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Abstract: The Sumudu decomposition method was used and developed in this paper to find approxi-
mate solutions for a general form of fractional integro-differential equation of Volterra and Fredholm
types. The Caputo definition was used to deal with fractional derivatives. As the method under
consideration depends mainly on writing non-linear terms, which are often found inside the kernel
of the integral equation, writing it in the form of Adomian’s polynomials in the well-known way.
After applying the Sumudu transformation to both sides of the integral equation, the solution was
written in the form of a convergent infinite series whose terms can be alternately calculated. The
method was applied to three examples of non-linear integral equations with fractional derivatives.
The results that were presented in the form of tables and graphs showed that the method is accurate,
effective and highly efficient.

Keywords: approximate solutions; fractional integro-differential equation; adomian decomposition;
sumudu transform
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1. Introduction

Integro-Differential Equations, with their two parts Fredholm and Volterra, are con-
sidered a major factor in enriching modern applied mathematics, as their applications
appear in many engineering sciences, including the theory of mechanics, elasticity, and
many mathematical models with physical applications, as they are often written in the
form of integral equations. In addition to some medical applications, including cancerous
tumors. Here we mention the general form of nonlinear integro-differential equations of
the type Volterra-Fredholm, (see [1])

m

∑
k=0

pk(x)v(k)(x) = f (x) + λ1

∫ x

a

r

∑
i=0

Ai(x, t)Fi(v(t))dt + λ2

∫ b

a

s

∑
j=0

Bj(x, t)Gj(v(t))dt (1)

subject to the initial conditions
v(`)(0) = α`. (2)

In the above equation, we assume that the `th derivatives for ` = 0 to ` = k− 1 all
are exists, also in Equation (1) all the functions pk(x), Ai, Bj and f (x) are real functions and
given, also λ1, λ2 are real constants, while the two nonlinear parts F(v(x)), G(v(x)) are the
most difficult part in the problem, which makes the problem very interesting and makes
the issue under discussion difficult in the process of finding a closed solution.

It has been shown that many physical or engineering phenomena are best represented
mathematically by fractional calculus. In order to clarify some physical phenomena and
study them more precisely and in more depth, the presence of fractional derivatives in
the mathematical model gives more understanding and interpretation. The mathematical
model that contains fractional derivatives is more accurate than the same model represented
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by integer order derivatives. We study here the fractional integro-differential equations,
as they are effective models for explaining many engineering and physical phenomena.
One of the advantages of using the fractional derivatives to model some phenomena is
due to non-local property. As, it was shown [2] the n−order differential operator, where
n is an integer, also has a local property, on the other hand, where non-local properties
appeared in the fractional order differential operators. This means that the study of a
particular phenomenon, is not limited to its current situation, as much as we need to know
many details about the previous history of the phenomenon, and this understanding comes
through the intervention of fractional derivatives in the mathematical model. There are
many studies that dealt with the subject of fractional derivatives, here we mention [3–7],
where a comprehensive study of the subject was presented, which made these studies a
major reference for everyone who contributed to providing something new to the science of
fractional derivatives. The study that was used in [8] deals with an approximate solution,
using Taylor series, to a fractional integro-differential equation that is very similar to the
problem under discussion.

The main objective of this paper is to use Sumudu method to solve the general form
of nonlinear Volterra-Fredholm integro-differential equation, that has the form

v(α)(x) = −1
pm(x) ∑m−1

k=0 pk(x)v(k)(x) + f (x) + λ1
∫ x

a ∑r
i=0 Ai(x, t)Fi(v(t))dt

+λ2
∫ b

a ∑s
j=0 Bj(x, t)Gj(v(t))dt, m− 1 < α ≤ m,

(3)

where in the above equation v(α)(x) represent the fractional derivative of v(x) of order
α. Sumudu presented for the first time the transformation called Sumudu in [9–12], in
which all the basic properties were written, through which they were able to formulate
some theorems that help in the treatment and finding solutions of differential equations
of all kinds, ordinary, partial and integral equation. Sumudu transform is an effective
transformation method used to solve many non-linear differential equations, which are
often used as a mathematical model for many physical or engineering models. It is note-
worthy that Sumudu transform have units preserving properties, and therefore can be used
effectively to solve problems without resorting to the frequency domain, this is one of many
strength points for Sumudu transform over Laplace transform, especially when dealing
with physical sciences applications, where physical dimensions are important. In fact, the
Sumudu transform which is itself linear, preserves linear functions, and hence in particular
does not change units (see for instance Watugala [9] or Belgacem et al. [11]). Another
advantage of using Sumudu over Laplace, is that, in solving differential equations that
usually represents a model for many types of practical engineering models, where initial
conditions have some singularities, Sumudu transform treats it accurately and effectively.
Finally, when calculating inverse using Sumudu, we try to avoid tedious complex contour
integration and its complications.

