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Abstract: In this paper, a new class of the continuous distributions is established via compounding the
arctangent function with a generalized log-logistic class of distributions. Some structural properties
of the suggested model such as distribution function, hazard function, quantile function, asymptotics
and a useful expansion for the new class are given in a general setting. Two special cases of this
new class are considered by employing Weibull and normal distributions as the parent distribution.
Further, we derive a survival regression model based on a sub-model with Weibull parent distribution
and then estimate the parameters of the proposed regression model making use of Bayesian and
frequentist approaches. We consider seven loss functions, namely the squared error, modified squared
error, weighted squared error, K-loss, linear exponential, general entropy, and precautionary loss
functions for Bayesian discussion. Bayesian numerical results include a Bayes estimator, associated
posterior risk, credible and highest posterior density intervals are provided. In order to explore the
consistency property of the maximum likelihood estimators, a simulation study is presented via
Monte Carlo procedure. The parameters of two sub-models are estimated with maximum likelihood
and the usefulness of these sub-models and a proposed survival regression model is examined by
means of three real datasets.

Keywords: arctangent function; bayesian estimation; maximum likelihood; loss function; odd log-logistic
distribution; survival regression; statistical distribution
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1. Introduction

Distribution theory provides useful tools in describing and identifying the model of
occurred events and predicting next events. Recently, several generators of probability
distributions have been introduced by many researchers in the statistical literature. Some
well-known generators are the Marshall–Olkin generated (MO-G) by [1], beta-G by [2],
Kumaraswamy-G (Kw-G) by [3], Weibull-G by [4], exponentiated half-logistic-G by [5],
Lomax-G by [6], and polar-generalized normal distribution by [7], among others.

A favorite technique in expanding statistical distributions is the method introduced
by [8], who have introduced the generalized log-logistic (GLL-G) class of distributions.
The cumulative distribution (cdf) function of this class based on underline cdf G, is given by

Π(x; β) =
[

G(x)β + Ḡ(x)β
]−1
× G(x)β, (1)

where β > 0 and Ḡ(x) = 1− G(x) denote the survival function. This class has named
by Odd log-logistc (OLL-G) and several extensions of this class were introduced. Ku-
maraswamy Odd log-logistic due to [9], beta odd log-logistic due to [10], odd burr general-
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ized class due to [11], Topp–Leone odd log-logistic due to [12], generalized odd log-logistic
due to [13], new odd log-logistic due to [14] and odd log-logistic logarithmic by [15].

The purposes of this work are two fold. We first introduce a general and versatile class
of distributions in terms of compounding the arctan function and cdf defined in (1). This
model is referred to as the arctan odd log-logistic-G (ATOLL-G) distribution. The second
purpose of this work lies in the study of two sub-models of the general ATOLL-G model
via classical and Bayesian approaches. Further, we study the corresponding regression
model derived from sub-model which is defined based on the Weibull distribution. First,
certain statistical and reliability properties of the ATOLL-G distribution are derived in a
general setting. Then, we establish two special cases of ATOLL-G by using the Weibull
and normal distributions instead of the parent distribution G. These models are called
ATOLL-W and ATOLL-N distribution, respectively. We also provide a discussion for the
ATOLL-W regression model via log-transformation of ATOLL-W (LATOLL-W) distribution.
Furthermore, we obtain Bayesian and maximum likelihood estimates of the parameters of
proposed models via real examples.

For Bayesian inference, we consider several asymmetric and symmetric loss functions
such as squared error loss, modified squared error, precautionary, weighted squared error,
linear exponential, general entropy, and K-loss functions to estimate the parameters of the
LATOLL-W regression model. Further, making use of the independent prior distributions,
Bayesian 95% credible and highest posterior density (HPD) intervals (see [16]) are provided
for each parameter of the proposed model. In addition, a simulation study is performed to
investigate Maximum Likelihood Estimators (MLEs) of consistency.

The rest of the manuscript is organized as follows. In Section 2, we introduce a
new class of distributions called arctan odd log-logistic-G (ATOLL-G) distribution. Some
structural properties of the ATOLL-G distribution such as the hazard function, quantiles,
asymptotics and some useful expansions of the proposed model are given in a general
setting in Section 3. In Section 4, two special cases of this class is considered by employing
Weibull and normal distributions as the parent distribution. The ATOLLW regression model
and its Bayesian inference are presented by considering seven well-known loss functions in
Section 5. In Section 6, we study the performance of the maximum likelihood estimates of
the parameters of ATOLLW distribution via Monte Carlo simulation to investigate the mean
square error and bias of the maximum likelihood estimators. In Section 7, the supremacy
of the ATOLLN and ATOLLW models to some challenger models is exhibited via several
selection model criteria by analyzing Data 1 and Data 2 real examples, respectively. Fur-
ther, we fit the LATOLLW regression model to heart transparent dataset and compare its
efficiency with some competitor models. We also provide the numerical results of Bayesian
inference and related plots to posterior samples for heart transplant data in this Section.
Finally, the paper is concluded in Section 8.

