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Abstract: The rustbelt states play a key role in determining the vote turnout in the U.S. elections. The
current study attempts to utilize the spatial fuzzy C-means method to analyze the U.S. presidential
election in the rustbelt states in 2020. We intend to explore that the U.S. presidential election had
related factors, including COVID-19-related factors, such as the mask-wearing percentage and the
COVID-19 death tolls in each county of the rust belt states. Contrary to the related literature,
the study uses education level, number of house units, unemployment rate, household income,
COVID-19-related factors and the share of Republican’s votes in the presidential election. The results
indicate that spatial generalized fuzzy C-means analysis has better clustering results than the C-means
clustering method. Moreover, the COVID-19 death toll in each county did not affect the Republican’s
vote share in the rustbelt states, while the mask-wearing behavior in some regions had a negative
impact on the Republican’s vote share.

Keywords: spatial fuzzy C-means; COVID-19; rustbelt states
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1. Introduction

The U.S. presidential election in 2020 was influenced by the COVID-19 pandemic,
including increasing infections, death tolls, and lockdowns. The previous literature indi-
cated that political polarization was aggravated due to intense fear during the disaster [1,2].
People tended to search for assuage by insisting on their conservative political viewpoints
and supporting the ruling party, while other scholars believed that some voters would
punish the political elite for worse management during the natural or man-made disaster.
Since COVID-19-related policies were created in a very short period of time, without full
deliberation, it was possible to arouse public discontent [3]. People were more supportive
of their governments during the early stage of the COVID-19 pandemic [4]. However, the
evaluations of the policies about the pandemic were influenced by two polarized mindsets.
Some voters chose to punish the politicians for the conditions caused by the pandemic,
which were out of their control, while some voters were attentive to the political elites’
reactions and determined their feelings accordingly [5].

The previous literature about the U.S. presidential election in 2020 focused on the
effects of COVID-19 on the U.S. presidential election results. Hart (2021) stated that
the COVID-19 pandemic seemed to have decreased the support for Trump among the
Democrats, while it increased for independent voters [6]. Baccini et al. [7] pointed out
that COVID-19-related factors negatively affected Donald Trump’s re-election, and the
effect was stronger in urban areas. They also observed that COVID-19 had a positive
effect on the voters’ mobilization for Joe Biden. The rustbelt states are traditionally “swing
states” in the U.S. presidential elections, including Illinois, Wisconsin, Indiana, Michigan,
Ohio, West Virginia, Pennsylvania, and New York. Geographical and racial divergences
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increased in the counties of rustbelt states in the past five years [8]. The geographical
factors enable these divergences to become more visible, and people tend to live in more
politically polarized conditions [9]. The voting results of rustbelt states have a pivotal
influence on the whole country. However, there are fewer instances in the literature about
the voting results’ analysis of the rustbelt states. Gimpel [10] pointed out that some counties
in rustbelt states changed their support to the Democrats in the presential election in 2020.
The influencing factors of the voting results need to be examined. In order to analyze the
topic more thoroughly, we attempt to analyze the COVID-19 pandemic effects along with
the regional factors’ influence, the related economic variables, and the Republican’s support
rate in the 2020 U.S. presidential election.

The structure of this research is as follows: the Research Method Section presents
our research design and related descriptive statistics of the variables. The Discussion
Section presents the results of the research model. The research findings are listed in the
Conclusions Section.

2. Methodology
2.1. Research Method

The current study used the spatial fuzzy C-means clustering method to analyze the
influencing factors of COVID-19 on the U.S. presidential election. In order to explore the
impacts of COVID-19 and other factors, such as social and geographical factors, as the
mentioned in the Introduction, the study also used educational level, number of house units,
unemployment rate, and household income variables to create the clustering. The previous
literature utilized daily experience sampling (ESM) to analyze the impact of COVID-19 on
employee uncertainty [11]. Di Nardo et al. (2019) utilized the literature review method
to provide useful information about COVID-19 infection on neonates and children [12].
Regarding the fuzzy clustering approach, Indelicato et al. (2022) used the method with the
fuzzy TOPSIS model to analyze the determinants of immigrants in Cuenca, Ecuador [13].
Compared to the COVID-19-related research about its effects on U.S. elections, the study
considered spatial factors and attempted to describe the regional differences under the
influence of these variables.