In [13], the authors introduce some basic properties of the Sumudu transformation that
will help to build and solve mathematical models. In [14,15], an effective method called
Adomian decomposition method (ADM), which is dual to the Sumudu transformation,
was used to solve the same system of nonlinear Volterra-Fredholm integro-differential
Equation (3). The Legendre collocation method was used in [16], and Chebyshev wavelet
in [17], while the Tau approximations used in [18] to solve nonlinear fractional integro-
differential equation of the Volterra type, and the results are very promising. Other methods
also used to solve similar problems as in [8,19–22]. Previous studies related to the topic
that the reader can refer to [23–25]. In addition to the two references [26,27], where similar
numerical methods were used, and the results were promising.

In this paper, we will first provide all the definitions or theorems we need related
to the Sumudu method, and then formulate the general solution to Equation (3) using
the proposed method that we call, Sumudu Adomian decomposition method (SADM).
This method is more effective than other methods, like Legendre collocation method that
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will be used for comparison purposes in the last section, because it gives an accurate
approximate solutions to the integral equations with fractional derivatives to a large extent.
It is worth noting that one of the benefits of the method under consideration is that it
reduce the computational time and volume of work. We would like to point out that in
using other methods, to solve the problem as it appeared in Equation (3), it requires finding
the solution at each change of the value of the constant α. On the contrary, when using
the method (SADM) which gives the answer in terms of the constant α, and thus it is
easy to calculate the solution at different values of α, and no need to solve the problem
again, it only requires substituting that value for α in the computed solution. The most
important part in Equation (3) is the left-hand side known as the fractional differential
operator, denoted as v(α)(x), which describes the fractional derivatives of order α. If the
value of α is an integer, then the question under consideration goes back to the ordinary
derivatives, which is a special case of the study in this paper. Therefore, considering α as
fractional positive number makes Equation (3) a generalization of the work [36].

The main presentation of the contents of this research came as follows: In Section 2,
we briefly review some of the main concepts related to the theorem of fractional calculus,
in addition to briefly introducing some theorems related to the Sumudu transformation,
which will be used to solve the problem under consideration. In Section 3, we apply
the Sumudu transformation, by first substituting the nonlinear term by their Adomian’s
polynomials, and writing the general solution to the problem as given in Equation (3) in the
form of a series in terms of the parameter α. Some results are stated in regards to existence,
uniqueness, and the maximum absolute error of the truncated series solution have been
proved in Section 4. Finally in Section 5, the credibility of the method was confirmed by
experimenting with three different examples. The results were presented in the form of
tables and graphics that showed the accuracy and effectiveness of the method. The paper
ends with some concluding remarks.

2. Basic of Fractional Calculus

In order to identify the properties of fractional calculus, we present in this section
some definitions and studies that we need to write the solution to the problem under
consideration. There are many definitions that were presented in previous years for
fractional derivatives, and here we will use the Riemann-Liouville definition, and thus
Riemann-Liouville is defined for fractional integral operator Jα

a in the following form [28].

Definition 1. Let α ∈ IR. The operator Jα, defined on the usual Lebesque space L1[a, b] by

Jα
a f (x) = 1

Γ(α)

∫ x
a (x− t)α−1 f (t)dt

J0
a f (x) = f (x)

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of order α.

Properties of the operator Jα can be found in [6], we mention the following: For
f ∈ L1[a, b], α, β ≥ 0 and γ > −1

1. Jα
a f (x) exists for almost every x ∈ [a, b].

2. Jα
a Jβ

a f (x) = Jα+β
a f (x)

3. Jα
a Jβ

a f (x) = Jβ
a Jα

a f (x)

4. Jα
a xγ = Γ(γ+1)

Γ(α+γ+1) (x− a)α+γ

When using the Riemann-Liouville definition to treat problems that represent the
mathematical model of some physical phenomena, some shortcomings appear in the
Riemann-Liouville definition. Thus we will use the improved Caputo definition for the
fractional differentiation operator v(α)(t), as follows
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Definition 2. Caputo introduces derivatives of fractional orders of a function f (x) as follows

Dα f (x) = Jm−αDm f (x) =
1

Γ(m− α)

∫ x

0
(x− t)m−α−1 f (m)(t)dt, (4)

m− 1 < α ≤ m, m ∈ IN, x > 0

While we present here two basic properties of fractional calculus.

