods based on them. Meanwhile, some new types of fuzzy sets
and their applications have been investigated by many researchers recently [36,37].

The complex intuitionistic fuzzy preference relation as a newly developed tool can
describe the fuzzy characters of things in more detail and comprehensively and is very
useful in dealing with the vagueness and uncertainty of actual decision-making problems,
which include two-dimensional data. Consider that, in some real-life situations, sometimes,
a decision-maker may provide incomplete judgments in a complex intuitionistic fuzzy
preference relation because of time pressure, lack of knowledge, and the decision maker’s
limited expertise related to the problem domain. In such cases, it would be sensible
not to force the expert to express “false” preferences over these objects, and thus an
incomplete complex intuitionistic fuzzy preference relation could be constructed, in which
some elements are missing. As a result, how to define incomplete complex intuitionistic
fuzzy preference relations and to estimate their missing information becomes a necessary
step in a decision-making process. It is a necessity to develop some effective techniques
for estimating missing information. Meanwhile, consider that in the practical decision-
making problems, since the increasing complexity and uncertainty of the socioeconomic
environment, we notice that group decision-making makes decision-making more scientific
and democratic. Therefore, it is also necessary to consider group decision-making problems
in which there exist multiple incomplete complex intuitionistic fuzzy preference relations.
As is well known, the weights of experts reflect the influence of experts on the decision
results in the group decision-making problems, which directly determine the feasibility
and rationality of the decision results. So in the group decision-making process, how to
scientifically determine the weights of experts is also very important. The framework
proposed in this paper can describe the fuzzy characteristics of things in more detail and
comprehensively. It is very useful in dealing with the vagueness and uncertainty of actual
decision-making problems, which include two-dimensional data, that is, the properties and
periodicity of the parameters associated with the problem. It also effectively generalizes
and enriches the previous works, and has a good application prospect.

In this paper, we will pay attention to these issues. To do that, the remainder of this
paper is organized as follows: In Section 2, some basic concepts related to complex fuzzy
sets, complex intuitionistic fuzzy sets, and preference relations are reviewed. In Section 3,
the concept of incomplete complex intuitionistic fuzzy preference relation is introduced and
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its properties are discussed. Meanwhile, the multiplicative consistent incomplete complex
intuitionistic fuzzy preference relations are defined. Estimating algorithms are developed
to estimate the missing elements in the acceptable incomplete complex intuitionistic fuzzy
preference relations in Section 4. In Section 5, the expert weight determination algorithm is
developed, and then the group decision-making algorithms based on incomplete complex
intuitionistic fuzzy preference relations are established. In Section 6, an example is given
to illuminate the solution process of the group decision-making algorithms, verify their
practicality and compare and analyze their advantages and disadvantages. Meanwhile, the
simulation verification of an incomplete complex intuitionistic fuzzy system is carried out
by MATLAB software in this section. The conclusion is given in Section 7.

2. Preliminaries

Some basic concepts related to complex fuzzy sets, complex intuitionistic fuzzy sets,
and preference relations are reviewed in this section. Table 1 summarizes the mathematical
symbols and their definitions in this paper.

Table 1. Mathematical symbols and definitions.

Mathematical Symbols Definitions

A A complex fuzzy set
Ã A complex intuitionistic fuzzy set
C̃E The set of complex intuitionistic fuzzy numbers
S The score function
H The accuracy function
V The discrete set of alternatives
R The preference relation
B The intuitionistic preference relation

R
The complex intuitionistic fuzzy preference

relation
S A scoring matrix
S̄ A mean scoring matrix

Definition 1 ([23]). A complex fuzzy set A over an universe U, is formed by A = {〈x, µA(x)〉 :
x ∈ U}, where the complex-valued membership function µA(x) has the form

µA(x) = rA(x) · eiωA (x) i =
√
−1,

where rA(x) and ωA(x) are both real-valued, and rA(x) ∈ [0, 1].

Definition 2 ([25]). A complex intuitionistic fuzzy set Ã, defined on an universe of discourse U,
is characterized by membership and non-membership functions µ

Ã
(x) and ν

Ã
(x), respectively, that

assign any element x ∈ U a complex-valued grade of both membership and non-membership in Ã.

By Definition 2, the values of µ
Ã
(x), ν

Ã
(x) and their sum may receive all lying within

the unit circle in the complex plane, and are on the form

µ
Ã
(x) = r

Ã
(x) · ei2π(ω

µÃ
(x))

for membership function in Ã and

ν
Ã
(x) = s

Ã
(x) · ei2π(ω

νÃ
(x))

for non-membership function in Ã, where i =
√
−1, each of r

Ã
(x), s

Ã
(x), ω

µÃ
(x) and ω

νÃ
(x)

are real-valued functions and both belong to the interval [0, 1] such that r
Ã
(x) + s

Ã
(x) ∈

[0, 1] and ω
µÃ
(x) + ω

νÃ
(x) ∈ [0, 1].
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Let CIF ?(U) be the set of all complex intuitionistic fuzzy sets on U. The complex
intuitionistic fuzzy set Ã may be represented as the set of ordered pairs

Ã = {〈x, µ
Ã
(x), ν

Ã
(x)〉 : x ∈ U},

where µ
Ã
(x) : U → {a|a ∈ C, |a| ≤ 1}, ν

Ã
(x) : U → {a′ |a′ ∈ C, |a′ | ≤ 1} and |µ

Ã
(x) +

ν
Ã
(x)| ≤ 1.

If there is a single element x in U, then for notational convenience, we write complex
intuitionistic fuzzy set Ã over U as ((r

Ã
, ω

µÃ
), (s

Ã
, ω

νÃ
)) and call it complex intuitionistic

fuzzy number. The class C̃E denotes the set of all complex intuitionistic fuzzy numbers
in Ã.

Definition 3 ([28]). The score function S and an accuracy functionH for a complex intuitionistic
fuzzy number Ã1 = ((r

Ã1
, ω

µÃ1
), (s

Ã1
, ω

νÃ1
)) are given as

S(Ã1) = r
Ã1
− s

Ã1
+ ω

µÃ1
−ω

νÃ1
(1)

and
H(Ã1) = r

Ã1
+ s

Ã1
+ ω

µÃ1
+ ω

νÃ1
. (2)

It is clear that S(Ã1) ∈ [−2, 2] andH(Ã1) ∈ [0, 2].
Let Ã1 = ((r

Ã1
, ω

µÃ1
), (s

Ã1
, ω

νÃ1
)) and Ã2 = ((r

Ã2
, ω

µÃ2
), (s

Ã2
, ω

νÃ2
)) be two complex

intuitionistic fuzzy numbers. Based on the score function and accuracy function, an ordered relation
between Ã1 and Ã2 states as

(1) If S(Ã1) < S(Ã2), then Ã1 < Ã2;
(2) If S(Ã1) > S(Ã2), then Ã1 > Ã2;
(3) If S(Ã1) = S(Ã2), then

(i) IfH(Ã1) = H(Ã2), then Ã1 = Ã2;
(ii) IfH(Ã1) < H(Ã2), then Ã1 < Ã2;
(iii) IfH(Ã1) > H(Ã2), then Ã1 > Ã2.

As is well known, the score function of a complex intuitionistic fuzzy number is
determined by the difference between the amplitude term of membership degree and
non-membership degree and the difference between the phase term of membership degree
and non-membership degree, which is defined as the sum of these two parts. In both senses,
it expresses the degree of certainty, which corresponds to a positive benefit function in some
sense. However, the accuracy function expresses the degree of negation, which corresponds
to a cost function in some sense. Therefore, this paper applies the score function first to
rank the alternatives. Of course, when the score function values are equal, we will rank
the alternatives by calculating and comparing the accuracy function values to choose the
best solution.

Definition 4 ([28]). Suppose Ã1 = ((r
Ã1

, ω
µÃ1

), (s
Ã1

, ω
νÃ1

)) and Ã2 = ((r
Ã2

, ω
µÃ2

), (s
Ã2

, ω
νÃ2

))

be two complex intuitionistic fuzzy numbers, then
(i) Ã1 ⊆ Ã2 if r

Ã1
≤ r

Ã2
, s

Ã1
≥ s

Ã2
and ω

µÃ1
≤ ω

µÃ2
, ω

νÃ1
≥ ω

νÃ2
;

(ii) Ã1 = Ã2 if and only if Ã1 ⊆ Ã2 and Ã2 ⊆ Ã1;
(iii) ÃC

1 = ((s
Ã1

, ω
νÃ1

), (r
Ã1

, ω
µÃ1

)).

Definition 5 ([28]). Suppose Ã1 = ((r
Ã1

, ω
µÃ1

), (s
Ã1

, ω
νÃ1

)) and Ã2 = ((r
Ã2

, ω
µÃ2

), (s
Ã2

, ω
νÃ2

))

be two complex intuitionistic fuzzy numbers, and λ > 0, then
(i) Ã1 ⊕ Ã2 = ((r

Ã1
+ r

Ã2
− r

Ã1
r

Ã2
, ω

µÃ1
+ ω

µÃ2
−ω

µÃ1
ω

µÃ2
), (s

Ã1
s

Ã2
, ω

νÃ1
ω

νÃ2
));
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(ii) Ã1 ⊗ Ã2 = ((r
Ã1

r
Ã2

, ω
µÃ1

ω
µÃ2

), (s
Ã1

+ s
Ã2
− s

Ã1
s

Ã2
, ω

νÃ1
+ ω

νÃ2
−ω

νÃ1
ω

νÃ2
));

(iii) λÃ1 = ((1− (1− r
Ã1
)λ, 1− (1−ω

µÃ1
)λ), (sλ

Ã1
, ωλ

νÃ1
));

(iv) Ãλ
1 = ((rλ

Ã1
, ωλ

µÃ1
), (1− (1− s

Ã1
)λ, 1− (1−ω

νÃ1
)λ)).

Theorem 1. Let Ã1 = ((r
Ã1

, ω
µÃ1

), (s
Ã1

, ω
νÃ1

)) and Ã2 = ((r
Ã2

, ω
µÃ2

), (s
Ã2

, ω
νÃ2

)) be two

complex intuitionistic fuzzy numbers, then Ã1 ⊕ Ã2, Ã1 ⊗ Ã2, λÃ1 and Ãλ
1 (λ > 0) are also

complex intuitionistic fuzzy numbers and
(i) Ã1 ⊕ Ã2 = Ã2 ⊕ Ã1;
(ii) Ã1 ⊗ Ã2 = Ã2 ⊗ Ã1;
(iii) λ(Ã1 ⊕ Ã2) = λÃ1 ⊕ λÃ2, λ > 0;
(iv) (Ã1 ⊗ Ã2)

λ = Ãλ
1 ⊗ Ãλ

2 , λ > 0;
(v) λ1 Ã1 ⊕ λ2 Ã1 = (λ1 + λ2)Ã1, λ1, λ2 > 0;
(vi) Ãλ1

1 ⊗ Ãλ2
1 = Ãλ1+λ2

1 , λ1, λ2 > 0.

Proof. Obvious from Definition 5.

Definition 6 ([15]). For a discrete set of alternatives V = {V1,V2, · · ·,Vn}, a preference relation
R is characterized by a membership function µR : V ×V → Ω, where Ω is the domain representing
preference degrees.