2.2. Data Description

The study explored the influencing factors of the pandemic on the 2020 U.S presiden-
tial election. The study used the Republican’s voting share (X1) in the U.S. presidential
election in 2020 as one of the variables related to the U.S. presidential election. The data
were obtained from the web repository (https://github.com/tonmcg/US_County_Level_
Election_Results_08-20 (accessed on 6 August 2022)); it collected the 2020 election results
at the county level, which were scraped from the results published by Fox News, Politico,
and the New York Times.

In order to measure mask-wearing behavior in the rustbelt states (X2), the study
used the dataset collected by the survey firm, Dynata. Dynata surveyed 250 thousand
respondents in the U.S. between 2 and 14 July 2020. The survey asked the respondents
whether or not they wore face masks often in public. The responses included “always”,
“frequently”, “sometimes”, “rarely”, and “never”, according to the descending frequency.

The variables (X3, X4, X5, X6) were obtained from the dataset of the U.S. Census Bureau.
These variables were released on a flow basis throughout each year.

The study also used the death toll (X7) before the U.S. presidential election as a COVID-
19-related variable. Other variables included education level and household economic
condition. The descriptive statistics of all the variables are listed in Tables 1 and 2:

https://github.com/tonmcg/US_County_Level_Election_Results_08-20
https://github.com/tonmcg/US_County_Level_Election_Results_08-20
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Table 1. All variables used for clustering.

Variable Meaning

X1 Republican’s share of votes in U.S. presidential election

X2
The share of respondents who thought they wore face
masks often

X3 The number of housing units

X4
The number of residents who were high-school
graduates or above

X5 Unemployment rate

X6 Household income

X7 Death toll of COVID-19 cases

Table 2. Descriptive statistics of all variables.

Statistic N Mean St.Dev Min. Max.

X1 669 0.662 0.127 0.120 0.900
X2 669 0.536 0.139 0.190 0.880
X3 669 52,630.64 135,268.2 1107 2,204,019
X4 669 34,032.23 84,810.53 616 1,314,995
X5 669 4.591 1.273 2.400 13.00
X6 669 52,867.07 12,235.31 26,278 115,301
X7 669 71.175 306.17 0 5517

2.3. C-Means Clustering

Initially, the study used the classical C-means method to create the fuzzy unsupervised
classification. The fuzziness degree (m) was set at 1.5 in order to obtain the satisfied results.
The classical C-means method includes the following two equations. The first equation is
the updated values of membership in each iteration of uik [14]:

uik =
(||xk − vi||2)

−1
m−1

∑c
j=1 (

∣∣∣∣xk − vj
∣∣∣∣2) −1

m−1
(1)

The center of the cluster is as follows:

vi =
∑N

k=1 um
ik(xk)

∑N
k=1 um

ik

(2)

In Equations (1) and (2), xk represents the observation of k’s value, vi is the value of
the center of the cluster i, c is the cluster number, and m is the index of fuzziness.

2.4. Fuzzy C-Means Clustering

Fuzzy C-means clustering is an algorithm that permits a data point to pertain to two or
more clusters. Let X = {x1, x2, . . . , xn} represent an image with n pixels, where xi is the gray
value of the ith pixel. The objective function of the standard FCM algorithm is as follows:

J = ∑K
k=1 ∑n

i=1 um
ki ||xi − vk||2 (3)

In Equation (3), the center of the kth cluster is vk (1 ≤ k ≤ K), and uki (1 ≤ k ≤ K,
1 ≤ i ≤ n) is the membership degree function value of the ith pixel, which pertains to the
kth cluster. uki also needs to meet the requirements of the following constraints:

