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Abstract: Measurements of delay time in the transfer of modulation between a modulated to an
unmodulated one, both of them derived by the same microwave source, are reported and interpreted.
In the light of these results, the transfer of modulation can be hypothesized as due to a stochastic,
classically-forbidden process, assisted by a photon–photon scattering mechanism.
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1. Introduction

An unexpected transfer of modulation between microwave beams occurring in the
region of the near field has been well demonstrated in previous [1,2] and even more recent
papers [3,4]. In spite of the efforts so far made, a satisfying interpretation of this phe-
nomenon is still lacking. In fact, while in the previous papers, a superluminal behavior was
sustained on the basis of results obtained by a two-horn antenna experiment, in the more
recent contributions, the role played by the stochastic processes has been hypothesized [3],
especially in the light of delay-time measurements relative to the transfer of modulation [4].

Subsequently, we hypothesized that interference could be merely responsible for part
of the transferred signal. Therefore, the experimental setup was modified in order to
reduce spurious effects. The hypothesis of the stochastic nature of the involved process
was thus confirmed as concomitant and co-operating with a photon–photon scattering
mechanism [5]. In this framework, the temporal behavior turned out to be opposite to
the previous one, that is—as will be demonstrated—decidedly subluminal. As far as we
know, in the literature there are no other contributions on this topic, other than those we
have already published. This holds true from both an experimental and a theoretical point
of view.

In Section 2, we summarize the stochastic-process modeling. Section 3 is devoted to
the description of the experimental set-up, and Section 4 to the interpretation of the results.
The concluding remarks are given in Section 5.

2. Stochastic-Process Modeling

In this work, the second-order partial differential equation known as the telegrapher’s
equation represents the starting point of the theoretical model presented. Originally,
the telegrapher’s equation was used to model the current and voltage in a portion of a
transmission line with distance and time. Since then, modern physics has exploited it
in numerous applications from signal analysis [6–10], to random walk [11–14] and wave
propagation [15–17].
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Here, we are focused on a pioneering work by Kac [18], in which it was demonstrated
that the telegrapher’s equation—a wave equation in the presence of dissipation—can be
interpreted as being originated by zig-zag particle motion.

In particular, the equivalence between the telegrapher’s equation and a particle travel-
ing in a straight line with constant velocity was established. In this model, the particle is
characterized by a stochastic motion because it undergoes collisions that can reverse its
velocity. After each step dx, the probability of reversing the velocity is a∆t, and it is 1− a∆t
for continuing in the same direction.

In the presence of dissipation, a randomized time r(t) replaces the time, and the
displacement becomes vr(t) < vt.

The telegrapher’s equation is given by

1
v2

∂2F
∂t2 +

2a
v2

∂F
∂t

=
∂2F
∂x2 , (1)

where v is the propagation velocity in the x direction of the quantity F(x, t) (a field) and a
is the dissipative parameter which is related to the jumping rate of the “particle” motion.

Subsequently, the problem was reconsidered by De Witt-Morette and Foong [19],
who demonstrated that a solution to the telegrapher’s equation can be expressed by a
quadrature as:

F(x, t) =
∫ ∞

−∞
[αφ(x, r) + βφ(x,−r)]g(r, t)dr, (2)

where φ(x, r) is a solution of the wave equation without dissipation, Equation (1), with
a = 0, α and β being arbitrary mixing coefficients so that α + β = 1.

Using Laplace transform analysis, for −t < r < t, g(r, t) can be expressed as
follows [19,20]:

g(t, r) = e−atδ(t− r) + 1
2 ae−atθ(t− |r|)I0[a(t2 − r2)

1
2 ]

+(t + r)(t2 − r2)−1/2 I1[a(t2 − r2)1/2]
(3)

where δ(t) is the Dirac function, θ(t) the Heaviside step function and I0 and I1 the modified
Bessel functions, respectively.

Moreover, by using asymptotic expansions of the Bessel functions and neglecting
the δ contribution, Equation (3) can be expressed as the sum of two Gaussians. Thus, the
two-variable function g(r, t), as the density distribution of a randomized time r (t is the
normal time), tends asymptotically for t � r, to a Gaussian, with a standard deviation
given by σ =

√
t/a [20]. More exactly, g(r, t) results from the sum of two Gaussians, one

centered at r = 0, the other at r = 1/a. In explicit form, we have

g(r, t) ' 1
2

( a
2πt

)1/2
[

exp
(
− ar2

2t

)
+ exp

(
− ar2

2t
+

r
t

)]
. (4)

The importance of using a randomized time can be observed by calculating the average
time 〈r〉 [20,21]:

〈r〉 =
∫ −∞

∞
rg(r, t)dr =

1
2a

(
1− e−2aρ/v

)
, (5)

where ρ is the traveled distance and v the velocity. This average can be regarded as a
fictitious time that a particle would take to reach the average distance L = v < r > in the
case of traveling with velocity v without reversal. By inverting Equation (5), the true time
required to reach the distance L can be calculated.