Definition 7 ([19]). An intuitionistic preference relation B on the discrete set of alternatives V =
{V1,V2, · · ·,Vn} is represented by a matrix B = (bij)n×n ⊆ V ×V with bij = 〈(xi, xj), µ(xi, xj),
ν(xi, xj)〉 for all i, j = 1, 2, · · ·, n. For convenience, let bij = (µij, νij) for all i, j = 1, 2, · · ·, n,
where bij is an intuitionistic fuzzy number, composed by the certainty degree µij to which xi is
preferred to xj and the certainty degree νij to which xi is non-preferred to xj, and πij = 1− µij − νij
is interpreted as the uncertainty degree to which xi is preferred to xj. Furthermore, µij and νij satisfy
the following characteristics

0 ≤ µij + νij ≤ 1, µji = νij, νji = µij, µii = νii = 0.5 for all i, j = 1, 2, · · ·, n.

Definition 8 ([20]). An intuitionistic preference relation B = (bij)n×n with bij = (µij, νij) (i, j =
1, 2, · · ·, n) is multiplicative consistent if for any i ≤ k ≤ j

µij =

{
0, if (µik, µkj) ∈ {(0, 1), (1, 0)},

µikµkj
µikµkj+(1−µik)(1−µkj)

, otherwise, (3)

and

νij =

{
0, if (νik, νkj) ∈ {(0, 1), (1, 0)},

νikνkj
νikνkj+(1−νik)(1−νkj)

, otherwise. (4)

Definition 9 ([19]). Let B be an intuitionistic preference relation, where bij = (µij, νij) for
i, j = 1, 2, · · ·, n. Then B is called an incomplete intuitionistic preference relation, if some of its
elements cannot be provided by the decision-makers, which denoted by the unknown variable “−”,
and the others can be given by the decision-makers, which satisfy

0 ≤ µij + νij ≤ 1, µji = νij, νji = µij, µii = νii = 0.5 for all i, j = 1, 2, · · ·, n.

Definition 10 ([35]). A complex intuitionistic fuzzy preference relation R on the discrete set of
alternatives V = {V1,V2, · · ·,Vn} is represented by a matrix R = (ãij)n×n ⊆ V × V , where
ãij = ((rij, ωµij), (sij, ωνij)) is a complex intuitionistic fuzzy number for all i, j = 1, 2, · · ·, n. Here
the amplitude and phase terms corresponding to membership degrees, that is, rij and ωµij explicit
the degrees to which the alternative Vi is preferred over the alternative Vj. On the other hand, the
amplitude and phase terms corresponding to non-membership degrees, that is, sij and ωνij describe
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the extent of non-preference of the alternative Vi over the alternative Vj. These terms satisfy the
following characteristics

rij, sij, ωµij , ωνij , rij + sij, ωµij + ωνij ∈ [0, 1], rji = sij, sji = rij, ωµji = ωνij , ωνji =
ωµij , rii = sii = ωµii = ωνii = 0.5 for all i, j = 1, 2, · · ·, n.

3. Incomplete Complex Intuitionistic Fuzzy Preference Relations

Consider that, sometimes, a decision maker may provide incomplete judgments in a
complex intuitionistic fuzzy preference relation because of time pressure, lack of knowledge,
and the decision maker’s limited expertise related to the problem domain. In this section,
we will investigate a novel concept of incomplete complex intuitionistic fuzzy preference
relation and discuss its properties. Meanwhile, the concept of multiplicative consistent
incomplete complex intuitionistic fuzzy preference relations are given.

Definition 11. Let R = (ãij)n×n be a complex intuitionistic fuzzy preference relation, where
ãij = ((rij, ωµij), (sij, ωνij)) for all i, j = 1, 2, · · ·, n. Then R is called an incomplete complex
intuitionistic fuzzy preference relation if some of its elements cannot be given by the decision-makers,
which we denote by “−”, and the others can be provided by the decision maker, which satisfy the
following conditions

rij, sij, ωµij , ωνij , rij + sij, ωµij + ωνij ∈ [0, 1], rji = sij, sji = rij, ωµji = ωνij , ωνji =
ωµij , rii = sii = ωµii = ωνii = 0.5 for all i, j = 1, 2, · · ·, n.

Property 1. Let R = (ãij)n×n be an incomplete complex intuitionistic fuzzy preference relation,
where ãij = ((rij, ωµij), (sij, ωνij)) for all i, j = 1, 2, · · ·, n and Ω be the set of all the known
elements, then

(i) Triangle condition: If ãij ⊆ ãik ⊕ ãkj for all ãik, ãkj, ãij ∈ Ω, then we say that an incomplete
complex intuitionistic fuzzy preference relation R satisfies triangle condition. This condition can be
explained geometrically as follows: Let the alternatives Vi, Vk and Vj represent the triangle vertices
and let the lengths of triangle sides be ãik, ãkj and ãij. Then, the triangle condition states that the
sum of lengths of vertices Vi,Vk and Vk,Vj should be greater than or equal to the lengths of vertices
Vi,Vj.

(ii) Weak transitivity condition: If ((0.5, 0.5), (0.5, 0.5)) ⊆ ãik, ((0.5, 0.5), (0.5, 0.5)) ⊆ ãkj
then ((0.5, 0.5), (0.5, 0.5)) ⊆ ãij for all ãik, ãkj, ãij ∈ Ω, then we say that an incomplete complex
intuitionistic fuzzy preference relation R satisfies weak transitivity condition. This property states
that if the alternative Vi is preferred to Vk with preference value ãik and the alternative Vk is preferred
to Vj with preference value ãkj, then the alternative Vi is preferred to Vj with preference value ãij.

(iii) Max-min transitivity condition: If min{ãik, ãkj} ⊆ ãij for all ãik, ãkj, ãij ∈ Ω, then
we say that an incomplete complex intuitionistic fuzzy preference relation R satisfies max-min
transitivity condition. This property can be interpreted as follows: The complex intuitionistic fuzzy
value giving the preference value of alternative Vi over Vj should be greater than or equal to the
minimum complex intuitionistic fuzzy value acquired by comparing alternatives Vi and Vj with an
intermediate one.

(iv) Max-max transitivity condition: If max{ãik, ãkj} ⊆ ãij for all ãik, ãkj, ãij ∈ Ω, then
we say that an incomplete complex intuitionistic fuzzy preference relation R satisfies max-max
transitivity condition. This property can be interpreted as follows: The complex intuitionistic fuzzy
value giving the preference value of alternative Vi over Vj should be greater than or equal to the
maximum complex intuitionistic fuzzy number value acquired by comparing alternatives Vi and Vj
with an intermediate one.

(v) Restricted Max-min transitivity condition: If ((0.5, 0.5), (0.5, 0.5)) ⊆ ãik, ((0.5, 0.5),
(0.5, 0.5)) ⊆ ãkj ⇒ min{ãik, ãkj} ⊆ ãij for all ãik, ãkj, ãij ∈ Ω, then we say that an incomplete
complex intuitionistic fuzzy preference relation R satisfies restricted max-min transitivity condition.
This property can be interpreted in the following way: When the alternative Vi is preferred to
Vk with a complex intuitionistic fuzzy value ãik, and the alternative Vk is preferred to Vj with a
complex intuitionistic fuzzy value ãkj, then Vi should be preferred to Vj with at least a complex
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intuitionistic fuzzy value ãij equal to the minimum of the above values. With equality only when
there is indifference between at least two of the three alternatives.

(vi) Restricted Max-max transitivity condition: If ((0.5, 0.5), (0.5, 0.5)) ⊆ ãik, ((0.5, 0.5),
(0.5, 0.5)) ⊆ ãkj ⇒ max{ãik, ãkj} ⊆ ãij for all ãik, ãkj, ãij ∈ Ω, then we say that an incomplete
complex intuitionistic fuzzy preference relation R satisfies restricted max-max transitivity condition.
This property can be interpreted in the following way: When the alternative Vi is preferred to Vk
with a complex intuitionistic fuzzy value ãik, and the alternative Vk are preferred to Vj with a
complex intuitionistic fuzzy value ãkj, then Vi should be preferred to Vj with at least a complex
intuitionistic fuzzy value ãij equal to the maximum of the above values. With equality only when
there is indifference between at least two of the three alternatives.

Definition 12. Let R = (ãij)n×n be an incomplete complex intuitionistic fuzzy preference relation,
then R is called a consistent incomplete complex intuitionistic fuzzy preference relation if it satisfies
the multiplicative transitivity

ãij = ãik ⊗ ãkj for all ãij, ãkj, ãik ∈ Ω, (5)

where Ω is the set of all the known elements.

Definition 13. Let R = (ãij)n×n be an incomplete complex intuitionistic fuzzy preference relation,
if (i, j) ∩ (k, l) 6= ∅. Then the element ãij and ãkl are called adjoining. For the unknown element
ãij, if there exist two adjoining known elements ãik and ãkj, then ãij is called available. Indeed, the
element ãij can be obtained indirectly by using Equation (5), which means that the estimated element
ãij should be taken according to the known elements ãik and ãkj.

Definition 14. Let R = (ãij)n×n be an incomplete complex intuitionistic fuzzy preference relation
if each unknown element can be derived from its adjoining known elements, then R is called
acceptable; otherwise, R is called unacceptable.

Obviously, for an incomplete complex intuitionistic fuzzy preference relation
R = (ãij)n×n, if R is acceptable, then there exists at least one known element (except diago-
nal elements) in each line or each column of R,, i.e., there exists at least (n− 1) judgments
provided by the decision maker (that is to say, each one of the alternatives is compared at
least once).