Lemma 1. If m− 1 < α ≤ m, and f ∈ L1[a, b], then Dα
a Jα

a f (x) = f (x), and

Jα
a Dα

a f (x) = f (x)−
m−1

∑
k=0

f (k)(0)
(x− a)k

k!
, x > 0.

The reason for adopting Caputo definition for solving fractional differential equations,
is that, in order to obtain a unique and exact solution to the equation, we need to specify
additional initial conditions for the fractional equation. Caputo definition has been well
received for this purpose. The Caputo definition is widely acclaimed because it makes
it possible to define initial conditions that relate to the integer derivatives of the derived
functions in the models considered. It should be noted here that there are many studies
that dealt in detail with the study of the geometric interpretation of fractional derivatives,
see for example [29].

Definition 3. Caputo defines the fractional derivatives order α, such that for m be an integer that
is the smallest to exceeds α, we have

Dαv(x, t) =
∂αv(x, t)

∂tα
=


1

Γ(m−α)

∫ t
0 (t− τ)m−α−1 ∂mv(x,τ)

∂τm dτ, m− 1 < α < m

∂mv(x,t)
∂tm , α = m ∈ IN

For further study on the properties and adjectives of Caputo definition in relation to
derivatives and fractional integrals, the reader can refer to the following resources [29].

Watugala [9,10] introduced a new transformation known as Sumudu transform, that
used to solve differential equations with Engineering applications.

Definition 4. Sumudu transform over the following set of functions

A =

{
f (t) | ∃M, τ1, τ2 > 0, | f (t)| < Me

|t|
τj , if t ∈ (−1)j × [0, ∞)

}
(5)

is defined as, for u ∈ (−τ1, τ2), we have

S[ f (t)] = F(u) =
∫ ∞

0
f (ut)e−tdt =

∫ ∞

0

1
u

f (t)e−t/udt, (6)

where u is a parameter and it may be real or complex that is independent of t. The inversion formula
for Sumudu transform is given by

S[G(s)] =
1

2πi

∫ γ+i∞

γ−i∞
estG(

1
s
)

ds
s

.

It has been shown in [30], that the Laplace and Sumudu transformations are equivalent,
but using one of them may be easier in terms of calculations than the other, especially when
solving intgro-differential equations, and in fact this is why we use the Sumudu transform
to solve the same problem in [14]. Given an initial f (t), its Laplace transform F(s) can be
transformed into the Sumudu transform Fs(u) of f by means of
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S(u) =
F( 1

u )

u
.

And its inverse,

F(s) =
S( 1

s )

s
.

Every property proved of the Laplace transform may routinely be turned into a
corresponding property of the Sumudu transform. In [11,30], the researchers presented a
sufficient and extensive study on the Sumudu transformation, where many of the basic
properties and theories related to the Sumudu transformation were presented, and here we
mention only what we need.

1. S[1] = 1

2. S
[

tn

Γ(n+1)

]
= un, n > 0

3. S[ f (x)∓ g(x)] = S[ f (x)]∓ S[g(x)]

Theorem 1 ([30]). Let f (t) be a function, and let’s denote the Sumudu transformation of f (t) to
be G(u), and the following are satisfied

1. G(1/s)/s, is a meromorphic function, with singularities having Re(s) < γ, and
2. there exists a circular region Γ with radius R and positive constants, M and K with∣∣∣G(1/s)

s

∣∣∣ < MR−K

then we can get the function f (t) by the following formula

f (t) = S−1[G(s)] =
1

2πi

∫ γ+∞

γ−i∞
estG(

1
s
)

ds
s

= ∑ residues
[
est G(1/s)

s

]
.

The following fact is often used to find solutions to differential equations with frac-
tional derivatives.

Lemma 2 ([31]). The Sumudu transform S[ f (t)] of the fractional derivative introduced by Caputo
is given by

S[Dα
t f (t)] =

G(u)
uα
−

n−1

∑
k=0

f (k)(0)
uα−k , where G(u) = S[ f (t)].