2. Model Genesis

In this section, we first introduce an unit-interval distribution based on arctan function.
Then we propose arctan odd log logistic G class of distributions.

2.1. A New Extension of Uniform Distribution in Terms of Arctan Function

We create a new unit-interval distribution, based on the definition of arctan function
with closed-form cdf given by:

F(x) =
arctan(α x)
arctan(α)

, 0 < x < 1, α > 0. (2)

The related probability density function (pdf) is obtained by:

f (x) =
α

arctan(α)(1 + α2 x2)
, 0 < x < 1, α > 0. (3)
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To study the effect of α on the pdf in (3), we plot this pdf under some selected values
of the parameter α in Figure 1.
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Figure 1. Plots of the pdf in (3).

It is worthwhile to note that when α → 0+, the pdf in (3) reduces to standard uni-
form distribution.

The first four moments of the pdf in (3) are given by:

E(X) =
log(α2 + 1)

2α arctan(α)
;

E(X2) =
α− arctan(α)
α2 arctan(α)

;

E(X3) =
α2 − log(α2 + 1)

2 α3 arctan(α)
;

E(X4) =
α(α2 − 3) + 3 arctan(α)

3 α4 arctan(α)
.

2.2. Arctan Odd Log Logistic G Family of Distributions

Here, we propose a general class of distributions in terms of compounding the arctan
function and cdf in (1). The cdf of arctan odd log logistic G class of continuous distributions
is given as:

F(x; α, β) =
arctan(α Π(x; β))

arctan(α)
, (4)

where Π(x; β) is defined as in (1). This model is called arctan odd log logistic G (ATOLL-G)
distribution. The corresponding pdf is also given by:

f (x; α, β) =
α π(x; β)

arctan(α)[1 + (α Π(x; β))2]
, (5)

where π(x) is defined by

π(x) = β g(x; β)G(x)β−1 Ḡ(x)β−1
[

G(x)β + Ḡ(x)β
]−2

. (6)
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Note that when α→ 0+, the pdf in (5) reduces to OLL-G family. Further, when α→ 0+ and
β = 1, it reduces to baseline distribution G. We can readily obtain the associated hazard
rate function of (4) as:

ψ(x) =
α π(x)

{arctan(α)− arctan(α Π(x))}[1 + (α Π(x))2]
. (7)

3. Properties

In this section we study some basic properties of the ATOLL-G family.

3.1. Quantile Function

If U ∼ U(0, 1), and QG(u) = G−1(u) denote the quantile function of G, then:

XU = QG

 [tan(U arctan(α))]
1
β

[tan(U arctan(α))]
1
β + [α− tan(U arctan(α))]

1
β

 (8)

has its cdf as in (4).

3.2. Asymptotics

Suppose X be a positive random variable. Then, the asymptotics of Equations (4), (5)
and (7) as x → 0+ are given by:

F(x) ∼ α G(x)β

arctan(α)
,

f (x) ∼ α β g(x) G(x)β−1

arctan(α)
,

ψ(x) ∼ α β g(x) G(x)β−1

arctan(α)− α G(x)β
.

The asymptotics of Equations (4), (5) and (7) as x → ∞ are given by:

1− F(x) ∼ αβ Ḡ(x)
arctan(α)

,

f (x) ∼ αβ g(x)
arctan(α)

,

ψ(x) ∼ g(x)
Ḡ(x)

.

3.3. Probability Density and Cumulative Density Function Expansion Series

For a given cdf G(x), a variable Z has the exp-G distribution with power parameter
η > 0, say Z ∼ exp-G(η), if the related pdf and cdf are given by:

hη(x) = η G(x)η−1 g(x) and Hη(x) = G(x)η ,

respectively. For pertinent details, one can see [17–19].
First note that we can write:

arctan(x) =
∞

∑
l=0

(−1)l x2 l+1

2 l + 1
, (9)

For more details, see [20]. The cdf in (4) can also be represented as:

F(x) =
1

arctan(α)

∞

∑
l=0

(−1)l α2 l+1G(x)β (2 l+1)

(2 l + 1)
[
G(x)β + Ḡ(x)β

]2 l+1 . (10)
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Since

[
G(x)β + Ḡ(x)β

]−2 l−1
=

∞

∑
i=0

(
−2 l − 1

i

){
G(x)β −

[
1− Ḡ(x)β

]}i

=
∞

∑
i=0

i

∑
j=0

(−1)i−j
(
−2 l − 1

i

)(
i
j

)
G(x)β j

[
1− Ḡ(x)β

]i−j

=
∞

∑
j=0

i

∑
i=j

(−1)i−j
(
−2 l − 1

i

)(
i
j

)
G(x)β j

[
1− Ḡ(x)β

]i−j

=
∞

∑
j,r=0

i

∑
i=j

i−j

∑
k=0

(−1)i−j+k+r
(
−2 l − 1

i

)(
i
j

)(
i− j

k

)(
β k
r

)
G(x)β j+r, ;

then, we obtain:

F(x) =
∞

∑
j,l,r=0

wl,j,r G(x)β (2 l+j+1)+r =
∞

∑
j,l,r=0

wl,j,r Hβ (2 l+j+1)+r(x),

where

wl,j,r =
i

∑
i=j

i−j

∑
k=0

α2 l+1(−1)l+i−j+k+r
(
−2 l − 1

i

)(
i
j

)(
i− j

k

)(
β k
r

)
G(x)β j+r

(2 l + 1) arctan(α)
.