Definition 15. A complex intuitionistic fuzzy preference relation R = (ãij)n×n with ãij =
((rij, ωµij), (sij, ωνij)) (i, j = 1, 2, · · ·, n) is multiplicative consistent if for any i ≤ k ≤ j

rij =

{
0, if (rik, rkj) ∈ {(0, 1), (1, 0)},

rikrkj
rikrkj+(1−rik)(1−rkj)

, otherwise, (6)

sij =

{
0, if (sik, skj) ∈ {(0, 1), (1, 0)},

sikskj
sikskj+(1−sik)(1−skj)

, otherwise, (7)

ωµij =

 0, if (ωµik , ωµkj) ∈ {(0, 1), (1, 0)},
ωµik ωµkj

ωµik ωµkj+(1−ωµik )(1−ωµkj )
, otherwise, (8)

and

ωνij =

 0, if (ωνik , ωνkj) ∈ {(0, 1), (1, 0)},
ωνik ωνkj

ωνik ωνkj+(1−ωνik )(1−ωνkj )
, otherwise. (9)
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Remark 1. Since the function f (x) = x
x+b is a monotone increasing function with x, b > 0, then

in Equations (6)–(9), it is clear to see that rij, sij, ωµij , ωνij ∈ [0, 1] and

rij + sij

=
rikrkj

rikrkj + (1− rik)(1− rkj)
+

sikskj

sikskj + (1− sik)(1− skj)

≤
rikrkj

rikrkj + (1− rik)(1− rkj)
+

(1− rik)(1− rkj)

(1− rik)(1− rkj) + (1− sik)(1− skj)

≤
rikrkj

rikrkj + (1− rik)(1− rkj)
+

(1− rik)(1− rkj)

(1− rik)(1− rkj) + rikrkj

=
rikrkj + (1− rik)(1− rkj)

rikrkj + (1− rik)(1− rkj)
= 1,

ωµij + ωνij

=
ωµik ωµkj

ωµik ωµkj + (1−ωµik )(1−ωµkj)
+

ωνik ωνkj

ωνik ωνkj + (1−ωνik )(1−ωνkj)

≤
ωµik ωµkj

ωµik ωµkj + (1−ωµik )(1−ωµkj)
+

(1−ωµik )(1−ωµkj)

(1−ωµik )(1−ωµkj)
+ (1−ωνik )(1−ωνkj)

≤
ωµik ωµkj

ωµik ωµkj + (1−ωµik )(1−ωµkj)
+

(1−ωµik )(1−ωµkj)

(1−ωµik )(1−ωµkj)
+ ωµik ωµkj

=
ωµik ωµkj + (1−ωµik )(1−ωµkj)

ωµik ωµkj + (1−ωµik )(1−ωµkj)
= 1,

that is rij + sij ≤ 1 and ωµij + ωνij ≤ 1. In particular, we have

rij + sij

{
= 1, if rik + sik = 1 and rkj + skj = 1,
< 1, otherwise,

and

ωµij + ωνij

{
= 1, if ωµik + ωνik = 1 and ωµkj + ωνkj = 1,
< 1, otherwise.

Theorem 2. Any complex intuitionistic preference relation R = (ãij)2×2 is multiplicative consistent.

Proof. Since

r11r12

r11r12 + (1− r11)(1− r12)
=

0.5r12

0.5r12 + 0.5(1− r12)
= r12,

s11s12

r11s12 + (1− s11)(1− s12)
=

0.5s12

0.5s12 + 0.5(1− s12)
= s12,

ωµ11 ωµ12

ωµ11 ωµ12 + (1−ωµ11)(1−ωµ12)
=

0.5ωµ12

0.5ωµ12 + 0.5)(1−ωµ12)
= ωµ12 ,

and
ων11 ων12

ων11 ων12 + (1−ων11)(1−ων12)
=

0.5ων12

0.5ων12 + 0.5)(1−ων12)
= ων12 ,

which satisfy Equations (6)–(9). In addition, in the case where r12 = 0, ωµ12 = 0 or
s12 = 0, ων12 = 0, Equations (6)–(9) also hold.
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Example 1. Let R1, R2 and R3 be three complex intuitionistic fuzzy preference relations, where

R1 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5))
((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5))
((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.5, 0.5))



R2 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.2), (0.5, 0.5)) ((0.5, 0.2), (0.2, 0.4))
((0.5, 0.5), (0.4, 0.2)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.5), (0.2, 0.4))
((0.2, 0.4), (0.5, 0.2)) ((0.2, 0.4), (0.6, 0.5)) ((0.5, 0.5), (0.5, 0.5))



R3 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.4), (0.3, 0.5)) ((0.7, 0.5), (0.2, 0.4))
((0.3, 0.5), (0.6, 0.4)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.4), (0.4, 0.3))
((0.2, 0.4), (0.7, 0.5)) ((0.4, 0.3), (0.5, 0.4)) ((0.5, 0.5), (0.5, 0.5))


It is clear to see from Equations (6)–(9) that both R1 and R2 are multiplicative consistent,

complex intuitionistic preference relations. However, in R3, we have

r13 =
r12r23

r12r23 + (1− r12)(1− r23)
=

0.6× 0.5
0.6× 0.5 + (1− 0.6)(1− 0.5)

= 0.6,

s13 =
s12s23

s12s23 + (1− s12)(1− s23)
=

0.3× 0.4
0.3× 0.4 + (1− 0.3)(1− 0.4)

= 0.2222,

ωµ13 =
ωµ12 ωµ23

ωµ12 ωµ23 + (1−ωµ12)(1−ωµ23)
=

0.4× 0.4
0.4× 0.4 + (1− 0.4)(1− 0.4)

= 0.3077,

and

ων13 =
ων12 ων23

ων12 ων23 + (1−ων12)(1−ων23)
=

0.5× 0.3
0.5× 0.3 + (1− 0.5)(1− 0.3)

= 0.3,

obviously, ((0.7, 0.5), (0.2, 0.4)) 6= ((0.6, 0.3077), (0.2222, 0.3)). Hence, R3 is not a multiplicative
consistent, complex intuitionistic preference relation.

Definition 16. An incomplete complex intuitionistic fuzzy preference relation R = (ãij)n×n
with ãij = ((rij, ωµij), (sij, ωνij)) (i, j = 1, 2, · · ·, n) is multiplicative consistent if for all ãik =

((rik, ωµik ), (sik, ωνik )), ãkj = ((rkj, ωµkj), (skj, ωνkj)) ∈ Ω and i ≤ k ≤ j

rij =

{
0, if (rik, rkj) ∈ {(0, 1), (1, 0)},

rikrkj
rikrkj+(1−rik)(1−rkj)

, otherwise, (10)

sij =

{
0, if (sik, skj) ∈ {(0, 1), (1, 0)},

sikskj
sikskj+(1−sik)(1−skj)

, otherwise, (11)

ωµij =

 0, if (ωµik , ωµkj) ∈ {(0, 1), (1, 0)},
ωµik ωµkj

ωµik ωµkj+(1−ωµik )(1−ωµkj )
, otherwise, (12)

and

ωνij =

 0 if (ωνik , ωνkj) ∈ {(0, 1), (1, 0)}
ωνik ωνkj

ωνik ωνkj+(1−ωνik )(1−ωνkj )
otherwise. (13)

where Ω is the set of all the known elements of R.
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Example 2. Let R1 and R2 be two incomplete complex intuitionistic fuzzy preference relations,
where

R1 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.5), (0.5, 0.5)) ((0.5, 0.5), (0.4, 0.5)) −
((0.5, 0.5), (0.4, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.5), (0.4, 0.5)) −
((0.4, 0.5), (0.5, 0.5)) ((0.4, 0.5), (0.6, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.5), (0.6, 0.5))

− − ((0.6, 0.5), (0.4, 0.5)) ((0.5, 0.5), (0.5, 0.5))



R2 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.5), (0.2, 0.5)) − ((0.6, 0.5), (0.3, 0.5))
((0.2, 0.5), (0.4, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.3, 0.5), (0.1, 0.5)) ((0.2, 0.4), (0.8, 0.5))

− ((0.1, 0.5), (0.3, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.5), (0.4, 0.5))
((0.3, 0.5), (0.6, 0.5)) ((0.8, 0.5), (0.2, 0.4)) ((0.4, 0.5), (0.6, 0.5)) ((0.5, 0.5), (0.5, 0.5))


and “−” denotes the unknown element.

It is clear to see from Equations (10)–(13) that R1 is a multiplicative consistent incomplete
complex intuitionistic preference relation. However, in R2, we have

r24 =
r23r34

r23r34 + (1− r23)(1− r34)
=

0.3× 0.6
0.3× 0.6 + (1− 0.3)(1− 0.6)

= 0.3913,

s24 =
s23s34

s23s34 + (1− s23)(1− s34)
=

0.1× 0.4
0.1× 0.4 + (1− 0.1)(1− 0.4)

= 0.0690,

ωµ24 =
ωµ23 ωµ34

ωµ23 ωµ34 + (1−ωµ23)(1−ωµ34)
=

0.5× 0.5
0.5× 0.5 + (1− 0.5)(1− 0.5)

= 0.5,

and

ων24 =
ων23 ων34

ων23 ων34 + (1−ων23)(1−ων34)
=

0.5× 0.5
0.5× 0.5 + (1− 0.5)(1− 0.5)

= 0.5,

obviously, ((0.2, 0.4), (0.8, 0.5)) 6= ((0.3913, 0.5), (0.0690, 0.5)). Hence, R2 is not a multiplicative
consistent incomplete complex intuitionistic preference relation.

4. Estimation Algorithms for the Acceptable Incomplete Complex Intuitionistic Fuzzy
Preference Relations
4.1. The Estimation Algorithm with the Least Judgments

In the following, we shall develop a straightforward algorithm (i.e., Algorithm 1) for
estimating the missing elements of an acceptable incomplete complex intuitionistic fuzzy
preference relation with the least judgments based on Definition 16 (i.e., there are only n− 1
known off-diagonal elements).

Algorithm 1: The estimation algorithm with the least judgments.
Step 1: For a decision-making problem, let V = {V1,V2, · · ·,Vn} be a discrete set of

alternatives. A decision-maker only compares n− 1 pairs of objects,
(Vi,Vj)(i = 1, 2, · · ·, n− 1, j = i + 1), on the set V and provides his/her
judgements, each of which is expressed as an complex intuitionistic fuzzy
number, all the judgements are contained in an incomplete complex intuitionistic
fuzzy preference relation R = (ãij)n×n.

Step 2: Utilize Definition 16 to estimate all the missing elements in R using the
known elements, and thus get a multiplicative consistent, complete complex
intuitionistic fuzzy preference relation R̄ of R.

Step 3: End.

Example 3. Consider a decision-making problem with a discrete alternatives set V = {V1,V2,V3,V4}.
An expert compares three pairs of objects (V1,V2), (V2,V3), (V3,V4) and provides the preference
values over these pairs of objects respectively as follows

ã12 = ((0.4, 0.2), (0.2, 0.4)), ã23 = ((0.6, 0.4), (0.3, 0.5)), ã34 = ((0.8, 0.5), (0.1, 0.5)).
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Thus, by Definition 11, we can construct an incomplete complex intuitionistic fuzzy preference
relation as follows

R =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.2), (0.2, 0.4)) − −
((0.2, 0.4), (0.4, 0.2)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.4), (0.3, 0.5)) −

− ((0.3, 0.5), (0.6, 0.4)) ((0.5, 0.5), (0.5, 0.5)) ((0.8, 0.5), (0.1, 0.5))
− − ((0.1, 0.5), (0.8, 0.5)) ((0.5, 0.5), (0.5, 0.5))


where “−” denotes the unknown element.

Based on the known elements in R, we can utilize Equations (10)–(13) to estimate all the
missing elements as follows

r13 =
r12r23

r12r23 + (1− r12)(1− r23)
=

0.4× 0.6
0.4× 0.6 + (1− 0.4)(1− 0.6)

= 0.5,

s13 =
s12s23

s12s23 + (1− s12)(1− s23)
=

0.2× 0.3
0.2× 0.3 + (1− 0.2)(1− 0.3)

= 0.0968,

ωµ13 =
ωµ12 ωµ23

ωµ12 ωµ23 + (1−ωµ12)(1−ωµ23)
=

0.2× 0.4
0.2× 0.4 + (1− 0.2)(1− 0.4)

= 0.1429,

and

ων13 =
ων12 ων23

ων12 ων23 + (1−ων12)(1−ων23)
=

0.4× 0.5
0.4× 0.5 + (1− 0.4)(1− 0.5)

= 0.4.