∑K
k=1 uki = 1, uki ∈ [0, 1], 0 ≤∑n

i=1 uki ≤ n (4)
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In Equation (3), the distance between xi and vk is used in the Euclidean form, and
parameter m (m > 1) is a weighting parameter that relates to the level of fuzziness and the
resulting partition. The minimization of the objective function in Equation (3) can obtain
the updated equations of the membership degree function uki and the cluster center vk
as follows:

uki =
1

∑k
i=1 (

||xi−vk ||2

||xi−vl ||2
)

1
m−1

(5)

vk =
∑n

i=1 um
ki xi

∑n
i=1 um

ki
(6)

The goal of these functions is to obtain suitable clusters for the data points.

2.5. Spatial Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM) has shortcomings due to its sensitivity to noise.
Some algorithms were developed to overcome this shortcoming by utilizing the spatial
information obtained from the neighborhood window around each pixel. Mean spatial
information and median spatial information are two prevalent types of local information.
The mean spatial information of the ith pixel is denoted as follows [15]:

δi =
1
|Si|∑pεSi

xp (7)

In Equation (7), Si is the set of neighboring pixels in a window centered at the ith pixel,
and |Si| represents its cardinality. The median spatial information can be represented as:

εi = median
{

xp
}

, pεSi (8)

Most of the FCM algorithms utilize the above-mentioned local spatial information in
the objective function; however, FCM algorithms with local spatial information can obtain a
better image segmentation performance with a low noise level. The local spatial information
obtained from the near pixels of a pixel is not efficient due to possible contamination. In
fact, there are many pixels with a similar neighborhood configuration in an image. It is
more beneficial to utilize pixels with a similar neighborhood configurations to the given
pixel to obtain the spatial information than only using the neighboring pixels of the given
pixel. Such types of spatial information can be taken as non-local spatial information. The
non-local spatial information for the ith pixel xi is calculated by the following equation [16]:

xi = ∑j∈wr
i

wijxj (9)

In Equation (9), ωr
i represents the r × r search window centered at the ith pixel. The

non-local spatial information of the ith pixel is computed by using the pixels in the window.
The weight between the ith and jth pixels can be denoted as wij

(
j ∈ wr

i
)
, 0 ≤ wij ≤ 1 and

∑j∈wr
i

wij = 1. The weight wij is defined as follows:

wij =
1
Zi

exp(−||x(Ni)− x
(

Nj
)
||22,σ/h2) (10)

In Equation (10), h means the filtering degree parameter and directs the decreasing
weight function wij, and Zi = ∑j∈wr

i
exp(−||x(Ni) − x

(
Nj

)
||22,σ/h2) is the normalizing

constant. The weight wij depends on the similarity between the ith and jth pixels. The
similarity is computed by the Gaussian weighted Euclidean distance ||x(Ni)− x

(
Nj

)
||22,σ .

The positive term σ is the Euclidean distance, which means the standard deviation of the
Gaussian kernel. x(Ni) is the gray level vector with an s × s square neighborhood Ni
centered at ith pixel.
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Fuzzy clustering algorithm with spatial information uses the spatial information for
individual pixels to determine the spatial constant term, and then obtains the spatial
constraint to the objective function of FCM.

3. Results
3.1. Fuzzy C-Means and Generalized Fuzzy C-Means Clustering

The study used the classical K-means to determine the number of clusters. According
to Figure 1, the four clusters can explain almost 40% of the original data variance.
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Figure 1. Impact of the number of groups on the explained variance.

Then, the study used the “fclust” package of R language to analyze the quality of the
classification [17]. The study also utilized the “geocmeans” package of the R language
to compute the generalized version of the c-means algorithm [18]. The algorithm can
accelerate convergence and obtain less fuzzy results by adjusting the membership matrix
at each iteration. It needs an extra beta parameter controlling the effectiveness of the
modification. The modification only influences the formula updating the membership
matrix.

uki =
(
∣∣∣∣xk − vj

∣∣∣∣2 − βk)
−1

m−1

∑c
i=1 (

∣∣∣∣xk − vj
∣∣∣∣2 − βk)

−1
m−1

(11)

In Equation (11), βk = min(||xk − v||2) and 0 ≤ β ≤ 1. In order to choose an adequate
value for this parameter, the study sought all the possible values between 0 and 1 with a
step of 0.05. The results of the related index were obtained according to the ascending β
values in Table 3.