Therefore, the density function of X can be obtained as an infinite linear combination
of exp-G density functions

f (x; α, β, , ξ) =
∞

∑
j,l,r=0

wl,j,r hβ (2 l+j+1)+r(x), (11)

where hβ (2 l+j+1)+r(x; ξ) = (β (2 l + j + 1) + r) g(x; ξ) G(x; ξ)β (2 l+j+1)+r−1 represent the
exp-G density function with power parameter β (2 l + j + 1) + r. Hereafter, a random vari-
able with the density function hk+1(x; ξ) is denoted by Yk+1 ∼ exp-G(k + 1). Equation (11)
reveals that the ATOLL-G density function is a linear combination of exp-G densities.
We can obtain some mathematical properties of the ATOLL-G based on EXP-G densities,
for example we can obtain moments, incomplete moments, moment generating function
and linear combination for order statistics.

4. Two Sub-Models

In this section, we propose two special cases of ATOLLG distribution, which are used
in squeal.

4.1. Arctan Odd Log-Logistic Weibull Distribution

Suppose that the parent distribution G has Weibull distribution with cdf G(x) =
1− e−(λx)γ

, then from (5), the pdf of arctan odd log-logistic Weibull distribution (ATOLLW)
is defined by:

f (x) =
α

arctan(α)

βγλγxγ−1e−β(λx)γ

(
1− e−(λx)γ

)
β−1{

(1− e−(λx)γ
)β + e−β(λx)γ

}
2 + α2

(
1− e−(λx)γ

)
2β

, x > 0. (12)



Axioms 2022, 11, 399 6 of 22

From (4), the corresponding cdf is given by:

F(x) =
1

arctan(α)
arctan

{
α

(
1− e−(λx)γ)β(

1− e−(λx)γ)β + e−β(λx)γ

}
. (13)

The density of ATOLLW distribution under some selected values of associated param-
eters is plotted in Figure 2.
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Figure 2. Plots of the pdf in (12).

4.2. Arctan Odd Log-Logistic Normal Distribution

Let the parent distribution G have normal distribution with cdf Φ(x; µ, σ2). From (1),
the pdf of arctan odd log-logistic normal distribution (ATOLLN) is defined by:

f (x) =
α

arctan(α)
β φ(x; µ, σ2)Φ(x; µ, σ2)β−1 Φ̄(x; µ, σ2)β−1[

Φ(x; µ, σ2)β + Φ̄(x; µ, σ2)β

]2

+

(
αΦ(x; µ, σ2)β

)2 , −∞ < x < ∞, (14)

where φ(x; µ, σ2) is the pdf of a normal distribution with mean µ and variance σ2. From (4),
the corresponding cdf of (14), is given by:

F(x) =
1

arctan(α)
arctan

(
α

Φ(x; µ, σ2)β

Φ(x; µ, σ2)β + Φ̄(x; µ, σ2)β

)
. (15)

We plot the density of ATOLLN distribution under some selected values of associated
parameters in Figure 3.
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5. The ATOLLW Regression Model

The survival regression model is one of well-known models in survival analysis.
Sometimes for analyzing a lifetime variable, there are auxiliary information (as independent
variables) that help us to explore the lifetime variable more precisely. More recently, by
considering the class of location statistical distributions, different regression models have
been introduced in the applied statistical literature (for example see [13,21]). The log-odd
log-logistic Weibull regression model for censored data was introduced by [22] in terms
of odd log-logistic Weibull distribution. Further, Cordeiro et al. [23] introduced a general
regression model based on the Burr XII system of densities and also the log-odd power
Cauchy–Weibull regression proposed by [24].

Let X be a variable with pdf ATOLL-W defined in (12). Making use of the log transfor-
mation Y = ln(X), the pdf of transformed variable Y is given by:

fY(y) =
αβ

σ arctan(α)

e
y−µ

σ e−βe
y−µ

σ

(
1− e−e

y−µ
σ

)
β−1{

(1− e−e
y−µ

σ )β + e−βe
y−µ

σ

}
2 + α2

(
1− e−e

y−µ
σ

)
2β

, y ∈ R, (16)

where σ > 0 is a scale, β > 0 is a shape and µ ∈ R is a location parameter. The model
in (16) is referred to as log-ATOLL-W (LATOLL-W) distribution, and it is briefly shown by
Y ∼ LATOLL-W(β, σ, µ). The survival function of Y is:

S(y) = 1− 1
arctan(α)

arctan
{

α

(
1− e−e

y−µ
σ
)

β(
1− e−e

y−µ
σ
)

β + e−βe
y−µ

σ

}
. (17)

Let Z = (Y− µ)/σ be the standardized random variable having pdf,

h(z; α, σ) =
αβ

arctan(α)
eze−βez(

1− e−ez)β−1{
(1− e−ez)β + e−βez}2 + α2

(
1− e−ez)2β

, z ∈ R.