That is,

ã13 = ((r13, ωµ13), (s13, ων13)) = ((0.5, 0.1429), (0.0968, 0.4)),

and
ã31 = ((r31, ωµ31), (s31, ων31)) = ((0.0968, 0.4), (0.5, 0.1429)).

In a similar way, we can obtain the other missing elements as follows

ã14 = ((0.8, 0.1429), (0.0118, 0.4)), ã41 = ((0.0118, 0.4), (0.8, 0.1429)),

and
ã24 = ((0.8571, 0.5), (0.0455, 0.5)), ã42 = ((0.0455, 0.5), (0.8571, 0.5)).

Based on all these elements, we can construct a multiplicative consistent, complete complex
intuitionistic fuzzy preference relation as follows

R̄ =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.5), (0.2, 0.5)) ((0.5, 0.1429), (0.0968, 0.4))) ((0.8, 0.1429), (0.0118, 0.4))
((0.2, 0.5), (0.4, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.5), (0.3, 0.5)) ((0.8571, 0.5), (0.0455, 0.5))

((0.0968, 0.4), (0.5, 0.1429)) ((0.3, 0.5), (0.6, 0.5)) ((0.5, 0.5), (0.5, 0.5)) ((0.8, 0.5), (0.1, 0.5))
((0.0118, 0.4), (0.8, 0.1429)) ((0.0455, 0.5), (0.8571, 0.5)) ((0.1, 0.5), (0.8, 0.5)) ((0.5, 0.5), (0.5, 0.5))


4.2. The Estimation Algorithm with More Known Judgments

Now we consider an acceptable incomplete complex intuitionistic fuzzy preference
relation R = (ãij)n×n in a more general form, that is, there may exist other known elements
in R. In this case, for all ãik = ((rik, ωµik ), (sik, ωνik )), ãkj = ((rkj, ωµkj), (skj, ωνkj)) ∈ Ω and
i, k, j = 1, 2, · · ·, n, where Ω is the set of all the known elements in R, each missing element
ãij in R = (ãij)n×n can be estimated as ¯̃aij = ((r̄ij, ω̄µij), (s̄ij, ω̄νij)).

Let R = (ãij)n×n be an acceptable incomplete complex intuitionistic fuzzy preference
relation, then, based on Equation (5), each unknown element ãij can be estimated indirectly
by using

ãij = (
⊗

k∈Zij

(ãik ⊗ ãkj))
1

zij (14)
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where Zij = {k|ãik, ãkj ∈ Ω}, zij is the number of the elements in Zij. Then we construct a
complete complex intuitionistic fuzzy preference relation R̄ = ( ¯̃aij)n×n, where

ãij =

{
ãij, if ãij ∈ Ω,
ãij, if ãij 6∈ Ω.

(15)

Clearly, an unknown element ãij can be estimated if there exists at least one k so that
the element ãik and ãkj are known. The complete complex intuitionistic fuzzy preference
relation R̄ contains both the direct complex intuitionistic fuzzy preference information
given by the decision maker and the indirect complex intuitionistic preference information
derived from the known complex intuitionistic preference information. The estimation
algorithm with more known judgments is shown in Algorithm 2.

Algorithm 2: The estimation algorithm with more known judgments (I).
Step 1: For a decision-making problem, let V = {V1,V2, · · ·,Vn} be a discrete set of

alternatives. A decision-maker provides their complex intuitionistic fuzzy
preference number for each pair of alternatives and constructs an acceptable
incomplete complex intuitionistic fuzzy preference relation R = (ãij)n×n.

Step 2: Utilize Equation (15) to construct the complete complex intuitionistic fuzzy
preference relation R̄ = ( ¯̃aij)n×n of R = (ãij)n×n.

Step 3: End.

Example 4. Consider a decision making problem with a discrete alternatives set V = {V1,V2,V3},
an expert provides his/her complex intuitionistic fuzzy preference value for each pair of alterna-
tives, and constructs an acceptable incomplete complex intuitionistic fuzzy preference relation
R = (ãij)3×3 as follows

R =

 ((0.5, 0.5), (0.5, 0.5)) − ((0.7, 0.5), (0.2, 0.4))
− ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.4), (0.4, 0.3))

((0.2, 0.4), (0.7, 0.5)) ((0.4, 0.3), (0.5, 0.4)) ((0.5, 0.5), (0.5, 0.5))


where “−” denotes the unknown element.

Utilize Equation (15) to construct the complete complex intuitionistic fuzzy preference relation
R̄ = ( ¯̃aij)3×3 of R = (ãij)3×3

R̄ =

 ((0.5, 0.5), (0.5, 0.5)) ((0.28, 0.15), (0.69, 0.64)) ((0.7, 0.5), (0.2, 0.4))
((0.69, 0.64), (0.28, 0.15)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.4), (0.4, 0.3))
((0.2, 0.4), (0.7, 0.5)) ((0.4, 0.3), (0.5, 0.4)) ((0.5, 0.5), (0.5, 0.5))


Next, we still consider an acceptable incomplete complex intuitionistic fuzzy prefer-

ence relation R = (ãij)n×n in a more general form as above. Then we shall provide another
algorithm (i.e., Algorithm 3) to estimate the missing elements ãij in R = (ãij)n×n. For all
ãik = ((rik, ωµik ), (sik, ωνik )), ãkj = ((rkj, ωµkj), (skj, ωνkj)) ∈ Ω and i ≤ k ≤ j, where Ω is the
set of all the known elements in R, then each missing element ãij in R = (ãij)n×n can be
estimated as ¯̃a

′
ij = ((r̄

′
ij, ω̄

′
µij
), (s̄

′
ij, ω̄

′
νij
)), where

r̄
′
ij =

1
zij

∑
k∈Zij

rikrkj

rikrkj + (1− rik)(1− rkj)
,

s̄
′
ij =

1
zij

∑
k∈Zij

sikskj

sikskj + (1− sik)(1− skj)
,

ω̄
′
µij

=
1
zij

∑
k∈Zij

ωµik ωµkj

ωµik ωµkj + (1−ωµik )(1−ωµkj)
,
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and
ω̄
′
νij

=
1
zij

∑
k∈Zij

ωνik ωνkj

ωνik ωνkj + (1−ωνik )(1−ωνkj)
,

where Zij = {k|ãik, ãkj ∈ Ω}, zij is the number of the elements in Zij. Then we get a
complete complex intuitionistic fuzzy preference relation R̄

′
= ( ¯̃a

′
ij)n×n, where

ã
′

ij =

{
ãij, if ãij ∈ Ω,

ã
′

ij, if ãij 6∈ Ω.
(16)

Algorithm 3: The estimation algorithm with more known judgments (II).
Step 1: It is similar to Step 1 of Algorithm 2.
Step 2: Utilize Equation (16) to construct the complete complex intuitionistic fuzzy
preference relation R̄

′
= ( ¯̃a

′
ij)n×n of R = (ãij)n×n.

Step 3: End.

Example 5. Consider an incomplete complex intuitionistic fuzzy preference relation

R =



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.4, 0.3),
(0.2, 0.4)

) (
(0.6, 0.5),
(0.3, 0.1)

)
−

(
(0.6, 0.3),
(0.1, 0.5)

)
(

(0.2, 0.4),
(0.4, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.5),
(0.1, 0.5)

) (
(0.2, 0.3),
(0.8, 0.1)

)
−(

(0.3, 0.1),
(0.6, 0.5)

) (
(0.1, 0.5),
(0.3, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.4, 0.7)

) (
(0.7, 0.2),
(0.2, 0.5)

)
−

(
(0.8, 0.1),
(0.2, 0.3)

) (
(0.4, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.4),
(0.2, 0.5)

)
(

(0.1, 0.5),
(0.6, 0.3)

)
−

(
(0.2, 0.5),
(0.7, 0.2)

) (
(0.2, 0.5),
(0.6, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)


where “−” denotes the unknown element.

Based on the known elements in R, we can utilize Equation (16) to estimate all the missing
elements and construct a complete complex intuitionistic fuzzy preference relation as follows

R̄
′
=



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.4, 0.3),
(0.2, 0.4)

) (
(0.6, 0.5),
(0.3, 0.1)

) (
(0.4176, 0.2276),
(0.3611, 0.1374)

) (
(0.6, 0.3),
(0.1, 0.5)

)
(

(0.2, 0.4),
(0.4, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.5),
(0.1, 0.5)

) (
(0.2, 0.3),
(0.8, 0.1)

) (
(0.3864, 0.2111),
(0.2635, 0.3)

)
(

(0.3, 0.1),
(0.6, 0.5)

) (
(0.1, 0.5),
(0.3, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.4, 0.7)

) (
(0.7, 0.2),
(0.2, 0.5)

)
(

(0.3611, 0.1374),
(0.4176, 0.2276)

) (
(0.8, 0.1),
(0.2, 0.3)

) (
(0.4, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.4),
(0.2, 0.5)

)
(

(0.1, 0.5),
(0.6, 0.3)

) (
(0.2635, 0.3),

(0.3864, 0.2111)

) (
(0.2, 0.5),
(0.7, 0.2)

) (
(0.2, 0.5),
(0.6, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)


5. Group Decision-Making Algorithms Based on Incomplete Complex Intuitionistic
Fuzzy Preference Relations

Consider that in the practical decision-making problems, since the increasing com-
plexity and uncertainty of the socioeconomic environment, we notice that group decision-
making makes decision-making more scientific and democratic. Therefore, it is necessary
to consider group decision-making problems in which there exist multiple incomplete
complex intuitionistic fuzzy preference relations. As is well known, the weight of ex-
perts reflects the influence of experts on the decision results in the group decision-making
problems, which directly determines the feasibility and rationality of the decision results.

Based on the analysis above, in this section, we will first develop an expert weight
determination algorithm for the group decision-making problems, and then develop group
decision-making algorithms based on incomplete complex intuitionistic fuzzy preference
relations.

First of all, the expert weight determination algorithm is developed and shown in
Algorithm 4.
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Algorithm 4: The expert weight determination algorithm.

Step 1: Utilize Equation (1) to calculate scoring matrix S (k) = (S(ã(k)ij ))n×n of

R(k) = (ã(k)ij )n×n(k = 1, 2, · · ·, m).
Step 2: Utilize the mean of the score function values

bij =
1
m ∑m

k=1 S(ã(k)ij )(i, j = 1, 2, · · ·, n) to construct the mean scoring matrix

S̄ = (bij)n×n of the scoring matrix S (k) = (S(ã(k)ij ))n×n.
Step 3: Utilize the mean deviation analysis formula
Ak =

1
n2 ∑n

i=1 ∑n
j=1 | S(ã(k)ij ) − bij | to calculate the weight of the decision-maker,

where wk =
1−Ak

∑m
k=1(1−Ak)

, k = 1, 2, · · ·, m, i, j = 1, 2, · · ·, n, wk ≥ 0 and ∑m
k=1 wk = 1.