Table 3. Some indices with ascending β values.

Beta Silhouette Index Xie and Beni Index Explained Inertia

0 0.287 2.476 0.161
0.05 0.29 2.282 0.171
0.1 0.294 2.113 0.181

0.15 0.298 1.964 0.191
0.2 0.3 1.83 0.201

0.25 0.303 1.706 0.212
0.3 0.307 1.584 0.223

0.35 0.313 1.47 0.235
0.4 0.315 1.374 0.247

0.45 0.315 1.292 0.26
0.5 0.292 1.478 0.265
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Table 3. Cont.

Beta Silhouette Index Xie and Beni Index Explained Inertia

0.55 0.289 1.41 0.277
0.6 0.286 1.349 0.289

0.65 0.283 1.295 0.301
0.7 0.281 1.249 0.313

0.75 0.277 1.211 0.325
0.8 0.273 1.182 0.337

0.85 0.268 1.163 0.349
0.9 0.259 1.157 0.361

0.95 0.249 1.172 0.371
1 0.235 1.296 0.374

According to Table 1, the study chose beta = 0.8, maintained a satisfied silhouette index,
increased the Xie and Beni index, and explained inertia. The results of GFCM (generalized
version of fuzzy C-means clustering) and FCM are listed in Table 4.

Table 4. Comparison of the indices between GFCM and FCM.

GFCM FCM

Silhouette index 0.273 0.287

Partition entropy 0.323 0.951

Partition coeff 0.837 0.486

XieBeni index 1.182 2.476

Fukuyama Sugeno index 1096.84 1706.23

Explained inertia 0.337 0.161

The results indicate that the GFCM provides a less fuzzy solution (with higher ex-
plained inertia and lower partition entropy), but keeps a good silhouette index and a lower
Xie and Beni index. The study created two membership matrices maps and the most likely
group for each observation. The study used the function map clusters from geocmeans
in R language. We set a threshold of 0.45. If an observation only obtained values below
this probability in a membership matrix, it was marked as “undecided” (represented by
transparency on the map).

In Figure 2, the left-hand-side graph was the fuzzy C-means clustering result. The
right-hand-side graph was the generalized fuzzy C-means clustering result. We can observe
that the right-hand-side graph had fewer undecided parts.
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3.2. Spatial C-Means and Generalized C-Means

The study used the SFCM function of R language to execute spatial c-means clustering.
The first step was to determine a spatial weight matrix indicating the observations that
were neighbors and the strength of their relationship. The study attempted to use a basic
queen neighbor matrix (built with the spdep package of R language). The matrix should be
row-standardized to ensure that the interpretation of all the parameters remains clear.

The two following equations indicate how the functions renewing the condition of the
membership matrix and the centers of the clusters are modified.

uik =
(||xk − vi||2 + α||xk − vi||2)

−1
m−1

∑c
j=1 (||xk − vi||2 + α||xk − vi||2)

−1
m−1

(12)

vi =
∑N

k=1 um
ik(xk + αxk)

(1 + α)∑N
k=1 um

ik

(13)

In Equations (12) and (13), x is the lagged version of x, and α ≥ 0.
The SFCM (spatial fuzzy C-means) can be taken as a spatially smoothed version of the

classical c-means, and alpha controls the degree of spatial smoothness. This smoothing can
be taken as an attempt to reduce the spatial overfitting of the classical c-means.

The study chose the best alpha value in order to reduce spatial inconsistency as much
as possible and to maintain a good classification quality. The relationship between the
spatial inconsistency and alpha value is shown in Figure 3.
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Figure 3. Link between alpha value and spatial inconsistency.

