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Abstract: The tensorial force acting in a localized seismic focus is introduced and the corresponding
seismic waves are derived, as solutions of the elastic wave equation in a homogeneous and isotropic
body. The deconvolution of the solution for a structured focal region is briefly discussed. The far-field
waves are identified as P and S seismic waves. These are spherical-shell waves, with a scissor-like
shape, and an amplitude decreasing with the inverse of the distance. The near-field seismic waves
are spherical-shell waves, decreasing with the inverse of the squared distance. The amplitudes and
the polarizations of the near-field seismic waves are given. The determination of the seismic-moment
tensor and the earthquake parameters from measurements of the P and S seismic waves at Earth’s’
surface is briefly discussed. Similarly, the mainshock generated by secondary waves on Earth’s
surface is reviewed. The near-field static deformations of a homogeneous and isotropic half-space are
discussed and a method of determining the seismic-moment tensor from epicentral near-field (quasi-)
static deformations in seismogenic regions is presented.

Keywords: seismic tensorial force; far-field seismic waves; near-field seismic waves; seismic mainshock;
quasi-static deformations
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1. Introduction

The near-field seismic ground motion is of great importance for its potentially damag-
ing effects in epicentral regions of shallow earthquakes [1–5]. In this respect, the near-field
seismic waves play the main role. At the same time, an equally important role is played by
the (quasi-) static deformations produced on Earth’s surface by a continuous accumulation
of energy in shallow seismic foci, not necessarily resulting in an earthquake. Consequently,
the near-field seismic motion is a complex subject, which requires the solution of both
the elastic wave equation and elastic equilibrium (static deformations). Besides technical
difficulties in getting such solutions, an important starting point is a realistic force acting in
a seismc focus. Apart from the intrinsic interest in the solution itself, we we may use this
solution for getting information about the focal parameters and the seismic mechanism in
the focus. Such subjects are discused in the present paper.

We start by introducing the tensorial force density acting in a seismic focus localized
both in space and time (which may produce an earthquake called herein an elementary
earthquake [6,7]). This is an important novelty point, because the tensorial force introduced
herein is written in a covariant form, which is independent of the reference frame. In
addition, it gives a vanishing total force and torque, as required by physical conditions. The
deconvolution needed for a structured focus is briefly discussed. We present the solution of
the Navier-Cauchy elastic wave equation with this tensorial point force in a homogeneous
and isotropic body, and give information about the necessary regularization procedure
employed in getting this solution [7]). The solution provides both the far-field P and S
seismic waves and the near-field seismic waves. This is another novelty point, because the
solution is obtained in compact, covariant form, without resorting to Stokes double-couple
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procedure. The P wave is longitudinal, while the S wave is transverse. In the current
seismological literature the P wave is called “primary” wave, while the S wave is called
“secondary” wave (see, for instance [8,9]). We prefer to call them collectively “primary”
waves, and use the term “secondary” waves for the mainshock. Indeed, once arrived at
Earth’s surface, these primary waves generate wave sources localized on the surface, which,
in turn, produce secondary waves, according to Huygens principle. These secondary
waves were computed, which is another novelty point [7]. They look like an abrupt wall
with a long tail, propagating on Earth’s surface and lagging behind the primary waves: it
corresponds to the seismic mainshock recorded in seismograms. The far-field seismic waves
can be used for determining the energy, the magnitude and the other earhquake parameters,
as well as for determining the tensor of the seismic moment [10]). This procedure is
briefly discused here. Next, this paper is focused on the solution of the elastic equlibrium
equation with the tensorial force in a homogeneous and isotropic body, and discusses the
(quasi-) static elastic deformations produced on Earth’s surface [6]. A special procedure
of estimating the seismic moment and other focal parameters from measurements of the
(quasi-) static crustal deformations made on Earth’s surface is presented.