Results of delay-time measurements show a rather unexpected, irregular behavior
which reinforces the hypothesis of the presence of stochastic processes [4,5]. The shape
of these data can be considered to be representative of the hypothesized zig-zag random
paths. This fact induced us to consider, in the present case of near field propagation, an
inversion of roles between r and t, in the sense that r becomes the observable (measurable)



Axioms 2022, 11, 416 3 of 7

quantity, as typically occurs in a classically forbidden processes, as f.i. in the tunneling,
where such as inversion was considered, at first, as a crude ansatz [21].

The novelty of the present approach is that the inversion of roles between the random-
ized time (r) and the normal time (t) represents the crucial point for the interpretation of
the observed phenomenon, namely, the modulation transfer between microwave beams.

More recent contributions relative to telegraphers’s equation and stochastic processes
are given in references [22–25].

3. Experimental Set-Up

The procedure for time-delay measurements is similar to that described in reference [4].
The experimental set-up used is based on two crossing microwave beams emitted by two
horn antennas [1,2]. Both beams were powered by the same generator at ∼9.3 GHz; the
F2 beam was modulated by a squared wave with a repetition frequency Ω of ∼800 Hz;
the F1 beam was unmodulated. The antenna responsible for the F2 beam was placed at a
suitable distance from the first one (as schematically shown in Figure 1): this beam was
obtained as the near field emerging from a composed pupil [3,4] represented by a paraffin
torus situated in the center of a circular aperture. The transferred modulation signal was
detected by another small horn antenna placed in front of the launcher (F1) at a variable
distance ρ; see Figure 2. This third antenna was placed still beyond the region of interaction.
Moreover, an absorber material was placed between the two launchers F1 and F2 in order
to reduce their cross-talking [5]. The measurements were also performed by means of a
lock-in amplifier tuned at the modulation frequency; the delay ones were performed over
the rise or the fall time (of the order of nanoseconds) of the square wave. Accuracy of
a few tens of picoseconds has been observed when using a temporal-resolution digital
oscilloscope (Tektronik 2440 or TDS 680B). A number of determinations were obtained,
and average between rise- and fall-time measurements were considered. The results are
reported in Figure 3.
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Figure 1. Artistic partial representation of the experimental setup, where ν is an angle of a few
degrees, and γ is the half-fire angle of the horn antenna (F1 launcher), of 25 degrees. For a better
readability the absorber between the two launchers (F1 and F2) has been omitted.

Figure 1. Artistic partial representation of the experimental setup, where ν is an angle of a few
degrees, and γ is the half-fire angle of the horn antenna (F1 launcher), of 25 degrees. For clarity, the
absorber between the two launchers (F1 and F2) has been omitted.
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Figure 2. The experimental setup operated at 9.3 GHz. The typical geometry consisted of two horn
antennas as launchers for the F1 c.w. beam and the F2 and Ω modulated beam, traveling through a
composed pupil in order to reduce its width. The receiver horn antenna was placed at distance ρ.
An absorber material was suitably positioned between the launcher and F1 in order to reduce their
cross-talking [5]. All dimensions are expressed in centimeters.

Version August 17, 2022 submitted to Journal Not Specified 5 of 7

Figure 3. Two determinations of delay time, in the transfer of modulation between microwave beams,
measured as a function of the distance ρ between the launcher of the unmodulated beam and the
receiver antenna, in presence of the perpendicular modulated beam, are reported. The dashed curve
represents 2σ(t) = 2

√
ρ/(va) and has been evaluated assuming a/v = 1/3, while the continuous

curves represent ⟨r⟩(ρ) = 1
2a

(
1 − e−2ρ/3

)
and have been computed by Eq. (6) for some values of the

parameter a, expressed in 109 s−1. Hypothetical paths with reversals are given in the (ar, at) plane of
the inset, after Ref. 4.
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Figure 3. Two determinations of delay time, in the transfer of modulation between microwave
beams, measured as a function of the distance ρ between the launcher of the unmodulated beam
and the receiver antenna, in the presence of the perpendicular modulated beam, are reported. The
dashed curve represents 2σ(t) = 2

√
ρ/(va) and has been evaluated assuming a/v = 1/3; and the

continuous curves represent 〈r〉(ρ) = 1
2a

(
1− e−2ρ/3

)
and have been computed by Equation (6) for

some values of the parameter a, expressed in 109 s−1. Hypothetical paths with reversals are given in
the (ar, at) plane of the inset, after reference [4].
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4. Results and Discussion

The results obtained for distance in the range of ρ from 10 to 54 cm are shown in
Figure 3. Each determination was obtained as an average between the rise- and fall-time
measurements.