3. Implementation of Sumudu Decomposition Method

In order to present the Sumudu Adomian decomposition (SAD) used in this paper,
we first assume that the problem, as it appeared in the Equations (1) and (2), has a unique
and smooth solution to a sufficient degree to deal with it [32]. Before starting to find an
approximate solution to problem (3), using the proposed method (SAD), we assume that
the unknown function v(x) is differentiable several times and the solution we are looking
for is unique. We apply the Sumudu transformation to the five sides in Equation (3), and
write it as

S[v(α)(x)] = S
[ −1

pm(x)

m−1

∑
k=0

pkv(k)(x)
]
+ S[ f (x)] + S

[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)Fi(v(t))dt
]

+ S
[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)Gj(v(t))dt
]
, m− 1 < α ≤ m

Using the result of Lemma 2, after replacing the value of S[v(α)(x)], in the above
equation, we obtain
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u−αS[v(t)]−
n−1

∑
k=0

u−(α−k)v(k)(0) = S
[ −1

pm(x)

m−1

∑
k=0

pkv(k)(x)
]
+ S[ f (x)]

+ S
[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)Fi(v(t))dt
]

+ S
[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)Gj(v(t))dt
]
, m− 1 < α ≤ m.

Solve for S[v(t)], we get

S[v(t)] = uα
n−1

∑
k=0

sα−k−1v(k)(0) + uαS
[ −1

pm(x)

m−1

∑
k=0

pk(x)v(k)(x)
]
+ uαS[ f (x)]

+ uαS
[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)Fi(v(t))dt
]
+ uαS

[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)Gj(v(t))dt
]
,

where m− 1 < α ≤ m. Now, following [1,33,34]. The Sumudu decomposition method
consists of decomposing the unknown function v(x) of any equation into a sum of an
infinite number of components defined by the decomposition series:

v(x) =
∞

∑
n=0

vn(x). (7)

where the components vn(x), n ≥ 0 are to be determined in a recursive manner. To calculate
the components of the solution in a recursive way, we define the nonlinear functions
Fi(v(x)), Gj(v(x)), by a series of polynomials set as:

Fi(v(x)) =
∞

∑
n=0

(Ci)n, Gj(v(x)) =
∞

∑
n=0

(Di)n, v(k)(x) =
∞

∑
n=0

En. (8)

where the symbols (Ci)n, (Dj)n, En, depends on v0, v1, ..., vn, and named as Adomian’s
polynomials that represent the non-linear functions in the given integral equation, and the
special formula set by Adomian [33,34], or Wazwaz [35] is used to find these polynomials.
Substituting these infinite series (7)–(8) m− 1 < α ≤ m, we obtain

S[
∞

∑
n=0

vn(x)] = uα
n−1

∑
k=0

u−(α−k)v(k)(0) + uαS
[ −1

pm(x)

m−1

∑
k=0

pk(x)
∞

∑
n=0

En

]
+ uαS[ f (x)]

+ uαS
[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)
∞

∑
n=0

(Ci)ndt
]
+ uαS

[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)
∞

∑
n=0

(Di)ndt
]
,

The process of forming the recursive equations for the series solution depends mainly
on choosing the first term S[v0] in the series to consist of all the terms that came from the
initial conditions, or from the term related to the source term f (x), i.e.,

S[v0(x)] = uα
n−1

∑
k=0

u−(α−k)v(k)(0) + uαS[ f (x)] (9)

As for calculating the other terms for S[∑∞
n=0 vn(x)], we calculate each term in terms

of the previous one’s and alternately, so for k ≥ 1, we have



Axioms 2022, 11, 398 7 of 15

S[vk+1(x)] = uαS
[ −1

pm(x)

m−1

∑
k=0

pk(x)
∞

∑
k=0

Ek

]
+ uαS

[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)
∞

∑
k=0

(Ci)kdt
]

+ uαS
[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)
∞

∑
k=0

(Di)kdt
]
,

As a result, the components v0, v1, v2, ... are identified by applying inverse Sumudu
transform of the above equations, to obtain

v0(x) = S−1
[
uα

n−1

∑
k=0

u−(α−k)v(k)(0)
]
+ S−1

[
uαS[ f (x)]

]
(10)

and, for k ≥ 1, we arrive at

vk+1(x) = S−1
(

uαS
[ −1

pm(x)

m−1

∑
k=0

pk(x)
∞

∑
k=0

Ek

])
+ S−1

(
uαS

[
λ1

∫ x

a

r

∑
i=0

Ai(x, t)
∞

∑
k=0

(Ci)kdt
])

+ S−1
(

uαS
[
λ2

∫ b

a

s

∑
j=0

Bj(x, t)
∞

∑
k=0

(Di)kdt
])

.