2. Tensorial Focal Force-Structure Factor

As it is well known, the elastic wave equation is conveniently solved with a force
source localized both in space and time [8,11]. The corresponding solution is called the
fundamental solution. Therefore, we assume a seismic focus placed at R0, where a force
source appears at the moment of time t0, lasting for a short time. The corresponding
force density is written as s(R0t0)

δ(R− R0)δ(t− t0), where the factor s(R0,t0)
may include

differential operators acting upon the variables R and t, besides other components, arising
from physical requirements (e.g., for satisfying dimensionality requirements). Let us denote
the fundamental solution by u(R0t0)

(R − R0, t − t0) (usually called the Green function).
Now, let us assume that the seismic focus has a structure, both in space and time. This
structure may be represented as a linear superposition of localized sources, i.e., the force
density is represented as

F(R, t) = ∑
i

s(Riti)
δ(R− Ri)δ(t− ti) . (1)

It is easy to see that the solution corresponding to the source F(R, t) is given by the
convolution

U(R, t) = ∑i u(Riti)
(R− Ri, t− ti) =

=
∫

dR′dt′u(R′t′)(R− R′, t− t′)∑i δ(R′ − Ri)δ(t′ − ti) .
(2)

By deconvoluting this equation, we may find out the structure of the seismic focus. The
deconvolution is made by fitting the series of fundamental solutions u(Riti)

(R− Ri, t− ti)
to U(R, t), where Ri, ti and s(Riti)

are fitting parameters.
The tensorial force density acting in a localized seismic focus is [6,7]

Fi(R, t) = MijTδ(t− t0)∂jδ(R− R0) , (3)

where Mij is the (symmetric) tensor of the seismic moment, i, j denote cartesian coodinates
and T is the (short) duration of the seismic activity in the focus. We call the earthquakes
produced by this force elementary earthquakes. We note that the force density given by
this equation leads to a vanishing total force and a vanishing torque. It is a representation
of what is called usually the double-couple force [9] (p.60, exercise 3.6). The problem of
determining the seismic waves produced by this force is similar to the Stokes problem with
the force source fiTδ(t− t0)δ(R− R0) [12], where the force components fi are replaced by
the operator Mij∂j. Since this operator does not commute with the coordinates, we cannot
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simply apply it to the Stokes solution, such that we need to rederive the solution for the
force source given by Equation (3).

3. Seismic Waves

The elastic wave equation for a homogeneous and isotropic body (Navier-Cauchy
equation) is

ü− c2
t ∆u− (c2

l − c2
t )grad divu = f , (4)

where u is the displacement, cl,t are the velocities of the longitudinal and transverse waves
and fi = Fi/ρ, with Fi given by Equation (3) and ρ the density of the body. The solution
of this equation can be obtained by using the well-known Helmholtz decomposition u =
gradΦ + curlA, divA = 0 and f = gradφ + curlH, divH = 0, where the potentials satisfy
the Poisson equations ∆φ = div f , ∆H = −curl f and the wave equations Φ̈− c2

l ∆Φ = φ,
Ä− c2

t ∆A = H. These equations are solved by means of the Kirchhoff formula for retarded
radiation, e.g., by using

Φ(R, t) =
1

4πc2
l

∫
dR

′ φ(t− | R− R
′ | /cl , R′)∣∣R− R′
∣∣ . (5)

In applying this formula, redundant terms appear in the potentials Φ and H, caused by
the singular derivative of the modulus function

∣∣∣R− R
′
∣∣∣. This ambiguity is similar to the

unphysical constant potential produced by the solution of the Poisson equation inside a
sphere with a surface electrical charge. The elimination of these unphysical contributions
requires a regularization of the solution [13]. The regularized solution u = un + u f consists
of near-field displacement waves

un
i = − T

4πρc2
t

Mijxj
R3 δ(t− R/ct)+

+ T
8πρR3

(
Mjjxi + 4Mijxj −

9Mjkxixjxk
R2

)
·

·
[

1
c2

l
δ(t− R/cl)− 1

c2
t
δ(t− R/ct)

] (6)

and the far-field displacement waves

u f
i = − T

4πρc3
t

Mijxj
R2 δ

′
(t− R/ct)+

− T
4πρ

Mjkxixjxk
R4

[
1
c3

l
δ
′
(t− R/cl)− 1

c3
t
δ
′
(t− R/ct)

]
,

(7)

where R stands for | R− R0 | and t for t− t0 [7]. In these equations the δ(t− R/cl,t) may be
viewed as a function h(t− R/cl,t) with the support of the order ∆t = T (∆Rl,t = cl,tT) and
magnitude 1/T, where ∆Rl,t are of the order of the dimension of the focus (with volume
' l3). Similarly, the magnitude of the function h

′
(t− R/cl,t) is of the order 1/T2.