The ATOLL-W regression is defined by:

yi = µ + σzi = vᵀ
i τ + σzi, i = 1, . . . , n, (18)

where τ = (τ1, · · · , τp)ᵀ is parameter vector of regression model, vᵀ
i is covariate variable

vector and zi is an error of regression model with density h(z; α, σ). Further, under as-
sumptions yi = min{log(ci), log(xi)}, where log(ci) denotes log-censoring and log(xi)
follows (16), and represent the log-lifetime. Let r is the number of uncensored observations,
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then the log-likelihood function for ψ = (β, σ, τᵀ)ᵀ in terms of sets F (set of individuals
with log-lifetime) and C (set of individuals with log-censoring) is given by:

`(ψ) = r
{

log α− log σ + log β

}
+ ∑

i∈F

{
log ui − βui + (β− 1) log(1− e−ui )

}
(19)

+ ∑
i∈F

log
{((

1− e−ui
)β

+ e−βui

)2

+ α2(1− e−ui )2β

}
+ ∑

i∈C
log
{

1− 1
arctan(α)

arctan
(

α(1− e−ui )β

(1− e−ui )β + e−βui

)}
, (20)

where ui = ezi , zi = (yi − vᵀ
i τ)/σ. For example, we can use the optim function of R

software to obtain the MLE of ψ by maximizing (19).

5.1. Residual

The martingale and modified deviance residuals (mdr) for the LATOLL-W regression
are given respectively by:

rMi =


1 + ln

{
1− 1

arctan(α) arctan
(

α(1− e−ui )β

(1− e−ui )β+e−βui

)}}
, i ∈ F,

ln
{

1− 1
arctan(α) arctan

(
α(1− e−ui )β

(1− e−ui )β+e−βui

)}
, i ∈ C,

where ui = e
yi−x>i τ

σ , and

rDi =

{
sign

(
rMi

){
−2
[
rMi + log

(
1− rMi

)]}1/2, if i ∈ F,
sign

(
rMi

){
−2rMi

}1/2, if i ∈ C.
(21)

When the regression model is well-fitted to a given data, the mdr are normally dis-
tributed with zero men and unit variance.

5.2. Bayesian Inference of Regression Model

In this section, we consider the Bayesian inference of the parameters for the survival
regression model, which is discussed in Section 5. Let the parameters α, β and σ of the
LATOLLW distribution have independent prior distributions as:

α ∼ Gamma(a, b), β ∼ Gamma(c, d), σ ∼ Gamma(e, f ), τi ∼ N(µi, σ2
i ), i = 0, 1, 2, 3,

where a, b, c, d, e and f are positive and τi ∈ R, i = 0, 1, 2, 3. Under these assumptions,
the joint prior density function is formulated as follows:

π(α, β, σ, τ) =
3

∏
i=0

1√
2πσ2

i

e
(τi−µi)

2

σ2
i

badc f e

Γ(a)Γ(c)Γ(e)
αa−1βc−1σe−1e−(bα+dβ+ f σ), (22)

where τ = (τ0, τ1, τ2, τ3).
Here, we consider several asymmetric and symmetric loss functions including: squared

error loss function (SELF), modified squared error loss function (MSELF), weighted squared
error loss function (WSELF), K-loss function (KLF), linear exponential loss function
(LINEXLF), precautionary loss function (PLF) and general entropy loss function (GELF).
For more details, see [25] and the references therein. In Table 1, we provide a summary of
these loss functions and associated Bayesian estimators and posterior risks.
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Table 1. Seven loss functions with Bayes estimator and related posterior risk.

Loss Function Bayes Estimator Posterior Risk

L1 = SELF = (θ − d)2 E(θ|x) Var(θ|x)

L2 = WSELF = (θ−d)2

θ (E(θ−1|x))−1 E(θ|x)− (E(θ−1|x))−1

L3 = MSELF =
(

1− d
θ

)2 E(θ−1|x)
E(θ−2|x) 1− E(θ−1|x)2

E(θ−2|x)

L4 = PLF = (θ−d)2

d

√
E(θ2|x) 2

(√
E(θ2|x)− E(θ|x)

)
L5 = KLF = (

√
d
θ −

√
θ
d )

√
E(θ|x)

E(θ−1|x) 2
(√

E(θ|x)E(θ−1|x)− 1
)

L6 = LINEXLF = ec(θ−d) − c(θ − d)− 1 − log E
(

e−cθ |x
)

c log E(e−cθ |x) + cE(θ|x)

L7 = GELF = ( θ
d )

c − c log( θ
d )− 1

(
E(θ−c|x)

)− 1
c

cE(log θ|x) + log[E(θ−c|x)]

For more details see [26]. Let ϕ be a function defined as:

ϕ(α, β, σ, τ) =
αn+a−1βn+c−1σe−(1+n)

arctann(α)
e
−(bα+dβ+ f σ)+∑3

i=0
τ2
i −2τiµi

σ2
i , α > 0, β > 0, σ > 0.