In Figure 3, the increasing alpha value results in the decrease in the spatial inconsistency.
In Figure 4, the explained inertia decreased when the alpha value increased and

again followed an inverse function. The classification searched for a compromise between
the original and lagged values. However, the loss was only 3% between alpha = 0 and
alpha = 2.
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According to Figures 5 and 6, as a larger silhouette index means a better classification,
and a smaller Xie and Beni index represents a better classification, the study intended to
retain the alpha = 0.25 value to provide a good balance between spatial consistency and
classification quality.
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3.3. Spatial Generalized Fuzzy C-Means (SGFCM)

In order to facilitate the clustering process of the SGFCM method, we needed to
determine the alpha and beta values of the following equation regarding the center of
the clusters.

uik =
(||xk − vi||2 − βk + α||xk − vi||2)

−1
m−1

∑c
j=1 (||xk − vi||2 − βk + α||xk − vi||2)

−1
m−1

(14)

The study attempted to use the multiprocessing approach to select the suitable alpha
and beta values. The impact of alpha and beta values on the various indices is shown
as follows:

Figures 7 and 8 indicate that some specific combinations of alpha and beta values
generate good results in the range of 0.3 < alpha < 0.7 and 0.4 < beta < 0.6. Figure 9 shows
that the selection of beta has no impact on spatial consistency.
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Regarding Figures 7–9, the study selected beta = 0.5 and alpha = 0.25, which obtained
better results for all the indices considered. Based on the alpha and beta values, the study
acquired the results of the SFCM and SGFCM results (see Table 5).
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Table 5. Comparison of the indices between SFCM and SGFCM.

SFCM SGFCM

Silhouette index 0.219 0.319

Partition entropy 1.043 0.682

Partition coeff 0.431 0.633

XieBeni index 5.008 1.394

Fukuyama Sugeno index 1824.58 1290.69

Explained inertia 0.134 0.248

sp consistency 0.276 0.262

The results of the SGFCM are better concerning the semantic and spatial aspects due
to the lower partition entropy, Xie Beni index, and Fukuyama Sugeno index, and higher
values of other indices.

The SFCM and SGFCM clustering maps are listed as follows.
According to Figure 10, the right-hand-side graph is the SGFCM clustering map. The

left-hand-side graph is the SFCM clustering map. We can observe that the undecided units
are less on the SGFCM clustering map.
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3.4. Comparison of the Four Algorithms

The study attempted to perform a thorough spatial analysis and compare the spatial
consistency of the four classifications (FCM, GFCM, SFCM, SGFCM) (see Table 6).

Table 6. Moran I index for the columns of the membership matrices among the four algorithms.

FCM GFCM SFCM SGFCM

Cluster 1 0.642 0.602 0.769 0.696
Cluster 2 0.349 0.187 0.501 0.66
Cluster 3 0.691 0.595 0.809 0.823
Cluster 4 0.205 0.14 0.674 0.73

The Moran I value according to the membership matrices were higher for SFCM and
SGFCM, representing strongaer spatial structures in the classifications.

The study also checked that the values of spatial inconsistency for SGFCM were sig-
nificantly lower than those of SFCM. The study used the previously mentioned 250 values
obtained by permutations; we could calculate a pseudo p-value = 0.032 > 1/250 = 0.004.
This means that the SGFCM algorithm did not have a predominant advantage over the
SFCM algorithm. However, the SGFCM clustering map indicated that the undecided points
were fewer than that of the SFCM.
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We can observe that the undecided parts were fewer as compared with Figures 2 and 10.

4. Discussion

The study attempted to utilize the spatial fuzzy C-means clustering method to analyze
the relationship among COVID-19-related factors and the vote share of Republicans in
the U.S. presidential election in the rustbelt states in 2020. The study found that spatial
generalized fuzzy C-means clustering (SGFCM) produced better results compared to the
other three algorithms according to Table 3. The study also found the SGFCM clustering
graph in Figure 10 presented better results because the uncertain parts (areas that did
not belong to any cluster) were fewer compared to the other clustering results shown in
Figure 2.