The far-field waves given by Equation (7) are spherical-shell waves propagating with
velocities cl,t, with longitudinal and transverse polarizations, respectively, with a scissor-
like shape; their amplitudes go like 1/R for R � l. A qualitative sketch of these waves,
together with the mainshock is shown in Figure 1. These waves correspond to the P
(longitudinal) and S (transverse) seismic waves, generated by an elementary earthquake.
We call them primary waves. It is convenient to introduce the unit vector n = R/R along
the propagation direction and the notations Mii = M0 (the trace of the tensor of the seismic
moment), Mi = Mijnj (the seismic-moment vector) and M4 = Mijninj (the unit quadratic
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form of the seismic-moment tensor). The amplitudes of the far-field waves (as given by
Equation (7)) can then be written as

v f
l =

1
4πρc3

l TR
M4n , v f

t =
1

4πρc3
t TR

(M −M4n) . (8)

Similarly, the near-field waves look like spherical shells propagating with velocities cl,t,
with mixed polarizations. Their amplitudes of the near-field waves (Equation (6)) can be
written as

vn(cl) =
1

8πρc2
l TR2 [(M0 − 9M4)n + 4M] ,

vn(ct) = − 1
8πρc2

t TR2 [(M0 − 9M4)n + 6M]

(9)

for waves which propagate with velocities cl,t. The longitudinal and transverse parts of
these waves are

vn
l (cl) =

1
8πρc2

l TR2
(M0 − 5M4)n , vn

t (cl) =
1

2πρc2
l TR2

(M −M4n) (10)

and
vn

l (ct) = −
1

8πρc2
t TR2

(M0 − 3M4)n , vn
t (ct) = −

3
4πρc2

l TR2
(M −M4n) . (11)

These amplitudes decrease like 1/R2 for R� l.

O

P

S

MS

t

Figure 1: A qualitative sketch of scissor-like P and S seismic waves (indicated by arrows)
and the seismic main shock (MS), vs time t.
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Figure 1. A qualitative sketch of scissor-like P and S seismic waves (indicated by arrows) and the
seismic main shock (MS), vs. time t.

A spherical-shell wave has a thickness of the order ∆R = cT, where c is a generic
notation for wave velocities. It affects a circular epicentral region with radius d on Earth’s
surface. For a focus placed at depth h the radius d is given by (h + ∆R)2 = h2 + d2,
i.e., d '

√
2h∆R (for ∆R � h). For instance, for h = 100 km and ∆R = 3 km we get

d ' 24 km. This epicentral displacement lasts approximately ∆t ' ∆R/c, e.g., ∆t ' 1 s for
c = 3 km/s. Thereafter, the spherical-shell wave (primary wave) propagates on Earth’s
surface with a circular wavefront. The points on Earth’s surface where the seismic wave
arrives become sources of secondary elastic waves, propagating back in the Earth and on
Earth’s surface. Their cummulative effect on Earth’s surface look like an abrupt wall with
a long tail [7]. Specifically, the surface displacement in cylindrical coordinates behaves
like ur,ϕ ∼ r/(c2τ2 − r2)3/2, uz ∼ 1/r(c2τ2 − r2)3/2, where r is the radial corodinate on
Earth’s surface (assumed a plane surface) and τ is the time from the moment when the
wave touched the epicentre. This is the mainshock, as recorded in typical seismograms.
A primary wave propagates on Earth’s surface with a (non-uniform) velocity larger than
the elastic-wave velocity of the mainshock, such that there exists a time delay between
the arrival of the primary wave and the arrival of the mainshock, which laggs behind the
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primary wave. The formulae given above for the amplitudes of these secondary waves are
valid for a limited range of epicentral distances centered on r ∼ h. Their singularities at
cτ = r are smoothed out by the non-uniform velocity, e.g., c2τ2 − r2 −→ h2 for cτ − r ' 0
and the time delay is of the order h2/cr for h� r [7].

4. Seismic Moment

The amplitudes of the primary P and S waves (Equation (8)) measured at Earth’s
surface can be used to determine the tensor of the seismic moment and earthquake pa-
rameters like energy, magnitude, fault orientation, the magnitude of the fault slip, and to
estimate the duration of the seismic activity in the focus and the dimension of the focus [10].
This is achieved by using the energy conservation in the propagation of the seismic waves,
the work done by the focal forces and the Kostrov representation of a shearing fault. The
results are comparable with the results produced by the currently used methods [14–19].
For instance, by using this method, the estimated magnitude of the Vrancea earthquake of
28 October 2018 was 5.3, while the current method gave 5.5 (as reported by the Institute of
Earth’s Physics, Magurele in Romanian Earthquake Catalogue, ROMPLUS (2018)) [20,21].
In addition, this information can be used to get an estimate of the near-field waves, accord-
ing to Equation (9) (the Kostrov representation leads to a vanishing trace M0 = 0 of the
seismic-moment tensor). Similarly, the method can be applied to explosions, where the
tensor of the seismic moment is diagonal (Mij = −Mδij) [10]. For orientative purposes it
is worth giving here a recipe for a qualitative estimate of these parameters. The duration
of the seismic activity in the focus can be estimated by T =