Since the joint posterior distribution π(α, β, σ, τ) is formulated as:

π∗(α, β, σ, τ|data) ∝ π(α, β, σ, τ)L(data). (23)

Therefore, the joint posterior density is given by:

π∗(α, β, σ, τ|x, V) = Kϕ(α, β, σ, τ)
n

∏
i=1

e
yi−µ

σ e−βe
yi−µ

σ
(
1− e−e

yi−µ
σ
)

β−1{
(1− e−e

yi−µ
σ )β + e−βe

yi−µ
σ
}

2 + α2
(
1− e−e

yi−µ
σ
)

2β

, (24)

where V = (v1, . . . , vn)
> is a known matrix that contains the auxiliary variables, µi = vi

>τ
and K is given as:

K−1 =
∫

R

∫ ∞

0

∫ ∞

0

∫ ∞

0
ϕ(α, γ, σ)

n

∏
i=1

e
yi−µ

σ e−βe
yi−µ

σ
(
1− e−e

yi−µ
σ
)

β−1{
(1− e−e

yi−µ
σ )β + e−βe

yi−µ
σ
}

2 + α2
(
1− e−e

yi−µ
σ
)

2β

dαdβdσdτ,

where the outer integration stands for parameter vector τ.

6. Simulation

Here, we examine the performance of the maximum likelihood estimates associated to
the ATOLLN(µ, σ, a, b) distribution in (14) with respect to sample size n. The simulation
study is performed via the Monte Carlo procedure as follows:

1. Generate 5000 samples of size n for the ATOLLN(µ, σ, a, b) distribution by using the
relation (8);

2. Compute the maximum likelihood estimates of parameter vector θ = (α, β, µ, σ) for
the one thousand samples, say θ̂ij, for i = 1, 2, . . . , 5000; j = 1, 2, 3, 4;

3. Compute diagonal elements of inverse Fisher information matrix Î jj
i , j = 1, 2, 3, 4;

i = 1, 2, . . . , 5000, where j stands for j-th elements of parameter vector θ = (α, β, µ, σ);
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4. Compute the average biases (AB), mean squared errors (MSR), coverage probabilities
(CP) and average lengths (AW) given by:

Biasθj(n) =
1

5000

5000

∑
i=1

(
θ̂ij − θj

)
,

MSEθj(n) =
1

5000

5000

∑
i=1

(θ̂ij − θj)
2
,

CPθj(n) =
1

5000
1

5000

∑
i=1

I

{
θ̂ij − 1.965.

√
Î jj
i ≤ θj ≤ θ̂ij + 1.965.

√
Î jj
i

}
and

AWθj(n) =
2 . z1−α/2

5000

5000

∑
i=1

√
Î jj
i ,

where z1−α/2 is the standardized normal quantile at 100(1− α)% confidence level and I{ .}
denotes the indicator function.

We repeated these steps based on the sample sizes n = 100, 110, 120, . . . , 500 for the
one set of selected values of parameter vector as (α, β, µ, σ) = c(3, 0.5, 0, 1). Figures 4–7
show how the AB, MSR, CP and the AW vary with respect to n. These results show that
the average biases, mean-squared errors and average lengths for each parameter decrease
to zero as n → ∞. Additionally, the CP vary with respect to n. The associated results of
CP corresponds to the nominal coverage probability of 0.95 for two parameters β and σ.
The level of CP for the two parameters α and µ are increasing when n is increased to the
level of 0.95.
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Figure 4. AB of the MLE Θ̂ of the vector parameter Θ.
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Figure 5. RMSE of the MLE Θ̂ of the vector parameter Θ.
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Figure 6. CP of 95% confidence intervals of the MLE Θ̂ of the vector parameter Θ.
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Figure 7. AW of 95% confidence intervals of the vector parameter Θ.

7. Applications

In this part, we present three applications to investigate the efficiency and flexibility
of two sub-classes distributions which formerly defined in Sections 4 and 5. In the first two
applications, we present some numerical and graphical results for fitting the special sub-
models defined in Section 4. The third application is associated with a survival regression
analysis of the ATOLL-W regression model presented in Section 5.

For the first two applications, the goodness-of-fit statistics including the Cramér–von
Mises (W∗) and Anderson–Darling (A∗) test statistics are adopted to compare the fitted
models (see [27–29] for more details). The smaller values of A∗ and W∗ present the better
fit to the data. For the sake of comparison, we also consider the Kolmogorov–Smirnov
(K-S) statistic and its corresponding p-value and the minus log-likelihood function (−`(ψ))
for the sake of comparison [28,29]. For the third application (covariate censored data), we
adopt the AIC and BIC statistics to compare the fitted models since the A∗ and W∗ statistics
are not suitable for censored data.