Consider a group decision-making problem, let V = {V1,V2, · · ·,Vn} be a discrete
set of alternatives and D = {d1, d2, · · ·, dm} be the set of decision-makers. The decision-
maker dk ∈ D provides his/her complex intuitionistic fuzzy preference value for each pair
of alternatives and constructs a complex intuitionistic fuzzy preference relation R(k) =

(ã(k)ij )n×n, where i, j = 1, 2, · · ·, n, k = 1, 2, · · ·, m. Note that if R(k) is an acceptable complete

complex intuitionistic fuzzy preference relation, then go to the algorithm. However, if R(k)

is an acceptable incomplete complex intuitionistic fuzzy preference relation, then we can
utilize Algorithms 1–3 proposed above to construct a new acceptable complete complex
intuitionistic fuzzy preference relation.

Example 6 is used to illustrate the expert weight determination algorithm.

Example 6. Suppose that a committee of three experts D = {d1, d2, d3} is set up to assess the
alternatives V = {V1,V2,V3}. Each expert dk conduct pairwise comparisons among alternatives
and gave their judgement values in an acceptable complete complex intuitionistic fuzzy preference
relation R(k) = (ã(k)ij )3×3, where ã(k)ij = ((r(k)ij , ω

(k)
µij ), (s

(k)
ij , ω

(k)
νij )) expresses the preference degree

of alternative Vi over Vj for each i, j = 1, 2, 3 and k = 1, 2, 3.

R1 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.3), (0.5, 0.5)) ((0.8, 0.6), (0.1, 0.3))
((0.5, 0.5), (0.4, 0.3)) ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.3), (0.5, 0.6))
((0.1, 0.3), (0.8, 0.6)) ((0.5, 0.6), (0.4, 0.3)) ((0.5, 0.5), (0.5, 0.5))



R2 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.4, 0.2), (0.5, 0.5)) ((0.5, 0.2), (0.2, 0.4))
((0.5, 0.5), (0.4, 0.2)) ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.5), (0.2, 0.4))
((0.2, 0.4), (0.5, 0.2)) ((0.2, 0.4), (0.6, 0.5)) ((0.5, 0.5), (0.5, 0.5))



R3 =

 ((0.5, 0.5), (0.5, 0.5)) ((0.6, 0.4), (0.3, 0.5)) ((0.7, 0.5), (0.2, 0.4))
((0.3, 0.5), (0.6, 0.4)) ((0.5, 0.5), (0.5, 0.5)) ((0.5, 0.4), (0.4, 0.3))
((0.2, 0.4), (0.7, 0.5)) ((0.4, 0.3), (0.5, 0.4)) ((0.5, 0.5), (0.5, 0.5))


Step 1: Utilize Equation (1) to calculate scoring matrix S (k) = (S(ã(k)ij ))3×3 of R(k) =

(ã(k)ij )3×3(k = 1, 2, 3) as follows

S (1) =

 0 −0.3 1
0.3 0 −0.4
−1 0.4 0



S (2) =

 0 −0.4 0.1
0.4 0 0.5
−0.1 −0.5 0
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S (3) =

 0 0.2 0.6
−0.2 0 0.2
−0.6 −0.2 0


Step 2: Utilize the mean of the score function values bij =

1
3 ∑3

k=1 S(ã(k)ij )(i, j = 1, 2, 3) to

construct the mean scoring matrix S̄ = (bij)3×3 of the scoring matrix S (k) = (S(ã(k)ij ))3×3 as
follows

S̄ =

 0 −0.17 0.57
0.17 0 0.1
−0.57 −0.1 0


Step 3: Utilize the mean deviation analysis formula Ak =

1
32 ∑3

i=1 ∑3
j=1 | S(ã(k)ij )− bij | to

calculate the weight of the decision-maker as follows

w = (0.3986, 0.4134, 0.1880)T ,

where wk =
1−Ak

∑3
k=1(1−Ak)

, k = 1, 2, 3, i, j = 1, 2, 3, wk ≥ 0 and ∑3
k=1 wk = 1.

Finally, we will develop two group decision-making algorithms based on incomplete
complex intuitionistic fuzzy preference relations, which are shown in Algorithms 5 and 6.

Algorithm 5: Group decision-making algorithms based on incomplete complex
intuitionistic fuzzy preference relations (I).

Step 1: Utilize Algorithm 2 to construct the complete complex intuitionistic fuzzy
preference relation R̄(k) = ( ¯̃a(k)ij )n×n of R(k) = (ã(k)ij )n×n(k = 1, 2, · · ·, m).

Step 2: Utilize the complex intuitionistic fuzzy arithmetic averaging operator
b̃(k)i = 1

n
⊕n

j=1
¯̃a(k)ij , i = 1, 2, · · ·, n to aggregate all ¯̃a(k)ij (j = 1, 2, · · ·, n)

corresponding to the alternative Vi, and then get the averaged complex
intuitionistic fuzzy value b̃(k)i of the alternative Vi over all the other alternatives.

Step 3: Calculate the weight vector w = (w1, w2, · · ·, wm)T of decision-makers
using Algorithm 4.

Step 4: Utilize the complex intuitionistic fuzzy weighted arithmetic averaging
operator b̃i =

⊕m
k=1 wk b̃(k)i (i = 1, 2, · · ·, n) to aggregate all b̃(k)i (k = 1, 2, · · ·, m)

corresponding to m decision-makers into a collective complex intuitionistic fuzzy
value b̃i of the alternative Vi over all the other alternatives.

Step 5: Rank all the b̃i(i = 1, 2, · · ·, n) by means of the score Function (1) and the
accuracy Function (2), and then rank all the alternatives Vi(i = 1, 2, · · ·, n) and
select the best one in accordance with the values of b̃i.

Consider a group decision-making problem, let V = {V1,V2, · · ·,Vn} be a discrete set
of alternatives and D = {d1, d2, · · ·, dm} be the set of decision-makers. The decision-maker
dk ∈ D provides his/her complex intuitionistic fuzzy preference value for each pair of
alternatives, and constructs an incomplete complex intuitionistic fuzzy preference relation
R(k) = (ã(k)ij )n×n, where ã(k)ij = ((r(k)ij , ω

(k)
µij ), (s

(k)
ij , ω

(k)
νij )), r(k)ij , s(k)ij , ω

(k)
µij , ω

(k)
νij , r(k)ij + s(k)ij , ω

(k)
µij

+ ω
(k)
νij ∈ [0, 1], r(k)ji = s(k)ij , s(k)ji = r(k)ij , ω

(k)
µji = ω

(k)
νij , ω

(k)
νji = ω

(k)
µij , r(k)ii = s(k)ii = ω

(k)
µii =

ω
(k)
νii = 0.5 for all i, j = 1, 2, · · ·, n and ã(k)ij ∈ Ω. If R(k) is an acceptable incomplete complex

intuitionistic fuzzy preference relation, then go to the algorithm. However, if R(k) is
an unacceptable incomplete complex intuitionistic fuzzy preference relation (this kind of
situation is not very common in real problems), then the decision-maker needs to construct a
new incomplete complex intuitionistic fuzzy preference relation, and follow this procedure
until it is acceptable.
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Algorithm 6: Group decision-making algorithms based on incomplete complex
intuitionistic fuzzy preference relations (II).

Step 1: Utilize Algorithm 3 to construct the complete complex intuitionistic fuzzy

preference relation R̄
′(k) = ( ¯̃a

′(k)
ij )n×n of R(k) = (ã(k)ij )n×n(k = 1, 2, · · ·, m).

Step 2: Calculate the weight vector w
′
= (w

′
1, w

′
2, · · ·, w

′
m)

T of decision-makers
using Algorithm 4.

Step 3: Utilize the complex intuitionistic fuzzy weighted averaging operator to
aggregate all individual complete complex intuitionistic fuzzy preference
relations R̄

′(k) (k = 1, 2, · · ·, m) together with the experts’ weights
w
′
k (k = 1, 2, · · ·, m) into the collective complete complex intuitionistic fuzzy

preference relation R
′
= (ã

′
ij)n×n with ã

′
ij = ((r

′
ij, ω

′
µij
), (s

′
ij, ω

′
νij
)), where

r
′
ij = ∑m

k=1 w
′
k r̄
′(k)
ij , ω

′
µij

= ∑m
k=1 w

′
kω̄
′(k)
µij , s

′
ij = ∑m

k=1 w
′
k s̄
′(k)
ij , ω

′
νij

=

∑m
k=1 w

′
kω̄
′(k)
νij , i, j = 1, 2, · · ·, n.

Step 4: Utilize the complex intuitionistic fuzzy averaging operator ri =
1
n ∑n

j=1 r
′
ij,

ωµi =
1
n ∑n

j=1 ω
′
µij

, si =
1
n ∑n

j=1 s
′
ij, ωνi =

1
n ∑n

j=1 ω
′
νij

to aggregate all ã
′
ij

corresponding to m decision-makers into a collective complex intuitionistic fuzzy
value b̃

′
i = ((ri, ωµi ), (si, ωνi )) of the alternative Vi over all the other alternatives.

Step 5: Rank all the b̃
′
i(i = 1, 2, · · ·, n) by means of the score Function (1) and the

accuracy Function (2), and then rank all the alternatives Vi(i = 1, 2, · · ·, n) and
select the best one in accordance with the values of b̃

′
i .

Remark 2. In an incomplete complex intuitionistic fuzzy preference relation R, when the phase
terms of membership and non-membership of element ãij are equal to zero (i.e., ωµij = 0 and
ωνij = 0), that is, the periodic change of uncertain information is not considered, then the incomplete
complex intuitionistic fuzzy preference relation effectively reduces to an incomplete intuitionistic
preference relation. Meanwhile, the framework proposed in this paper is consistent with the con-
clusion of the classical incomplete intuitionistic preference relation [19]. Therefore, it has more
obvious advantages than the classical intuitionistic fuzzy evaluation when considering the periodic
conditions of uncertain information change.

Remark 3. Since the complex intuitionistic fuzzy number is composed of four quantities, i.e.,
amplitude terms and phase terms of both membership degree and non-membership degree. Therefore,
the algorithms proposed in this paper have a large amount of computation. We mainly use MATLAB
software for numerical calculation.

6. Illustrative Example

In this section, we will utilize a practical example to illustrate the solution processes of
the group decision-making algorithms based on incomplete complex intuitionistic fuzzy
preference relation, verify their practicality, compare and analyse the advantages and dis-
advantages of two group decision-making algorithms. Finally, the simulation verification
of complex intuitionistic fuzzy system proposed in this paper is carried out by MATLAB
software.

Example 7. Since 2019, the COVID-19 pandemic has been raging. In response to the call of the
Ministry of Education to “suspend classes and continue learning”, the online teaching models have
rapidly spread due to its advantages such as distance teaching and abundant teaching resources. An
online teaching experience consists of computer-assisted teaching media, various computer tools
and software. Therefore, there is an intense need to choose the online teaching platform carefully by
keeping in view the various factors, such as cost, media characteristics, ease of use, flexibility, and
so forth.
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Consider that an educational institute is interested in ranking five online teaching platform,
namely, V1 : Cisco Webex, V2 : Zoom, V3 : Google classroom, V4 : Tencent conference and V5 :
Coursera.