√
2Rv/c, where v is a generic

amplitude of the primary waves measured at distance R form the focus on Earth’s surface,
and c is a generic elastic-wave velocity (e.g., c = 3− 7 km/s). The volume of the focal
region is V = π(2Rv)3/2, the released energy is of the order E = µV, where µ is the Lame
coefficient, and the magnitude of the seismic moment is (Mij)

1/2 = 2
√

2E. The well-known
Hanks-Kanamori relationship lg(Mij)

1/2 = 1.5Mw + 16.1 provides the magnitude Mw [10].
Another method of getting information about the seismic-moment tensor is given

here, by using the quasi-static deformations produced by a tensorial focal force in near-field
epicentral zones of the seismogenic regions.

A continuous accumulation of tectonic stress may be gradually discharged, to some
extent and with intermittence, causing quasi-static crustal deformations of Earth’s surface
in seismogenic zones [22–28]. Measurements of these deformations may give, besides
qualitative information about the seismic activity, an estimation of the depth of the focus
and the focal volume, as well as an opportunity of estimating the tensor of the seismic
moment for a shearing fault.

The static deformations produced by a tensorial point force density f in a homogeneous
isotropic elastic half-space are given by the equation of elastic equilibrium

∆u +
1

1− 2σ
grad divu = −2(1 + σ)

E
f , (12)

where u is the displacement vector (with components ui, i = 1, 2, 3), E is the Young modulus
and σ is the Poisson ratio. The components of the force density are given by

fi = Mij∂jδ(r− r0) , (13)

where r0 is the position of the focus and Mij is the tensor of the seismic moment. It is
convenient to write f = −[2(1 + σ)/E]f and Mij = −[2(1 + σ)/E]Mij (reduced force and
reduced seismic moment). Equation (12) is solved for a half-space z < 0, with free surface
z = 0, the position of the focus being r0 = (0, 0, z0), z0 < 0 (epicentral frame); we use the
radial coordinate ρ = (x2 + y2)1/2 with in-plane coordinates x, y and notations x1 = x,
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x2 = y, x3 = z. The components of the displacement vector of the surface z = 0 are given
by [6]

2π · uα = −Mαβ I(1)β + Mα3 I(0)−

− 1
2 Mβγ∂β∂γ[2σI(3)α − z0 I(2)α ]−

−z0M3β∂β I(1)α + 1
2 M33[2σI(1)α + z0 I(0)α ] ,

(14)

and
2π · u3 = − 1

2 Mαβ∂β[(1− 2σ)I(2)α + z0 I(1)α ]+

+z0M3α I(0)α + 1
2 M33[(1− 2σ)I(0) − z0

∂
∂z0

I(0)] ,
(15)

where
I(0) = − z0

r3 , I(1) = 1
r , I(2)α = − xα

r(r+|z0|) ,

I(3)α = − xα
r+|z0| ,

(16)

I(n)α = ∂α I(n) (n = 0, 1, 2, 3) and r = (ρ2 + z2
0)

1/2; we use α, β, γ = 1, 2. The solution can
be compared with previous results [29], obtained by using particular cases of the Mindlin
solution.

The components uα given by Equation (14) are vanishing for ρ −→ 0 and go like 1/ρ2

for ρ −→ ∞; they have a maximum value for ρ of the order | z0 |. The component u3 goes
like 1/z2

0 for ρ −→ 0 and 1/ρ2 for ρ −→ ∞. It is convenient to give these displacement
components for ρ close to zero, i.e., in the seismogenic zone (close to a presumable epicentre).
We get

uα = 1
16π

[
4(1− 2σ)M33 − (3 + 2σ)M0

] xα
|z0|3 +

+ 1
8π (1− 2σ)