For the first application, we take the ATOLLN distribution and, for comparison
purposes, we fitted the following models to the above datasets:

• The normal distribution;
• The exponentiated normal (EN) distribution;
• The beta normal (BN) distribution [2] with density

fBN(x) =
1

σB(α, β)

[
Φ
(

x− µ

σ

)]α−1[
1−Φ

(
x− µ

σ

)]β−1
φ

(
x− µ

σ

)
.
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• The gamma normal (GN) distribution [30] with density,

fGN(x) =
βα

σΓ(a)

[
− log

{
1−Φ

(
x− µ

σ

)}]α−1[
1−Φ

(
x− µ

σ

)]β−1
φ

(
x− µ

σ

)
.

• The Kumaraswamy normal (KN) distribution [3] with density,

fKN(x) =
α β

σ

{
Φ
[(

x− µ

σ

)]}α−1{
1−

[
Φ
(

x− µ

σ

)]α}β−1

φ

(
x− µ

σ

)
.

• The odd log-logistic normal (OLL-N) distribution (special case of OLLLN distribution
when β→ 1) with density [31],

fOLL−N(x) =
β φ
(

x−µ
σ

)
[Φ
(

x−µ
σ

)
]β−1[1−Φ

(
x−µ

σ

)
]β−1

σ{[1−Φ
(

x−µ
σ

)
]β + [Φ

(
x−µ

σ

)
]β}2

,

where x ∈ R, µ ∈ R, α > 0, β > 0 and σ > 0.

7.1. Failure Times Data

Data 1: First, we analyze the 84 failure times of a particular windshield device. These
data were also studied by [32,33].

The MLEs of the parameters, standard errors (SE) (in parentheses) and the goodness-
of-fit statistics for failure times data are reported in Table 2. One can see that the ATOLLLN
model outperforms all the fitted competitive models under these statistics.

Table 2. A summary of model fitting to the failure times data.

Model −`(ψ) W∗ A∗ K-S p-Value

ATOLLN(µ, σ, α, β) 2.903 0.495 −1.285 0.319 126.077 0.031 0.312 0.05 0.983
(0.200) (0.162) (0.630) (0.161)

OLL-N(µ, σ, β) 2.626 0.602 0.452 127.062 0.075 0.523 0.095 0.407
(0.126) (0.218) (0.232)

ATN(µ, σ, α) 2.615 1.121 0.467 128.111 0.087 0.585 0.089 0.510
(0.476) (0.114) (2.011)

Normal(µ, σ) 2.557 1.112 128.119 0.091 0.607 0.092 0.444
(0.121) (0.086)

EN(µ, σ, α) 1.823 1.339 1.954 128.064 0.074 0.521 0.084 0.560
(2.342) (0.701) (3.864)

BN(µ, σ, α, β) 0.808 2.443 7.113 2.469 128.085 0.074 0.519 0.084 0.562
(7.144) (8.149) (48.513) (14.595)

GaN(µ, σ, α, β) 2.805 0.541 0.290 0.197 127.757 0.057 0.438 0.074 0.710
(1.057) (0.264) (0.381) (0.215)

KwN(µ, σ, α, β) 1.653 0.747 0.918 0.319 127.848 0.063 0.468 0.079 0.641
(1.063) (0.534) (1.013) (0.518)

ATOLLW(λ, γ, α, β) 0.288 7.080 1.993 0.341 126.95 0.088 0.672 0.067 0.84
(0.011) (0.034) (0.603) (0.036)

The fitted densities and histogram of the data are displayed in Figure 8. For failure
times, we note that the fitted ATOLLN distribution best captures the empirical histogram.
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Figure 8. Histogram and density plots for failure times data. Plots for (a) sub-models and (b) oth-
ers models.

7.2. Windshield Device Data

Data 2: Second, we examine 23 failure times of a particular windshield device. These
data were also studied by [32,33]. The data, referred as windshield device, are: 2.160, 0.746,
0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101, 1.359, 3.465, 1.060, 0.614, 1.921
4.082, 0.199, 0.605 0.273 0.070 0.062 5.320.

Here, we fit the ATOLLW distribution and some of its sub-models, odd log-logistic
Weibull (OLL-W), beta Weibull (BW), Kumaraswamy–Weibull (kwW), gamma Weibull
(GaW) and exponentiated Weibull (EW) distributions to the windshield device data. Similar
numerical results are provided in Table 3 for windshield device data as well as data failure
times data. It is immediately seen that the ATOLLW model outperforms all the fitted com-
petitive models under the model selection criteria presented for the first data application.

Table 3. A summary of model fitting to the windshield device data.