In this way, a sufficient number of terms for the series approximate solution can be
calculated. It should be noted here that we only few terms are needed to get a fairly
accurate solution. In many cases, the exact solution to the problem can be known, especially
if the value of α is an integer [1]. The partial sum of the approximate solution, that
represent the first n terms is given by vapprox.(x) = ∑n−1

m=0 vm. The process of calculating
terms of the series solution depends mainly on the nature of the shape of the first term in
Equation (9), especially when finding the inverse, it becomes difficult whenever there are
many terms in Equation (9). Wazwaz [35] adopted a new method when he faced the same
problem for applying Adomian decomposition method, he proposed dividing the first
term appearing in Equation (9) into two (or more) parts, the first part S[v0(x)] is taking
to be S[v0(x)] = uαS[ f (x)], which is easy to calculate its inverse. Then for the second
part, he proposed S[v1(x)] = uα ∑n−1

k=0 u−(α−k)v(k)(0), in this way, the rest of the terms were
calculated easily. We will follow the same method suggested as Wazwaz, as we will see in
the illustrative examples.

4. Convergence Analysis

In this section, the maximum absolute error of the truncated series (7) is estimated
in Theorem 3. Without loss of generality, Equation (3) can be written in a general and
abbreviated form as

v(α)(x) = a(x)v(x) + g(x) +
∫ x

a
A(x, t)F(v)dt +

∫ b

a
B(x, t)G(v)dt (11)

where v : [a, b] → IR is continuous function, g : [a, b] → IR and A, B : [a, b]× [a, b] → IR
are continuous, while F(v), G(v) are Lipschitz continuous functions. In order to state and
prove our main result in this section, we need to introduce the following assumptions:

Assumption 1. There are two positive constants ŁF, ŁG in which for any v1, v2 ∈ C([a, b], IR),
we have

|F(v1(x))− F(v2(x))| ≤ ŁF|v1 − v2|, |G(v1(x))− G(v2(x))| ≤ ŁG|v1 − v2|.

Assumption 2. There are two continuous functions A,B ∈ C(M, IR+), the set of all positive
continuous functions on M = {(x, t) ∈ IR× IR : 0 ≤ t ≤ x ≤ 1} such that
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A = sup
x∈[a,b]

∫ x

0
|A(x, t)|dt < ∞, B = sup

x∈[a,b]

∫ b

a
|B(x, t)|dt < ∞.

For existence and uniqueness results of Equation (1), we refer readers to [15]. Now, we
state the following theorem without proof, for those interested in the proof, some similar
results in [15] can be completely imitated.

Theorem 2 ((Convergence Theorem)). The solution in Equation (7) using Sumudu transform
scheme for Equation (1) converges if κ < 1 and |v1| < ∞, where κ = A ŁF+B ŁG

Γ(α+1) > 0.

Next, we state and prove the main result in this section.

Theorem 3. For 0 < κ < 1. The maximum absolute truncation error of the approximate solu-
tion (7) to our problem in Equation (1) is estimated by

max
x∈[a,b]

|v(x)−
m

∑
i=0

vi(x)| ≤ κm

1− κ
max

x∈[a,b]
|v1(x)|.

Proof. In the proof of the convergence theorem, we need to show that the partial sum of
the series in (7) is Cauchy, and so for n ≥ m, we may conclude that

‖ Sn − Sm ‖≤
κm

1− κ
max

x∈[a,b]
|v1(x)|.

As n→ ∞, then Sn → v(x), so we have

‖ v(x)− Sm ‖≤
κm

1− κ
max

x∈[a,b]
|v1(x)|.

Therefore, the maximum absolute error is estimated to be

max
x∈[a,b]

|v(x)−
m

∑
i=0

vi(x)| ≤ κm

1− κ
max

x∈[a,b]
|v1(x)|.

This ends the proof.

5. Illustrative Examples

In order to assess the advantages of the proposed method (Sumudu Adomian decom-
position) over Adomian Decomposition method [14], in terms of accuracy and efficiency
for solving fractional integro-differential equations, we have applied the method to two
different examples, with known exact solutions at some values of α. The computations
associated with the examples were performed using Mathematica.

Example 1. Consider the following nonlinear fractional integro-differential equation [17]

v(α)(t) =
1

Γ(1/2)

(8
3

t3/2 − 2t1/2
)
− t

1260
+
∫ 1

0
xtv4(x)dx, 0 ≤ t ≤ 1 (12)

where u(0) = 0, and α ∈ (0, 1].

Applying the Sumudu transform to both sides of Equation (12). For the left hand side
part v(α)(t) we use the initial condition together with Lemma 2, while for the first three
terms on the right hand side we use the fact that

S
(

ta−1

Γ(a)

)
= ua−1, a > 0.