Mαβxβ

|z0|3 + ... ,

u3 = 1
8πz2

0

[
2(3− 2σ)M33 − (1 + 2σ)M0

]
+

+ M3αxα

2π|z0|3 + ... ,

(17)

where M0 = Mii is the trace of the tensor Mij.
A simplified numerical estimation of the unknowns (components of the seismic mo-

ment) can be obtained as follows. We assume M0 = 0 (as for a shearing fault), replace all the
components of the seismic-moment tensor in Equation (17) by a mean value M and average
over the orientation of the vector ρ; we denote the resulting u3 by uv (vertical component)
and introduce uh (horizontal component) by uh =

(
u2

1 + u2
2
)1/2; we get approximately

uh '
(1− 2σ)

∣∣M∣∣
4π

ρ

| z0 |3
, uv '

(3− 2σ)M
4πz2

0
; (18)

hence, we get immediately the depth of the focus

| z0 |'
1− 2σ

3− 2σ
|uv|/(∂uh/∂ρ) (19)

and the mean value M = 4πz2
0uv/(3− 2σ) of the (reduced) seismic moment. Making use

of Mij = −[2(1 + σ)/E]Mij, we have

Mav ' −
2πE

(1 + σ)(3− 2σ)
z2

0uv (20)
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for the mean value Mav of the seismic moment Mij (Equation (18)). Since the small dis-
placement values uh, uv may be affected by errors, a mean value of the seismic moment
may be viewed as satisfactory. For Mav = 1022 dyn · cm (which would correspond to an
earthquake with magnitude Mw = 4 by the Hanks-Kanamori law lg Mav = 1.5Mw + 16.1),
Young modulus E = 1011 dyn/cm2, σ = 0.25 and depth | z0 |= 100 km we get a vertical
displacement uv ' 1 µm; we can see that the static surface displacement is, indeed, very
small. A reliable determination of such quasi-static diplacemenents may raise difficulties.
The seismicity accounts for a very small fraction of crustal deformation [30].

A rough estimate for the elastic energy stored by the static deformation is given by
E ' 4πz2

0E | uv |' 2(1 + σ)(3− 2σ)|Mav|; it is also given by E ' µV, where µ is the
Lame coefficient and V is the focal volume (µ = E/2(1 + σ); the other Lame coefficient
is λ = Eσ/(1− 2σ)(1 + σ)); making use of the approximations introduced above, we
get V ' 8π(1 + σ)z2

0 | uv |. For | z0 |= 100 km and uv = 1 µm (σ = 0.25) we get a
volume V ' 105π m, i.e., a linear dimension l ' 500 m (noteworthy, a static deformation
may diffuse, such that the corresponding focal volume is larger than the focal volume
of a sudden earthquake discharge). Similarly, from Equation (17) we get an estimate
uij ∼ V/ | z0 |3 for the surface strain; using the numerical data above, it is extremely small,
of the order 10−10.

For more specific information we make use of the general results of static deforma-
tions [6]; the displacement components given by Equation (17) can be written in a general
form (for M0 = 0) as

ui = {[2(3− 2σ)M(n)
4 − (9− 10σ)M(nv)

4 ]ni−

−4M(n)
4 vi + (1− 2σ)Mijvj} 1

8πz2
0

,
(21)

where
n = (xα, z− z0)/ | z0 | , v = (xα, z)/ | z0 | ,

M(n)
4 = Mijninj , M(nv)

4 = Mijnivj ;
(22)

in Equations (21) and (22) we retain only contributions linear in xα and in the limit z→ 0.
Within these restrictions the form given by Equation (21) is unique. In these equations

Mi = Mijvj '
Miαxα

| z0 |
(23)

are the components of a vector and

M(n)
4 ' 2M3 + M33 , M(nv)

4 ' M3 (24)

are scalars. Taking the scalar product nu ' u3 in Equation (21), we get

M(n)
4 =

4πz2
0u3 + 4(1− σ)M3

3− 2σ
; (25)

inserting this M(n)
4 and M(nv)

4 ' M3 in Equation (21) we are led to

uα =
1− 2σ

3− 2σ

xα

| z0 |
u3 +

1− 2σ

8πz2
0

Mα (26)

(and the identity u3 = u3). This equation gives

Mα = 8πz2
0

(
1

1− 2σ
uα −

1
3− 2σ

xα

| z0 |
u3

)
(27)
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(and Mα = −[E/2(1 + σ)]Mα) as functions of the measured quantities uα, u3 and xα; M(nv)
4

and M(n)
4 are given by Equations (24) and (25) as functions of u3 and the parameter M3,

which remains undetermined. This is the maximal information provided by measuring
the static displacement in a seismogenic zone; the parameter z0 can be estimated from
Equation (19).