Model −`(ψ) W∗ A∗ K-S p-Value

ATOLLW(λ, γ, α, β) 0.241 6.068 5.210 0.156 29.95 0.023 0.174 0.071 0.999
(0.026) (0.667) (2.590) (0.033)

OLL-W(λ, γ, β) 0.685 0.636 1.315 32.47 0.052 0.368 0.102 0.948
(0.302) (0.665) (1.524)

ATW(λ, γ, α) 0.369 0.909 2.500 32.27 0.043 0.318 0.108 0.924
(0.375) (0.204) (4.156)

Weibull(λ, γ) 0.718 0.807 32.51 0.065 0.431 0.118 0.866
(0.196) (0.129)

EW(λ, γ, α) 41.358 0.298 10.443 31.83 0.023 0.211 0.096 0.967
(277.983) (0.279) (30.099)

kwW(λ, γ, α, β) 888.601 0.414 281.499 0.088 30.97 0.024 0.226 0.103 0.945
(0.017) (0.001) (0.035) (0.018)

BW(λ, γ, α, β) 41.899 0.625 5.919 0.104 31.35 0.021 0.192 0.097 0.964
(0.084) (0.020) (3.737) (0.025)

GaW(λ, γ, α, β) 452.763 0.449 5.504 2.909 31.67 0.041 0.297 0.101 0.952
(0.240) (0.002) (1.684) (0.814)

ATOLLN(µ, σ, α, β) 3.051 0.435 4.636 0.103 38.34 0.190 1.117 0.201 0.270
(0.003) (0.002) (0.201) (0.270)
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The fitted densities and histogram of the windshield device data are displayed in
Figure 9. This figure shows that the fitted ATOLLW distribution best captures the empirical
histogram among the considered competitor models.
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Figure 9. Histogram and density plots for windshield device data. Plots for (a) sub-models and
(b) others models.

We note that the ATOLLN and ATOLLW models outperform all the fitted competitive
models under the selected criterion for the datasets’ failure times and windshield device,
respectively.

7.3. Third Application: Regression Analysis

Survival regression analysis has been developed in several forms. One of them is the
non-parameteric, where Kaplan–Meier estimation [34] is highlighted. The Kaplan–Meier
estimate is a common way of obtaining the survival curve using probabilities of an event’s
occurrence at a time. In this section, we provided a parametric approach as a counterpart,
where we fit the LATOLLW regression to the heart transplant data. The current data are
available in a survival package of R software. The considered survival regression model
based on response variable yi and covariate variables (vi1, vi2, vi3) is formulated as:

yi = τ0 + τ1vi1 + τ2vi2 + τ2vi3 + σzi, i = 1, ..., n,

where yi is distributed as the LATOLLW distribution and the covariate random variables
are described as:

• vi1 = age;
• vi2 = previous surgery (0 = no; 1 = yes);
• vi3 = transplant (0 = no; 1 = yes).

7.3.1. Parameter Estimation

A summary of model fitting based on MLE discussion for the heart transplant data is
provided in Table 4. We fit the LATOLLW regression model to this dataset and compare
the results with LBXII-W, LOLLW and log-Weibull distributions. For more details about
these competitor models, see [23]. We also consider another alternative models such as
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a log-log mean Weibull (LLMW) regression proposed by [35] and log exponential-Pareto
(LEP) regression model proposed by [36]. The estimated parameters, standard errors (given
in parentheses) and AIC and BIC measures as well as corresponding p-values in [.] are
reported in Table 4. We conclude that the estimated regression parameters are statistically
significant at the 5% level.

Table 4. A summary of fitted regression models to the heart transplant data.

Model τ0 τ1 τ2 τ3 σ α β

Arctan-Weibull 9.3779 −0.0689 1.3418 2.2273 0.2034 12.8680 0.1687
(0.2128) (0.0054) (0.1227) (0.2131) (0.0053) (4.9179) (0.0171)
[0.0072] [0.0247] [0.0290] [0.0304]

AIC = 330.7971 BIC = 349.2402
LBXII-W 4.519 −0.055 1.747 2.571 2.638 3.666 0.175

(1.053) (0.019) (0.546) (0.359) (1.142) (1.616) (0.098)
[<0.001] [0.004] [0.001] [<0.001]

AIC = 343.3 BIC = 361.8
LOLLW 8.744 −0.076 1.405 2.591 6.203 4.628

(1.760) (0.019) (0.574) (0.388) (4.685) (3.530)
[<0.001] [<0.001] [0.016] [<0.001]

AIC = 347.5 BIC = 363.4
log-Weibull 7.972 −0.092 1.214 2.537 1.465

(0.934) (0.020) (0.647) (0.373) (0.131)
[<0.001] [<0.001] [0.063] [<0.001]

AIC = 353.4 BIC = 366.6
LLMW 6.617 −0.091 1.640 2.591 2.618 1.169 0.013

(1.122) (0.025) (0.624) (0.402) (0.151) (0.057)
[0.048] [0.036] [0.036] [0.046]

AIC = 349.6 BIC = 365.5
LEP 5.1321 −0.0923 1.214127 2.537713 1.4655 0.1439

(11.3276) (0.0206) (0.6469) (0.3733) (0.1314) (1.1088)
[0.6505] [<0.001] [<0.061] [<0.001]