Axioms 2022, 11, 398 9 of 15

By presenting some simple but annoying calculations in which there is no need to
explain them here, we came to the following

S[v(t)] = 2uα+ 3
2 − 2uα+ 1

2 − 1
1260

uα+1 + uαS
[ ∫ 1

0
xtv4(x)dx

]
.

Substituting the decomposition series (7) for v(t), and the series ∑∞
n=0 An(t) for the

nonlinear term v4(t), we have

S[
∞

∑
n=0

vn(t)] = 2uα+ 3
2 − 2uα+ 1

2 − 1
1260

uα+1 + uαS
[ ∫ 1

0
xt

∞

∑
n=0

An−1(t)dx
]
.

Because we need to calculate a few terms from the solution series, then we need to
know the first n− 1 Adomian polynomials, as A0(t) = v4

0(t), A1(t) = 4v3
0(t)v1(t), A2(t) =

6v2
0(t)v

2
1(t) + 4v3

0(t)v2(t), and so on. The modified decomposition technique introduces
the use of the recursive relation

S[v0(x)] = 2uα+ 3
2 − 2uα+ 1

2 (13)

S[v1(t)] = −
1

1260
uα+1 + uαS

[ ∫ 1

0
xtA0(t)dx

]
(14)

and,

S[v2(t)] = uαS
[ ∫ 1

0
xtA1(t)dx

]
(15)

In general, we take the nth term to be

S[vn(t)] = uαS
[ ∫ 1

0
xtAn−1(t)dx

]
, n ≥ 3. (16)

Take the inverse Sumudu transform of both sides of S[v0(t)], yields

v0(t) =
2

Γ[α + 3
2 ]

[ tα+ 3
2

α + 3
2
− tα+ 1

2

]
.

So we can simplify S[v1(t)] appeared in Equation (14) as

S[v1(t)] = −
1

1260
uα+1 + uαS

[ ∫ 1

0
xtA0(t)dx

]
= − 1

1260
uα+1 + uαS

[ t3+4α(3− 2t + 2α)4

2(Γ[α + 5
2 ])

4

]
.

Take the Sumudu inverse S−1 of both sides, we obtain the result
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v1(t, α) =
8α4Γ(4α + 4)t5α+3

Γ
(
α + 5

2
)4

Γ(5α + 4)
+

48α3Γ(4α + 4)t5α+3

Γ
(
α + 5

2
)4

Γ(5α + 4)
− 64α3Γ(4α + 5)t5α+4

Γ
(
α + 5

2
)4

Γ(5α + 5)

+
108α2Γ(4α + 4)t5α+3

Γ
(
α + 5

2
)4

Γ(5α + 4)
− 288α2Γ(4α + 5)t5α+4

Γ
(
α + 5

2
)4

Γ(5α + 5)
+

192α2Γ(4α + 6)t5α+5

Γ
(
α + 5

2
)4

Γ(5α + 6)

− tα+1

1260Γ(α + 2)
+

108αΓ(4α + 4)t5α+3

Γ
(
α + 5

2
)4

Γ(5α + 4)
+

81Γ(4α + 4)t5α+3

2Γ
(
α + 5

2
)4

Γ(5α + 4)

− 432αΓ(4α + 5)t5α+4

Γ
(
α + 5

2
)4

Γ(5α + 5)
− 216Γ(4α + 5)t5α+4

Γ
(
α + 5

2
)4

Γ(5α + 5)
+

576αΓ(4α + 6)t5α+5

Γ
(
α + 5

2
)4

Γ(5α + 6)

+
432Γ(4α + 6)t5α+5

Γ
(
α + 5

2
)4

Γ(5α + 6)
− 256αΓ(4α + 7)t5α+6

Γ
(
α + 5

2
)4

Γ(5α + 7)
− 384Γ(4α + 7)t5α+6

Γ
(
α + 5

2
)4

Γ(5α + 7)

+
128Γ(4α + 8)t5α+7

Γ
(
α + 5

2
)4

Γ(5α + 8)

To obtain the inverse Sumudu of S[v2(t)] from (15), we use Mathematica to avoid a
lengthy calculations. The approximate solution is given by va(t) = v0(t) + v1(t) + v2(t).
When α = 1

2 , then va(t) = t2− t which is the exact solution. The value of α = 0.5 is the only
case for which we know the exact solution, and our approximate solution is in excellent
agreement with the exact values as shown in Figure 1, where we drew the absolute error
between the exact and the approximate solutions when α = 0.5, and the solution calculated
by the method for two different periods. The results in Figure 1 showed the effectiveness
of the method. Thus we have drawn the solution at other values of α as in Figure 2, and
we can conclude from the drawings that the solution at different values of α has the same
behavior. Computational cost of the numerical scheme varying the number of iterations, in
this example only two iterations are needed in a time of 1.32 s.