Further on, we assume that the components Mα of the vector M are determined
from data, according to Equation (27); the component M3 will be determined shortly. The
scalars M(nv)

4 ' M3 and M(n)
4 are given by Equations (24) and (25), respectively; they

depend on the parameter M3. Parameters z0 (focus depth) and the focal volume V remain
undetermined. Order-of-magnitude estimations given above (Equation (19) and below)
may be used to this end.

In order to determine the components of the seismic moment we use the Kostrov
expression derived for a shearing fault [10]; it is given by

Mij = M0(siaj + sjai) , i, j = 1, 2, 3 , (28)

where M0 = 2µV and si, ai are the components of two orthogonal unit vectors s and a: s is
normal to the fault plane and a is directed along the fault displacement (fault sliding). We
can see that Equation (22) implies M0 = Mii = 0. We assume that the measured data of
the static displacement satisfy this condition. In addition, we assume that M0 is a known
parameter.

We introduce the scalar products A = av and B = sv and write

As + Ba = m , Bs + Aa = v (29)

from Equation (28), where m = M/M0; we solve this system of equations for s and a with
the conditions s2 = a2 = 1, sa = 0. We note that Equation (28) is invariant under the
symmetry operations s ←→ a and s, a ←→ −s, −a (and s ←→ −a); consequently, it is
sufficient to retain one solution of the system of Equation (29) (it has multiple solutions), all
the others being given by these symmetry operations. We get

s = A
A2−B2 m− B

A2−B2 v , a = − B
A2−B2 m + A

A2−B2 v (30)

and
A2 + B2 = m2 = v2 , 2AB = v2m4 , (31)

where m4 = mv/v2 = Mijvivj/v2M0. From m2 = v2 we get the component M3, as given by

M2
3 =

(
M0
)2

v2 −M2
α ; (32)

we may take

A = v

√√√√1 +
√

1−m2
4

2
, B = sgn(m4) · v

√√√√1−
√

1−m2
4

2
(33)

as a solution of the system of Equation (31); this solves the problem of determining the seis-
mic moment from the measurements of the surface static displacement. From Equation (28)
the seismic-moment tensor is given by

Mij =
M0

v2(1−m2
4)

[
mivj + mjvi −m4

(
mimj + vivj

)]
; (34)

the vector v is known from Equation (22) (z → 0, v = ρ/ | z0 |) and the vector m is
known from Equations (27) and (32) (with z0 and M0 as known parameters); the scalar m4
is given by m4 = Mαvα/v2M0. The component M3 does not enter the expression of m4; it is
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included in Mij. The quadratic form Mijxixj = const is a hyperbola; its asymptotes indicate
the fault plane (vector s) and the fault slip (vector a).

The isotropic case Mij = −Misδij, where Mis = 2(2µ + λ)V, implies a surface dis-
placement

u =
Mis(1 + σ)

4πz2
0E

[(3− 10σ)n− (3− σ)v] , (35)

the vector M being given by M = −Misv. The energy can be estimated as E = Mis/2 =
4πz2

0E | uv |, which leads to a focal volume V = [4π(1 + σ)(1− 2σ)/(1− σ)]z2
0 | uv |.

5. Concluding Remarks

The solutions of the elastic wave equation and the equation of elastic equilibrium
in a homogeneous and isotropic body are presented, for a tensorial point force acting in
a seismic focus localized both in space and time. The solutions exhibit both the far-field
elastic waves, identified as primary P and S seismic waves, and the static deformations,
discussed herein mainly on Earth’s surface. The mainshock of secondary waves produced
by the primary waves arrived at Earth’s surface is briefly discussed, as well as the procedure
of determining the tensor of the seismic moment and the other earthquake parameters
(like energy, magnitude, fault orientation, fault slip, duration of the seismic activity in
focus and an estimated dimension of the seismic focus). A procedure of extracting such
information from the measurements of the crustal (quasi-) static deformations made on
Earth’s surface is also presented. We may envisage that such a procedure, in spite of its
challenging difficulties, may become applicable.

The seismic waves and the static deformations discussed in this paper are derived
for a homogeneous and isotropic elastic body. While this may be viewed as a reasonable
assumption for a large-scale description, it is a serious limitation for the near-field scale,
where the local inhomogeneities (local site effects) play an important part.
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