As anticipated, they showed an irregular behavior that supports the hypothesis of the
existence of zig-zagging, random paths in the propagation. In the same graph, the dashed
curve represents the function 2σ(t) = 2

√
ρ/(va), being t = ρ/v, computed by assuming

a = 109 s−1 and v = 3 cm/ns, according to reference [4]. This curve represents the border
line of the half area that contains the paths with a probability of ∼ 95%. The same curve
represents σ(t), if we select a = 0.5× 109 s−1 and v = 1.5 cm/s, and the probability will
be reduced to ∼68%. Strictly speaking, these values should be valid only in the limit of
t� r, as indicated before Equation (4); outside this limit, the results are to be considered as
purely indicative.

Under this assumption, an estimate of the extension ∆r of the average steps in the zig-
zag paths could be obtained for r2 = σ2 = t/a, and for r ≈ t, we obtained ∆r ' 1/a [4,26].
This means that for a = 0.5× 109 s−1, v∆r ' 2 ns and the corresponding ∆ρ = v∆r ' 3 cm,
values that are in reasonable agreement with the observed variations in Figure 3.

If we maintain the ratio a/v = 1/3, we can evaluate 〈r〉(ρ) as simply being given by

〈r〉(ρ) = 1
2a

(
1− e−2ρ/3

)
, (6)

where ρ is expressed in cm, a in 109 s−1 and v in cm/ns.
Moreover, in Figure 3 are also plotted continuous curves of 〈r〉(ρ) (OriginPro, Version

2018, OriginLab Corporation, Northampton, MA, USA). It is interesting to note that these
curves reach the asymptotic values for ρ & 10 cm.

However, reasonable agreement with the experimental data requires a smaller value
of a ' 0.15× 109 s−1. On the contrary, higher values of a could be acceptable only if
we admit the presence of an offset in the data of about 1–2 ns. This hypothesis is not
unrealistic, and the most important aspect in the data is the flattened behavior of their
average. As anticipated since reference [4], noteworthy is the fact that in the considered
case, and in this framework, we have an inversion of roles between r and t, since r becomes
the observable quantity. Usually this occurs in classically-forbidden process, as f.i. in the
tunneling [21]. This fact induced us to hypothesize, even in this case, the situation of a
classically forbidden process.

However, in the present case, given by the expanded scale of time t in Figure 3, due
to the low value of the velocity v in comparison to the light velocity, we have an evident
sub-luminal behavior.

As for the origin of the transfer of modulation between the microwave beams, the
abovementioned hypothesis of photon–photon scattering acting in the crossing area can be
justified as follows [5]. The existence of a photonic rest mass, very small but not exactly zero,
∼10−51 g [27], is not sufficient for supporting this hypothesis. However, in consideration
of the relativistic relation [28]

E
[
1− (v/c)2

]1/2
= mc2, (7)

where E = hν is the photon energy, v is the velocity and c is the light velocity in vacuum,
we arrive at the following result. For v = c, the mass m evidently becomes zero, but in our
case, for ν ' 10 GHz and v� c, Equation (7) gives for m a (virtual) value of∼0.7× 10−37 g,
which would well support the scattering mechanism.

Therefore, it seems that, on the basis of this consideration, the hypothesis of the
stochastic nature—and the one of the classically forbidden character—of the involved
process becomes a more plausible one, in concomitance and cooperation with the scatter-
ing mechanism.
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5. Conclusions and Perspectives

In this work, an unexpected transfer of modulation between two crossing microwave
beams was measured in the region of the near field. Although this phenomenon has been
already demonstrated in previous [1,2] and even relatively recent papers [3,4], a satisfying
interpretation was still lacking. In fact, in previous papers, a superluminal behavior was
sustained, and in the more recent one, a stochastic role was hypothesized. A modified
experimental set-up was introduced herein in order to reduce spurious effects, and new
experimental time-delay measurements are available. The hypothesis of the stochastic
nature of the involved process was confirmed as co-operating with a photon–photon
scattering mechanism [5]. Moreover, in this work, it was observed that the temporal
behavior is decidedly subluminal, and this is the opposite to what was found in previous
analysis. The novelty introduced here is represented by the inversion of roles between
the randomized time (r) and the normal time (t), which is considered as crucial for the
interpretation of the observed phenomenon, namely, the modulation transfer between
microwave beams.

We also believe this topic should be further investigated from both experimental and
theoretical point of view, and in particular, a different analysis could also benefit from other
stochastic approaches, including Feynman’s transition elements [29] and nonstandard finite
difference methods.
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