The descriptive statistics of the four clusters (Tables A1–A4) are listed in the Appendix A.
According to the four tables, we can conclude the four clusters are as follows:

(1) First cluster: the cluster had lower X1 (mean < 0.5), higher X2, higher X4, lower X5,
and higher X6 values. Other variables did not seem obvious. We can conclude that
people in this region were not inclined to support the Republican candidate, often
wore masks, had more high-school graduates or above, had a lower unemployment
rate, and a higher income. The first cluster included a little part of southeastern
Pennsylvania, New York state and other scatter parts of the rustbelt states.

(2) Second cluster: The cluster had higher X1 (mean > 0.5), higher X2, lower X4, lower
X5, and higher X6 values. Other variables did not seem obvious. We can conclude
that people in this region were inclined to support the Republican candidate, often
wore masks, had less high-school graduates, a lower unemployment rate, and higher
income. The second cluster included the larger part of New York state, most part of
Michigan and northern Illinois.

(3) Third cluster: The cluster had higher X1 (mean > 0.5), lower X2, lower X4, higher
X5, lower X6, and higher X7 values. This means that people in this region tended
to support the Republican candidate, wore masks less frequently, had less high-
school graduates or above, a higher unemployment rate, lower income, and higher
COVID-19 death toll. The cluster included some parts of Kentucky, West Virginia and
Ohio and other scatter parts of the rustbelt states.

(4) Fourth cluster: The cluster had higher X1 (mean > 0.5), lower X2, lower X4, lower
X5, higher X6, and higher X7 values. This means that people in this region tended to
support the Republican candidate, wore masks less frequently, had less high-school
graduates or above, a lower unemployment rate, higher income, and higher COVID-19
death toll. The cluster included the larger part of Indiana, Ohio and part of Illinois.

The results seem to slightly contrast with the previous literature. Warshaw et al. (2020)
found that COVID-19 fatalities decreased the support for Donald Trump in the 2020
presidential election [19]. However, our results show that the third and fourth clusters in
the rustbelt states have higher COVID-19 death tolls with higher Republican vote shares
and residents less inclined to wear face masks. Meanwhile, the second cluster had higher
Republican vote shares and the residents there often wore face masks, while the COVID-19
death toll seemed unimportant. We can conclude that the COVID-19 death toll in each
county did not affect the Republican vote shares in the rustbelt states, while the mask-
wearing behavior in some regions had a negative impact on the Republican vote shares.

According to Figure 11, we can observe that cluster 2 accounts for the largest area in
the rustbelt states. Cluster 1 accounts for the smallest area. The clustering results indicate
that the U.S. presidential election-related factors and COVID-19-related factors are closely
related to the clustering results. It enables the researchers in the related field to conduct
further studies.
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5. Conclusions

The present study intended to use the spatial fuzzy C-means clustering to analyze the
related factors of COVID-19 and the U.S. presidential election in the rustbelt states in 2020.
The study found that the spatial generalized fuzzy C-means (SGFCM) method produced
better clustering results. The SGFCM method divided the rustbelt states into four areas.
The results imply that the COVID-19 death toll in each county did not affect the Republican
vote shares in the rustbelt states, while the mask-wearing behavior in some regions had a
negative impact on the Republican vote shares. It is worth conducting further research.
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Data Availability Statement: The COVID-19-related data for the U.S. can be downloaded from
https://github.com/nytimes/COVID-19-data (accessed on 6 August 2022). The U.S. presidential elec-
tion results in each county can be downloaded from https://github.com/tonmcg/US_County_Level_
Election_Results_08-20/blob/f9b5f335ad1c66a7eba681539db49eec0c22787b/2020_US_County_Level_
Presidential_Results.csv (accessed on 6 August 2022). The education level and household economic
condition can be downloaded from https://www.census.gov/ (accessed on 6 August 2022).
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Appendix A

Table A1. Descriptive statistics for cluster 1.