Suppose that a committee of four experts D = {d1, d2, d3, d4} is set up to assess these alterna-
tives V = {V1,V2,V3,V4,V5}. On the basis of their influence on student’s academic achievement
and the time taken by them for this influence, each expert dk conduct pairwise comparisons among
alternatives and gave their judgement values in an acceptable incomplete complex intuitionistic
fuzzy preference relation R(k) = (ã(k)ij )5×5, where ã(k)ij = ((r(k)ij , ω

(k)
µij ), (s

(k)
ij , ω

(k)
νij )) expresses the

preference degree of alternative Vi over Vj for each i, j = 1, 2, 3, 4, 5 and k = 1, 2, 3, 4.

The acceptable incomplete complex intuitionistic fuzzy preference relation R(k) = (ã(k)ij )5×5

(k = 1, 2, 3, 4) are given by decision-makers as follows

R(1) =



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.6, 0.4)

) (
(0.4, 0.5),
(0.5, 0.1)

)
−

(
(0.7, 0.3),
(0.3, 0.5)

)
(

(0.6, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.6, 0.3),
(0.1, 0.1)

)
−(

(0.5, 0.1),
(0.4, 0.5)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.3),
(0.2, 0.7)

) (
(0.5, 0.2),
(0.2, 0.5)

)
−

(
(0.1, 0.1),
(0.6, 0.3)

) (
(0.2, 0.7),
(0.7, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.4),
(0.1, 0.5)

)
(

(0.3, 0.5),
(0.7, 0.3)

)
−

(
(0.2, 0.5),
(0.5, 0.2)

) (
(0.1, 0.5),
(0.8, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R(2) =



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

) (
(0.5, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

)
−(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.5),
(0.2, 0.5)

)
−

(
(0.6, 0.3),
(0.2, 0.1)

)
(

(0.4, 0.1),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.7, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.3),
(0.2, 0.7)

) (
(0.8, 0.2),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

)
−

(
(0.2, 0.7),
(0.8, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.4),
(0.4, 0.5)

)
−

(
(0.2, 0.1),
(0.6, 0.3)

) (
(0.1, 0.5),
(0.8, 0.2)

) (
(0.4, 0.5),
(0.3, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R(3) =



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

)
−

(
(0.4, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

)
(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.9, 0.3),
(0.1, 0.1)

)
−

−
(

(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.3, 0.7)

) (
(0.7, 0.2),
(0.3, 0.5)

)
(

(0.4, 0.1),
(0.4, 0.5)

) (
(0.1, 0.1),
(0.9, 0.3)

) (
(0.3, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

)
−

(
(0.3, 0.5),
(0.7, 0.2)

) (
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R(4) =



(
(0.5, 0.5),
(0.5, 0.5)

) (
(0.4, 0.3),
(0.6, 0.4)

)
− − −(

(0.6, 0.4),
(0.4, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

)
− −

−
(

(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.2, 0.7)

)
−

− −
(

(0.2, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
− − −

(
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)


where “−” denotes the unknown variable.

Firstly, we use Algorithm 5 to prioritize the online course platform, which involves the
following steps.
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Step 1. Utilize Algorithm 2 to construct the complete complex intuitionistic fuzzy preference
relations R̄(k) = ( ¯̃a(k)ij )5×5 of R(k) = (ã(k)ij )5×5(k = 1, 2, 3, 4) as follows

R̄(1) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.6, 0.4)

) (
(0.4, 0.5),
(0.5, 0.1)

) (
(0.1518, 0.1260),
(0.7277, 0.6478)

) (
(0.7, 0.3),
(0.3, 0.5)

)
(

(0.6, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.6, 0.3),
(0.1, 0.1)

) (
(0.2723, 0.1119),
(0.4246, 0.6597)

)
(

(0.5, 0.1),
(0.4, 0.5)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.3),
(0.2, 0.7)

) (
(0.5, 0.2),
(0.2, 0.5)

)
(

(0.7277, 0.6478),
(0.1518, 0.1260)

) (
(0.1, 0.1),
(0.6, 0.3)

) (
(0.2, 0.7),
(0.7, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.4),
(0.1, 0.5)

)
(

(0.3, 0.5),
(0.7, 0.3)

) (
(0.4246, 0.6597),
(0.2723, 0.1119)

) (
(0.2, 0.5),
(0.5, 0.2)

) (
(0.1, 0.5),
(0.8, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄(2) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

) (
(0.5, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

) (
(0.2586, 0.1032),
(0.5115, 0.6070)

)
(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.5),
(0.2, 0.5)

) (
(0.3775, 0.1392),
(0.3911, 0.6953)

) (
(0.6, 0.3),
(0.2, 0.1)

)
(

(0.4, 0.1),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.7, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.3),
(0.2, 0.7)

) (
(0.8, 0.2),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

) (
(0.3911, 0.6953),
(0.3775, 0.1392)

) (
(0.2, 0.7),
(0.8, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.4),
(0.4, 0.5)

)
(

(0.5112, 0.6070),
(0.2586, 0.1032)

) (
(0.2, 0.1),
(0.6, 0.3)

) (
(0.1, 0.5),
(0.8, 0.2)

) (
(0.4, 0.5),
(0.3, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄(3) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

) (
(0.1193, 0.1992),
(0.7313, 0.5772)

) (
(0.4, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

)
(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.9, 0.3),
(0.1, 0.1)

) (
(0.3567, 0.1119),
(0.4016, 0.6597)

)
(

(0.7313, 0.5772),
(0.1193, 0.1992)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.3, 0.7)

) (
(0.7, 0.2),
(0.3, 0.5)

)
(

(0.4, 0.1),
(0.4, 0.5)

) (
(0.1, 0.1),
(0.9, 0.3)

) (
(0.3, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

) (
(0.4016, 0.6597),
(0.3567, 0.1119)

) (
(0.3, 0.5),
(0.7, 0.2)

) (
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄(4) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.4, 0.3),
(0.6, 0.4)

) (
(0.0800, 0.1500),
(0.7600, 0.700)

) (
(0.0480, 0.0450),
(0.8080, 0.9100)

) (
(0.0432, 0.0180),
(0.8272, 0.9550)

)
(

(0.6, 0.4),
(0.4, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.0592, 0.0520),
(0.7648, 0.9030)

) (
(0.0374, 0.0122),
(0.8520, 0.9613)

)
(

(0.7600, 0.700),
(0.0800, 0.1500)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.2, 0.7)

) (
(0.0642, 0.0208),
(0.7613, 0.9536)

)
(

(0.8080, 0.9100),
((0.0480, 0.0450)

) (
(0.7648, 0.9030),
(0.0592, 0.0520)

) (
(0.2, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
(

(0.8272, 0.9550),
(0.0432, 0.0180)

) (
(0.8520, 0.9613),
(0.0374, 0.0122)

) (
(0.7613, 0.9536),
(0.0642, 0.0208)

) (
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)


Step 2. Utilize the complex intuitionistic fuzzy arithmetic averaging operator

b̃(k)i =
1
5

5⊕
j=1

¯̃a(k)ij , i = 1, 2, 3, 4, 5

to aggregate all ¯̃a(k)ij (j = 1, 2, 3, 4, 5) corresponding to the alternative Vi, and then get the averaged

complex intuitionistic fuzzy value b̃(k)i of the alternative Vi over all the other alternatives as follows

b̃(1)1 = ((0.4434, 0.3604), (0.5047, 0.4816)), b̃(1)2 = ((0.4585, 0.3778), (0.3028, 0.3458)),

b̃(1)3 = ((0.5318, 0.3392), (0.2759, 0.5348)), b̃(1)4 = ((0.5445, 0.5090), (0.3167, 0.3094)),

b̃(1)5 = ((0.3204, 0.5370), (0.5203, 0.2664)), b̃(2)1 = ((0.5182, 0.3571), (0.3842, 0.3603)),

b̃(2)2 = ((0.5489, 0.3817), (0.2979, 0.3495)), b̃(2)3 = ((0.6051, 0.3392), (0.3227, 0.5348)),

b̃(2)4 = ((0.3126, 0.5760), (0.5455, 0.3156)), b̃(2)5 = ((0.3622, 0.4641), (0.4508, 0.2622)),

b̃(3)1 = ((0.4829, 0.3715), (0.3740, 0.3567)), b̃(3)2 = ((0.5813, 0.3778), (0.2995, 0.3499)),

b̃(3)3 = ((0.6045, 0.4319), (0.2548, 0.4449)), b̃(3)4 = ((0.5478, 0.4077), (0.4043, 4076)),

b̃(3)5 = ((0.2987, 0.5370), (0.6176, 0.2664)), b̃(4)1 = ((0.2413, 0.2253), (0.6864, 0.6562)),

b̃(4)2 = ((0.3205, 0.3247), (0.5539, 0.5791)), b̃(4)3 = ((0.5146, 0.4477), (0.2613, 0.4783)),

b̃(4)4 = ((0.7173, 0.7606), (0.1535, 0.1774)), b̃(4)5 = ((0.6926, 0.8849), (0.1361, 0.0620)).
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Step 3. Utilize Algorithm 4 to calculate the weight vector of decision-makers as follows

w = (0.2833, 0.3039, 0.3243, 0.0885)T .

Step 4. Utilize the complex intuitionistic fuzzy weighted arithmetic averaging operator

b̃i =
4⊕

k=1

wk b̃(k)i , i = 1, 2, 3, 4, 5

to aggregate all b̃(k)i (k = 1, 2, 3, 4) corresponding to four decision-makers into a collective complex
intuitionistic fuzzy value b̃i of the alternative Vi over all the other alternatives as follows

b̃1 = ((0.4654, 0.3521), (0.4331, 0.4111)), b̃2 = ((0.5192, 0.3744), (0.3167, 0.3645)),

b̃3 = ((0.5777, 0.3807), (0.2806, 0.4988)), b̃4 = ((0.5063, 0.5316), (0.3793, 0.3215)),

b̃5 = ((0.3722, 0.5721), (0.4677, 0.2331)).
Step 5. Rank all the b̃i(i = 1, 2, 3, 4, 5) by means of the score Function (1) and the accuracy

Function (2), and then rank all the alternatives Vi(i = 1, 2, 3, 4, 5) and select the best one in
accordance with the values of b̃i(i = 1, 2, 3). Since

S(b̃1) = −0.0267,S(b̃2) = 0.2124,S(b̃3) = 0.1790,S(b̃4) = 0.3371,S(b̃5) = 0.2345,

hence, the ranking order of alternatives is

V4 > V5 > V2 > V3 > V1.

Finally, we use Algorithm 6 to prioritize the online course platform, which involves the
following steps.