AIC = 355.42 BIC = 371.22

7.3.2. Results of Residual Analysis

The suitability of the fitted LATOLLW regression model is evaluated by residual
analysis. The plot of the modified deviance residuals is displayed in Figure 10, which
reveals that the fitted LATOLLW regression provides a good fit to the current data.
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Figure 10. Index plot of the quantile residuals.
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7.4. Bayesian Regression Analysis: Heart Transplant Data

From (24), we can see that there is no explicit form for the Bayesian estimators under
the loss functions considered in Table 1, so we use Gibbs sampling technique and MCMC
procedure based on 10,000 replicates to obtain Bayesian estimators for the heart transplant
data. A summary of Bayesian analyses (point and interval estimations with related posterior
risk) are reported in Tables 5 and 6. Table 6 provides 95% credible and HPD intervals
for each parameter of the LATOLLW distribution. Moreover, we provide the posterior
summary plots in Figures 11–13. These plots confirm that the convergence of sampling
process occurred.

Table 5. A summary of the Bayesian analysis of the LATOLLW regression based on heart trans-
plant data.

Loss Function τ0 τ1 τ2 τ3 σ α β

SELF 4.7244 −0.0122 1.0151 1.6356 1.1790 0.6499 0.8541
(0.4974) (0.0004) (0.4019) (0.1110) (0.0169) (0.5521) (0.0164)

WSELF 4.5712 −0.0141 0.7837 1.5591 1.1658 0.0818 0.8357
(0.1532) (0.0019) (0.2314) (0.0766) (0.0132) (0.5680) (0.0185)

MSELF 4.3337 −0.0013 0.00289 1.4721 1.1537 0.0015 0.8174
(0.0519) (0.9999) (0.9963) (0.0557) (0.0104) (0.9807) (0.0219)

PLF 4.7768 0.0235 1.1968 1.6692 1.1862 0.9872 0.8637
(0.1047) (0.0715) (0.3633) (0.0672) (0.0143) (0.6745) (0.0191)

KLF 4.6472 0.0131 0.8919 1.5969 1.1724 0.2307 0.8449
(0.0332) (0.1427) (0.2762) (0.0485) (0.0113) (3.6347) (0.0220)

LINEXLF (c = 1) 4.3559 −0.0124 0.8571 1.5794 1.1709 0.4785 0.8462
(0.3684) (0.0002) (0.1580) (0.0562) (0.0081) (0.1713) (0.0079)

LINEXLF (c = −1) 4.9239 −0.0120 1.3049 1.6903 1.1879 1.1870 0.8627
(0.1995) (0.0002) (0.2898) (0.0546) (0.0089) (0.5372) (0.0085)

GELF (c = 1) 4.5712 −0.0141 0.7838 1.5590 1.1658 0.0818 0.8357
(0.0189) (0.189) (0.0159) (0.0253) (0.0055) (1.4457) (0.0109)

GELF (c = −1) 4.7244 −0.0122 1.0151 1.6356 1.1790 0.6499 0.8541
(0.0140) (0.1201) (0.3140) (0.0225) (0.0057) (0.6258) (0.0109)

Table 6. Credible and HPD intervals of the parameters τ0, τ1, τ2, τ3, σ, α and β for heart trans-
plant data.

Credible Interval HPD Interval

τ0 (4.4197, 5.1520) (3.5680, 6.3040)
τ1 (−0.0237, −0.0049) (−0.0523, 0.0186)
τ2 (0.6154, 1.2680) (−0.0832, 2.3680)
τ3 (1.4050, 1.8661) (0.9674, 2.2480)
σ (1.0900, 1.2470) (0.9403, 1.4330)
α (0.1778, 0.8085) (0.0004, 2.2740)
β (0.7799, 0.9169) (0.6169, 1.1350)
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Figure 11. Trace plots of Bayesian analysis and performance of Gibbs sampling for the each parameter
of LATOLLW distribution based on the heart transplant data.
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Figure 12. Autocorrelation race plots of Bayesian analysis and performance of Gibbs sampling for
the each parameter of LATOLLW distribution based on the heart transplant data.
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Figure 13. Histogram plots of Bayesian analysis and performance of Gibbs sampling for the each
parameter of LATOLLW distribution based on the Heart transplant data.

8. Conclusions

A new class of lifetime distributions was introduced via compounding odd log logistic
distribution and the arctan function. Two special sub-models of this class were proposed
by considering the Weibull and normal distributions instead of the baseline distribution.
We have also provided a survival regression model based on Weibull distribution and a
comprehensive discussion about Bayesian inference for the parameters of this survival
regression model were studied under various loss functions. Numerical analyses of fitting
two univariate real datasets were provided via a maximum likelihood approach and the
corresponding plots were drawn to evaluate these results visually. The data analysis
empirically proved that the proposed distributions provide a better fit than their competing
distributions. Finally, the performance of the survival regression sub-model was examined
in terms of maximum likelihood and Bayesian procedures for a real example of observations
with covariate variables.
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