0.2 0.4 0.6 0.8 1.0
t

-2 × 10-17

-4 × 10-17

-6 × 10-17

2 × 10-17

4 × 10-17

6 × 10-17
Error

0.5 1.0 1.5 2.0
t

-1 × 10-16

-2 × 10-16

1 × 10-16

2 × 10-16

Error

Figure 1. The absolute error for 0 < t < 1 and 0 < t < 2 in Example 1.

α=0.2, 0.3, 0.4, 0.5

0.2 0.4 0.6 0.8 1.0
t

-0.3

-0.2

-0.1

0.1

0.2

v

α=0.5, 0.6, 0.7, 0.8

0.2 0.4 0.6 0.8 1.0
t

-0.25

-0.20

-0.15

-0.10

-0.05

v

Figure 2. The solution for different values of α in Example 1.

In many cases the modified scheme proposed by Wazwaz [35] avoids the unneces-
sary computations for Adomian polynomials, also, no need to calculate several terms of
the series solution, as the computation will be reduced very considerably by using the
modified scheme. The next example we present a fractional linear Volterra-Fredholm
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integro-differential equation, which represents the general formula for the problem under
consideration as stated in Equation (1), and the modified scheme will be used.

Example 2. Consider the fractional linear Voltera-Fredholm integro-differential equation of order
α, where 0 < α ≤ 1.

v(α)(t) =
tα

Γ(α + 1
2 )
− t22− t2et

3
v(t) +

∫ t

0
etxv(x)dx +

∫ 1

0
t2v(x)dx. (17)

when α = 0.5 and the initial condition is v(0) = 0, Equation (17) has exact solution v(t) = t.
Imitating what came at the beginning of the solution to the first example, where Sumudu
was taken to both sides and some relations related to Sumudu transform were used, for
α = 0.5 we arrive at

S[v(t)] = u− u2.5 − u0.5 S
[ t2et

3
v(t)

]
+ u0.5 S

[ ∫ t

0
etxv(x)dx +

∫ 1

0
t2v(x)dx

]
.

Substituting the decomposition series (7) for v(t) on both sides of the above equation,
while it should be noted that there are no non-linear terms inside the kernels, as the equation
under study is linear, and therefore we do not need Adomian polynomials. So, we get

S[
∞

∑
n=0

vn(t)] = u− u2.5 − u0.5 S
[ t2et

3

∞

∑
n=0

vn(t)
]
+ u0.5 S

[ ∫ t

0
etx

∞

∑
n=0

vn(x)dt +
∫ 1

0
t2

∞

∑
n=0

vn(x)dx
]
. (18)

The modified decomposition technique introduces the use of the first two iterations as

S[v0(t)] = u (19)

and,

S[v1(t)] = −u2.5 − u0.5 S
[ t2et

3
v0(t)

]
+ u0.5 S

[ ∫ t

0
etxv0(x)dx +

∫ 1

0
t2v0(x)dx

]
. (20)

In Equations (19) and (20), take the inverse Sumudu of both sides we get v0(t) = t, and
v1(t) = 0. Since all remaining terms vn(t), n ≥ 2 depends on v1(t), so we have vn(t) = 0
for all n ≥ 1. Therefore, the obtained solution is v(t) = ∑∞

n=0 un(t) = t, which is the
exact solution.

Example 3. Now we present a nonlinear example of a special type of Volterra integro-differential
equation of the form

v(α)(t) = 1 +
∫ t

0
v′(τ)v(τ)dτ, v(0) = 0, 0 ≤ t < 1, 0 < α ≤ 1. (21)

Equations of Volterra types appear a lot in engineering applications, especially in the
subject of glass forming process. For Equation (21) is known that the exact solution when
α = 1, is v(t) =

√
2 tan(t/

√
2) [36].