Step 1. Utilize Algorithm 3 to construct the complete complex intuitionistic fuzzy preference
relations R̄

′(k) = ( ¯̃a
′(k)
ij )5×5 of R(k) = (ã(k)ij )5×5(k = 1, 2, 3, 4) as follows

R̄
′(1) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.6, 0.4)

) (
(0.4, 0.5),
(0.5, 0.1)

) (
(0.5, 0.2276),

(0.1714, 0.1374)

) (
(0.3, 0.7),
(0.3, 0.5)

)
(

(0.6, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.6, 0.3),
(0.1, 0.1)

) (
(0.5286, 0.2111),
(0.0775, 0.3)

)
(

(0.5, 0.1),
(0.4, 0.5)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.3),
(0.2, 0.7)

) (
(0.5, 0.2),
(0.2, 0.5)

)
(

(0.1714, 0.1374),
(0.5, 0.2276)

) (
(0.1, 0.1),
(0.6, 0.3)

) (
(0.2, 0.7),
(0.7, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.4),
(0.1, 0.5)

)
(

(0.3, 0.5),
(0.7, 0.3)

) (
(0.0775, 0.3),

(0.5286, 0.2111)

) (
(0.2, 0.5),
(0.5, 0.2)

) (
(0.1, 0.5),
(0.8, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄
′(2) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

) (
(0.5, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

) (
(0.6076, 0.1925),
(0.1126, 0.2230)

)
(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7, 0.5),
(0.2, 0.5)

) (
(0.9032, 0.3)),
(0.0588, 0.7)

) (
(0.6, 0.3),
(0.2, 0.1)

)
(

(0.4, 0.1),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.7, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.8, 0.3),
(0.2, 0.7)

) (
(0.8, 0.2),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

) (
(0.0588, 0.7),
(0.9032, 0.3)

) (
(0.2, 0.7),
(0.8, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.4),
(0.4, 0.5)

)
(

(0.1126, 0.2230),
(0.6076, 0.1925)

) (
(0.2, 0.1),
(0.6, 0.3)

) (
(0.1, 0.5),
(0.8, 0.2)

) (
(0.4, 0.5),
(0.3, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄
′(3) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3, 0.3),
(0.5, 0.4)

) (
(0.0968, 0.3),
(0.4, 0.4)

) (
(0.4, 0.5),
(0.4, 0.1)

) (
(0.8, 0.3),
(0.1, 0.5)

)
(

(0.5, 0.4),
(0.3, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.9, 0.3)),
(0.1, 0.1)

) (
(0.6781, 0.2111),
(0.1172, 0.3)

)
(

(0.4, 0.4),
(0.0968, 0.3)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.3, 0.7)

) (
(0.7, 0.2),
(0.3, 0.5)

)
(

(0.4, 0.1),
(0.4, 0.5)

) (
(0.1, 0.1),
(0.9, 0.3)

) (
(0.3, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
(

(0.1, 0.5),
(0.8, 0.3)

) (
(0.1172, 0.3),

(0.6781, 0.2111)

) (
(0.3, 0.5),
(0.7, 0.2)

) (
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)



R̄
′(4) =


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.4, 0.3),
(0.6, 0.4)

) (
(0.1429, 0.3),
(0.5, 0.4)

) (
(0.2001, 0.1552),
(0.2, 0.6087)

) (
(0.6924, 0.1091),
(0.027, 0.6087)

)
(

(0.6, 0.4),
(0.4, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.2, 0.5),
(0.4, 0.5)

) (
(0.2727, 0.3)),
(0.1429, 0.7)

) (
(0.7714, 0.2222),
(0.0182, 0.7)

)
(

(0.5, 0.4),
(0.1429, 0.3)

) (
(0.4, 0.5),
(0.2, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6, 0.3),
(0.2, 0.7)

) (
(0.931, 0.2222),
(0.027, 0.7)

)
(

(0.2, 0.6087),
(0.2001, 0.1552)

) (
(0.1429, 0.7),
(0.2727, 0.3)

) (
(0.2, 0.7),
(0.6, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.9, 0.4),
(0.1, 0.5)

)
(

(0.027, 0.6087),
(0.6924, 0.1091)

) (
(0.0182, 0.7),

(0.7714, 0.2222)

) (
(0.027, 0.7),

(0.931, 0.2222)

) (
(0.1, 0.5),
(0.9, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)
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Step 2. Utilize Algorithm 4 to calculate the weight vector of decision-makers as follows

w
′
= (0.2693, 0.2334, 0.2587, 0.2386)T .

Step 3. Utilize the complex intuitionistic fuzzy weighted averaging operator to aggregate all
individual complete complex intuitionistic fuzzy preference relations R̄

′(k) (k = 1, 2, 3, 4) together
with the experts’ weights wk (k = 1, 2, 3, 4) into the collective complete complex intuitionistic fuzzy
preference R

′
= (ã

′
ij)5×5 as follows

R
′
=


(

(0.5, 0.5),
(0.5, 0.5)

) (
(0.3239, 0.3),
(0.5507, 0.4)

) (
(0.2836, 0.4005),
(0.4508, 0.2492)

) (
(0.4726, 0.2977),
(0.2207, 0.3248)

) (
(0.5948, 0.3371),
(0.1394, 0.4613)

)
(

(0.5507, 0.4),
(0.3239, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.3167, 0.5),
(0.3533, 0.5)

) (
(0.6703, 0.3)),
(0.1006, 0.3832)

) (
(0.6419, 0.2345),
(0.1022, 0.3488)

)
(

(0.4508, 0.2492),
(0.2836, 0.4005)

) (
(0.3533, 0.5),
(0.3167, 0.5)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.6736, 0.3),
(0.2259, 0.7)

) (
(0.7246, 0.2053),
(0.1613, 0.5477)

)
(

(0.2207, 0.3248),
(0.4726, 0.2977)

) (
(0.1006, 0.3832),
(0.6703, 0.3)

) (
(0.2259, 0.7),
(0.6736, 0.3)

) (
(0.5, 0.5),
(0.5, 0.5)

) (
(0.7330, 0.4),
(0.1700, 0.5)

)
(

(0.1394, 0.4613),
(0.5948, 0.3371)

) (
(0.1022, 0.3488),
(0.6419, 0.2345)

) (
(0.1613, 0.5477),
(0.7246, 0.2053)

) (
(0.1700, 0.5),
(0.7330, 0.4)

) (
(0.5, 0.5),
(0.5, 0.5)

)


Step 4. Utilize the complex intuitionistic fuzzy averaging operator

ri =
1
5

5

∑
j=1

r
′
ij, ωµi =

1
5

5

∑
j=1

ω
′
µij

, si =
1
5

5

∑
j=1

s
′
ij, ωνi =

1
5

5

∑
j=1

ω
′
νij

, i = 1, 2, 3, 4, 5

to aggregate all ã
′
ij corresponding to four decision-makers into a collective complex intuitionistic

fuzzy value b̃
′
i = ((ri, ωµi ), (si, ωνi )) of the alternative Vi over all the other alternatives as follows

b̃
′
1 = ((0.4350, 0.3671), (0.3723, 0.3871)), b̃

′
2 = ((0.5359, 0.3869), (0.2760, 0.4064)),

b̃
′
3 = ((0.5405, 0.3509), (0.2975, 0.5296)), b̃

′
4 = ((0.3560, 0.4616), (0.4973, 0.3795)),

b̃
′
5 = ((0.2146, 0.4716), (0.6389, 0.3354)).

Step 5. Rank all the b̃
′
i(i = 1, 2, 3, 4, 5) by means of the score Function (4) and the accuracy

Function (5), and then rank all the alternatives Vi(i = 1, 2, 3, 4, 5) and select the best one in
accordance with the values of b̃

′
i(i = 1, 2, 3, 4, 5). Since

S(b̃1) = 0.0427,S(b̃2) = 0.2404,S(b̃3) = 0.0643,S(b̃4) = −0.0592,S(b̃5) = −0.2881,

hence, the ranking order of alternatives is

V2 > V3 > V1 > V4 > V5.

From the numerical results above, it can be clearly seen that the rankings of the loca-
tions Vi(i = 1, 2, 3, 4, 5) obtained by Algorithms 5 and 6 differ significantly. By Algorithm 6,
V2 is ranked the first, then V3, V1 and V4, respectively, and then V5 the last. However, by
Algorithm 5, V2 drops from the first to the third, V3 from the second to the forth, and V1
from the third to the last, while V4 moves up from the fourth to the first, and V5 from
the last to the second (which changes the most among all the locations). Table 2 reflects
these changes.

Table 2. Differences in the results obtained by the Algorithm 5 and Algorith.

V1 V2 V3 V4 V5

Algorithm 5 −0.0267 0.2124 0.1790 0.3371 0.2435
Algorithm 6 0.0427 0.2404 0.0643 −0.0592 −0.2881
Differences −0.0694 −0.0280 0.1147 0.3963 0.5316

We also observe that the distinct changes in the rankings of the locations are mainly
caused by the substantial differences among the estimated elements in the incomplete
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complex intuitionistic fuzzy preference relation R(4) when using Algorithms 5 and 6. In
the process of estimating missing elements, the estimation Formula (15) in the Algorithm 5
results in the decrease of the membership degrees and the increase of the non-membership
degrees of complex intuitionistic fuzzy preference values sharply, which produce distortion
of the estimated information, but the estimation Formula (16) in Algorithm 6, which is
motivated by the multiplicative transitivity of traditional complex intuitionistic fuzzy
preference relations, can overcome this issue by making the estimated results more intuitive
and reasonable.

Compared with Algorithm 5, Algorithm 6 has the following advantages.
(i) The estimation formulas (10)–(13) used in Algorithm 6 are natural extensions of

multiplicative transitivity Formulas (3) and (4) of traditional intuitionistic fuzzy preference
relations. The estimation formula used in Algorithm 5, however, sometimes may produce
distortion of the estimated information.

(ii) The complex intuitionistic fuzzy weighted averaging operator and the complex in-
tuitionistic fuzzy averaging operator are consistent with the aggregation operations on the
ordinary intuitionistic fuzzy sets. These two aggregation operators are also monotone with
respect to the total order based on the scores and accuracy degrees. But the aggregation op-
erators used in Algorithm 5 are only monotone with respect to the partial order. As a result,
Algorithm 6 is more intuitive and reasonable and thus has good application prospects.

Based on the analysis above, we will take the calculation result of the Algorithm 6
as the decision-making result, for example 7, that is, the ranking order of alternatives is
V2 > V3 > V1 > V4 > V5.

Remark 4. In this paper, the simulation verification of an incomplete complex intuitionistic fuzzy
system is carried out by MATLAB software with the help of Example 7. According to Definition 5,
complex intuitionistic fuzzy numbers are aggregated by creating numerical formulas in MATLAB
software. Meanwhile, the best alternative is selected using the score function value and accuracy
function value. Simulation results show that the algorithm proposed in this paper is accurate
and effective, and is suitable for group decision-making problems that contain periodic changes of
uncertain information.

7. Conclusions

In this paper, firstly, we introduced the concept of incomplete complex intuition-
istic fuzzy preference relation and discussed its properties. Meanwhile, the concept of
multiplicative consistent incomplete complex intuitionistic fuzzy preference relations are
defined and three estimation algorithms are developed to estimate the missing elements
in the acceptable incomplete complex intuitionistic fuzzy preference relations. Finally,
the group decision-making algorithms based on incomplete complex intuitionistic fuzzy
preference relation are established and the solving process of the algorithms is illustrated
by an example, the practicability of the algorithms is verified, and the advantages and
disadvantages of group decision-making algorithms are compared and analyzed. As a
result, the resulting put forward in this paper is more intuitive and reasonable and thus
has good application prospects.