X1 X2 X3 X4 X5 X6 X7

Q5 0.222 0.514 28 9872.6 2.9 46,288.2 7
Q10 0.27 0.549 67 16,480.8 3.2 49,515 19
Q25 0.37 0.641 198 41,764 3.4 58,222 45
Q50 0.446 0.742 379 132,127 3.8 66,270 81
Q75 0.533 0.788 501 211,597 4.2 86,108 103
Q90 0.614 0.82 596 347,971.4 4.9 94,521 153
Q95 0.678 0.842 632 522,061 5.4 100,887 165

Mean 0.448 0.71 342.689 168,655.4 3.901 70,973.15 80.35
Std 0.134 0.107 187.555 199,205.9 0.793 17,662.76 48.11

https://github.com/nytimes/COVID-19-data
https://github.com/tonmcg/US_County_Level_Election_Results_08-20/blob/f9b5f335ad1c66a7eba681539db49eec0c22787b/2020_US_County_Level_Presidential_Results.csv
https://github.com/tonmcg/US_County_Level_Election_Results_08-20/blob/f9b5f335ad1c66a7eba681539db49eec0c22787b/2020_US_County_Level_Presidential_Results.csv
https://github.com/tonmcg/US_County_Level_Election_Results_08-20/blob/f9b5f335ad1c66a7eba681539db49eec0c22787b/2020_US_County_Level_Presidential_Results.csv
https://www.census.gov/


Axioms 2022, 11, 401 13 of 14

Table A2. Descriptive statistics for cluster 2.

X1 X2 X3 X4 X5 X6 X7

Q5 0.417 0.449 49.4 4579.6 3.1 43,118 9
Q10 0.463 0.487 89 5836.6 3.3 46,262 15
Q25 0.539 0.54 198 11,116 3.8 49,767 37
Q50 0.605 0.612 368 20,204 4.4 53,901 77
Q75 0.674 0.723 510 41,229 4.9 60,121 115
Q90 0.729 0.79 608 68,550 5.5 66,521 155
Q95 0.762 0.827 633.6 109,462 5.7 73,006.8 174.2

Mean 0.599 0.627 356.193 35,019.47 4.415 55,596.35 79.845
Std 0.105 0.119 186.098 62,713.13 0.899 9592.194 52.128

Table A3. Descriptive statistics for cluster 3.

X1 X2 X3 X4 X5 X6 X7

Q5 0.576 0.341 29.4 2415 3.84 30,950 7
Q10 0.624 0.368 56 3297 4.2 33,218 13
Q25 0.693 0.409 155 5072 4.9 38,171 43
Q50 0.747 0.475 341 8354 5.6 43,457 81
Q75 0.787 0.54 518 13,670 6.4 48,182 129
Q90 0.83 0.611 604 25,221 7.4 51,812.2 169
Q95 0.856 0.641 631.6 34,390.8 8.3 55,443.8 195

Mean 0.734 0.481 334.757 14,615.75 5.743 43,457.84 88.095
Std 0.088 0.097 199.112 47,465.07 1.377 8146.738 57.705

Table A4. Descriptive statistics for cluster 4.

X1 X2 X3 X4 X5 X6 X7

Q5 0.555 0.285 35 3184.2 2.7 41,799.2 9
Q10 0.602 0.33 60 4188.8 2.98 44,913 21
Q25 0.673 0.392 146 6912 3.3 48,342 49
Q50 0.728 0.462 289 11,761 4 52,798 97
Q75 0.76 0.529 473 18,689 4.5 57,705 145
Q90 0.789 0.584 585 33,791.4 5.1 63,827.4 175.4
Q95 0.809 0.627 629.6 45,496 5.46 67,758 193

Mean 0.707 0.459 308.856 18,494.64 4.009 53,761.27 98.385
Std 0.084 0.106 190.401 46,181.82 0.91 8948.192 58.712
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