We note that the estimation algorithms (i.e., Algorithms 1–3) for the acceptable in-
complete complex intuitionistic fuzzy preference relations are used to translate incomplete
complex intuitionistic fuzzy preference relations to complete complex intuitionistic fuzzy
preference relations, and the expert weight determination algorithm (i.e., Algorithm 4)
is used to calculate the expert weights. Finally, group decision-making algorithms (i.e.,
Algorithms 5 and 6) based on incomplete complex intuitionistic fuzzy reference relations
are used to solve group decision-making problems and select the best alternatives. Al-
though both Algorithms 5 and 6 are group decision-making algorithms, there are advan-
tages of Algorithm 6 compared with Algorithm 5, that is, (i) the estimation formulas used in
Algorithm 6 are natural extensions of multiplicative transitivity formulas of traditional in-
tuitionistic fuzzy preference relations, which can avoid distorting the complex intuitionistic
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fuzzy preference information in the estimation process; (ii) The complex intuitionistic fuzzy
weighted averaging operator and the complex intuitionistic fuzzy averaging operator are
consistent with the aggregation operations on the ordinary intuitionistic fuzzy sets. These
two aggregation operators are also monotone with respect to the total order based on the
scores and accuracy degrees. However, the aggregation operators used in Algorithm 5 are
only monotone with respect to the partial order. As a result, Algorithm 6 is more intuitive
and reasonable and thus has good application prospects. We have used a practical example
of an educational institute selecting an online course platform to compare and analyze
Algorithms 5 and 6 and verify the practicality and superiority of Algorithm 6. Finally,
note that complex intuitionistic fuzzy number itself is more complex, so the algorithms
proposed in this paper have a large amount of computation. We mainly use MATLAB
software for calculation. Meanwhile, the simulation verification of incomplete complex
intuitionistic fuzzy system is carried out by MATLAB software with the help of Example 7.
Simulation results show that the algorithm proposed in this paper is accurate and effec-
tive, and is suitable for group decision making problems that contain periodic changes of
uncertain information.

Author Contributions: Conceptualization Z.G.; investigation, F.W. and Y.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (No.
12061067); the Youth Science and Technology Innovation Project of Lanzhou Institute of Technology
(18K-018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the referees for providing very helpful com-
ments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alonso, S.; Herrera-Viedma, E.; Chiclana, F.; Herrera, F. A web based consensus support system for group decision making

problems and incomplete preferences. Inf. Sci. 2010, 180, 4477–4495. [CrossRef]
2. Gong, Z.W.; Li, L.S.; Forrest, J.; Zhao, Y. The optimal priority models of the intuitionistic fuzzy preference relation and their

application in selecting industries with higher meteorological sensitivity. Expert Syst. Appl. Int. J. 2011, 38, 4394–4402. [CrossRef]
3. Kou, G.; Peng, Y.; Chen, Z.; Shi, Y. Multiple criteria mathematical programming for multi-class classification and application in

network intrusion detection. Inf. Sci. 2009, 179, 371–381. [CrossRef]
4. Srdjevic, B.; Srdjevic, Z.; Zoranovic, T.; Suvocarev, K. Group decision-making in selecting nanotechnology supplier: AHP

application in presence of complete and incomplete information. Nanomater. Risks Benefits 2005, 5, 409–422.
5. Xia, M.M.; Xu, Z.S.; Liao, H.C. Preference relations based on intuitionistic multiplicative information. IEEE Trans. Fuzzy Syst.

2013, 21, 113–133.
6. Xu, Z.S. Priority weight intervals derived from intuitionistic multiplicative preference. IEEE Trans. Fuzzy Syst. 2013, 21, 642–654.
7. Xu, Z.S. A survey of preference relations. Int. J. Gen. Syst. 2007, 36, 179–203. [CrossRef]
8. Chen, M.; Lin, W.; Zhou, L. Consistency analysis and priority weights for Pythagorean fuzzy preference relations. IEEE Access

2020, 8, 89106–89116. [CrossRef]
9. Garg, H. Distance and similarity measures for intuitionistic multiplicative preference relation and its applications. Int. J. Uncertain.

Quantif. 2017, 7, 117–133. [CrossRef]
10. Jin, F.; Garg, H.; Pei, L.; Liu, J.; Chen, H. Multiplicative consistency adjustment model and data envelopment analysis-driven

decision-making process with probabilistic hesitant fuzzy preference relations. Int. J. Fuzzy Syst. 2020, 22, 2319–2332. [CrossRef]
11. Li, H.; Yin, S.; Yang, Y. Some preference relations based on q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 2920–2936.

[CrossRef]
12. Lin, M.; Zhan, Q.; Xu, Z.S.; Chen, R. Group decision making with probabilistic hesitant multiplicative preference relations based

on consistency and consensus. IEEE Access 2018, 6, 63329–63344. [CrossRef]
13. Lin, M.; Zhan, Q.; Xu, Z.S.; Chen, R. Group decision-making model with hesitant multiplicative preference relations based on

regression method and feedback mechanism. IEEE Access 2018, 6, 61130–61150. [CrossRef]

http://doi.org/10.1016/j.ins.2010.08.005
http://dx.doi.org/10.1016/j.eswa.2010.09.109
http://dx.doi.org/10.1016/j.ins.2008.10.025
http://dx.doi.org/10.1080/03081070600913726
http://dx.doi.org/10.1109/ACCESS.2020.2990067
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017018981
http://dx.doi.org/10.1007/s40815-020-00944-4
http://dx.doi.org/10.1002/int.22178
http://dx.doi.org/10.1109/ACCESS.2018.2876403
http://dx.doi.org/10.1109/ACCESS.2018.2875400


Axioms 2022, 11, 418 23 of 23

14. Mandal, P.; Ranadive, A.S. Pythagorean fuzzy preference relations and their applications in group decision-making systems. Int.
J. Intell. Syst. 2019, 34, 1700–1717. [CrossRef]

15. Viedma, E.H.; Chiclana, F.; Herrera, F.; Alonso, S. Group decision-making model with incomplete fuzzy preference relations
based on additive consistency. IEEE Trans. Syst. Man Cybern. Part B 2007, 37, 176–189. [CrossRef]

16. Wang, Z.J. Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations. Appl. Math. Model. 2013,
37, 6377–6388. [CrossRef]

17. Wang, Z.J.; Li, K.W. Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Inf.
Sci. 2012, 193, 180–198. [CrossRef]

18. Xu, Y.; Herrera, F. Visualizing and rectifying different inconsistencies for fuzzy reciprocal preference relations. Fuzzy Sets Syst.
2019, 362, 85–109. [CrossRef]

19. Xu, Z.S. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379.
[CrossRef]

20. Xu, Z.S.; Cai, X.; Szmidt, E. Algorithms for estimating missing elements of incomplete intuitionistic preference relations. Int. J.
Intell. Syst. 2011, 26, 787–813. [CrossRef]

21. Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433.
[CrossRef]

22. Zhang, C.; Liao, H.; Luo, L. Additive consistency-based priority-generating method of q-rung orthopair fuzzy preference relation.
Int. J. Intell. Syst. 2019, 34, 2151–2176. [CrossRef]

23. Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186. [CrossRef]
24. Yazdanbakhsh, O.; Dick, S. A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 2018, 338, 1–22. [CrossRef]
25. Alkouri, A.U.M. Complex intuitionistic fuzzy sets. Int. Conf. Fundam. Appl. Sci. Aip Conf. Proc. 2012, 1482, 464–470.
26. Alkouri, A.U.M.; Salleh, A.R. Some operations on complex Atanassov’s intuitionistic fuzzy sets. Int. Conf. Fundam. Appl. Sci. Aip

Conf. Proc. 2013, 1571, 987–993.
27. Alkouri, A.U.M.; Salleh, A.R. Complex Atanassov’s intuitionistic fuzzy relation. Abstr. Appl. Anal. 2013, 2013, 1–18. [CrossRef]
28. Garg, H.; Rani, D. Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria

decision-making process. Arab. J. Sci. Eng. 2019, 44, 2679–2698. [CrossRef]
29. Garg, H.; Rani, D. Generalized geometric aggregation operators based on t-norm operations for complex intuitionistic fuzzy sets

and their application to decision-making. Cogn. Comput. 2019, 12, 679–698. [CrossRef]
30. Garg, H.; Rani, D. Robust averaging-geometric aggregation operators for complex intuitionistic fuzzy sets and their applications

to MCDM process. Arab. J. Sci. Eng. 2020, 45, 2017–2033. [CrossRef]
31. Garg, H.; Rani, D. Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to

decision-making process. Artif. Intell. Rev. 2020, 53, 3595–3620. [CrossRef]
32. Garg, H.; Rani, D. A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-

making. Appl. Intell. 2019, 49, 496–512. [CrossRef]
33. Garg, H.; Rani, D. Exponential, logarithmic and compensative generalized aggregation operators under complex intuitionistic

fuzzy environment. Group Decis. Negot. 2019, 28, 991–1050. [CrossRef]
34. Rani, D.; Garg, H. Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision-making

process. Int. J. Uncertain. Quantif. 2017, 7, 423–439. [CrossRef]
35. Rani, D.; Garg, H. Complex intuitionistic fuzzy preference relations and their applications in individual and group decision-

making problems. Int. J. Intell. Syst. 2021, 36, 1800–1830. [CrossRef]
36. Ibrahim, H.Z.; Al-Shami, T.M.; Elbarbary, O.G. (3,2)-fuzzy sets and their applications to topology and optimal choices. Comput.

Intell. Neurosci. 2021, 2021, 1272266. [CrossRef]
37. Mohammed, A.; Muhammad, I.A.; Tareq, M.A. Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applica-

tions. Comput. Appl. Math. 2021, 40, 115.

http://dx.doi.org/10.1002/int.22117
http://dx.doi.org/10.1109/TSMCB.2006.875872
http://dx.doi.org/10.1016/j.apm.2013.01.021
http://dx.doi.org/10.1016/j.ins.2012.01.019
http://dx.doi.org/10.1016/j.fss.2018.09.009
http://dx.doi.org/10.1016/j.ins.2006.12.019
http://dx.doi.org/10.1002/int.20494
http://dx.doi.org/10.1080/03081070600574353
http://dx.doi.org/10.1002/int.22137
http://dx.doi.org/10.1109/91.995119
http://dx.doi.org/10.1016/j.fss.2017.01.010
http://dx.doi.org/10.1155/2013/287382
http://dx.doi.org/10.1007/s13369-018-3413-x
http://dx.doi.org/10.1007/s12559-019-09678-4
http://dx.doi.org/10.1007/s13369-019-03925-4
http://dx.doi.org/10.1007/s10462-019-09772-x
http://dx.doi.org/10.1007/s10489-018-1290-3
http://dx.doi.org/10.1007/s10726-019-09631-8
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
http://dx.doi.org/10.1002/int.22361
http://dx.doi.org/10.1155/2021/1272266

	Introduction
	Preliminaries
	Incomplete Complex Intuitionistic Fuzzy Preference Relations
	Estimation Algorithms for the Acceptable Incomplete Complex Intuitionistic Fuzzy Preference Relations
	The Estimation Algorithm with the Least Judgments
	The Estimation Algorithm with More Known Judgments

	Group Decision-Making Algorithms Based on Incomplete Complex Intuitionistic Fuzzy Preference Relations
	Illustrative Example
	Conclusions 
	References