We will find the approximate solution as a function both t and α, and use the obtained
solution to compare it with the exact solution when α = 1. In addition to that, the accuracy
of the solution will be compared with the results in [36]. To start, we take Sumudu transform
on both sides of Equation (21) to get

S[v(t)] = uα + uαS
[ ∫ t

0
v′(τ)v(τ)dτ

]
(22)

The method is to substitute what was stated in Equation (7) on the left side of the
above equation, while we replace the non-linear term that came in the form of the product
of v(t) with its first derivative v′(t) in the form of Adomian polynomials, as v(τ)v′(τ) =
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∑∞
n=0 An(τ). Because we will be satisfied with finding the first 6 terms of the solution series

in Equation (7), we need to calculate only the first 5 terms of the Adomian polynomials,
the first 4 came as follows: A0 = v0(τ)v′0(τ), A1 = v1(τ)v′0(τ) + v0(τ)v′1(τ), A2 =
v2(τ)v′0(τ) + v2(τ)v′1(τ) + v1(τ)v′2(τ) + v0(τ)v′2(τ), A3 = v3(τ)v′0(τ) + v2(τ)v′1(τ) +
v1(τ)v′2(τ) + v0(τ)v′3(τ). Similarly A4 with more terms. Therefore, after the appropriate
substitutions, as mentioned above, Equation (22) becomes

S[
∞

∑
n=0

vn(t)] = uα + uαS
[ ∫ t

0

∞

∑
n=0

An(τ)dτ
]

(23)

After comparing the two sides, we get the value of the first term from the left side
S[v0(t)] to be uα, after taking the inverse, we get that the value of v0(t) = tα

Γ[1+α]
. The

remaining alternating terms are given by the following relationship

S[vn+1(t)] = uαS
[ ∫ t

0
An(τ)dτ

]
, n ≥ 0.

After taking the inverse of both sides, we get

vn+1(t) = S−1
[
uαS

[ ∫ t

0
An(τ)dτ

]]
, n ≥ 0. (24)

After substituting the values of n = 0, 1, 2, 3, 4 into Equation (24), and after easy
arithmetic operations, we calculate from the approximate series solution (7) the first
6 terms, and write the approximate solution as follows

va(t) = C0tα + C1t3α + C2t5α + C3t7α + C4t9α + C5t11α, (25)

where

C0 =
1

Γ(1 + α)
, C1 =

αC2
0Γ(2α)

Γ(1 + 3α)
, C2 =

4αC0C1Γ(4α)

Γ(1 + 5α)
, C3 =

(6αC0C2 + 3αC2
1)Γ(6α)

Γ(1 + 7α)
,

and

C4 =
(8αC0C3 + 8αC1C2)Γ(8α)

Γ(1 + 9α)
, C5 =

(10αC0C4 + 10αC1C3 + 5αC2
2)Γ(10α)

Γ(1 + 11α)
.

For the purposes of comparison with the exact solution v(t) =
√

2 tan(t/
√

2), we
write the approximate solution when the value of α = 1 in the following form

va(t) = t + 0.16666t3 + 0.033333t5 + 0.00674603t7 + 0.00136684t9 + 0.000276976t11.

We used the approximate solution in Equation (25) and plotted the solution as in
Figure 3 for several different values of α starting from α = 0.25, 0.50, 0.75 till α = 0.95.
Looking at the figure, we notice that the behavior of the solution seems to be the same,
especially the closer we get to the exact solution when α = 1. As we mentioned earlier, the
equation in this example has exact solution only when the value of α is 1, so in Table 1, we
calculated the approximate solution in Equation (25) when α is equal to 1 at several values
of the variable t. The results were compared with the Laplace Adomian Decomposition
method, which was used in [36], to solve the same example. The results showed that our
method is slightly better than the one in [36].
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α=1
α=0.95

α=0.75

α=0.5α=0.25

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

5

v

Figure 3. The approximate solution for different values of α for Example 3.

Table 1. Numerical results and absolute errors for Example 3.

t Exact Our Numerical Our Absolute
Error Absolute Error [36]

0.1 0.10016700 0.10016700 1.38778× 10−17 8.762 ×10−14

0.2 0.20134408 0.20134408 4.64073× 10−14 4.400 ×10−11

0.3 0.30458250 0.30458250 9.11465× 10−12 1.642 ×10−9

0.4 0.41101942 0.41101942 3.89284× 10−10 2.108 ×10−8

0.5 0.52193051 0.52193050 7.21706× 10−9 1.508 ×10−7

0.6 0.63879570 0.63879562 7.90743× 10−8 7.474 ×10−7

0.7 0.76338580 0.76338519 6.03759× 10−7 2.884 ×10−6

0.8 0.89788153 0.89787799 3.54542× 10−6 9.309 ×10−6

0.9 1.04504313 1.04502606 1.70683× 10−5 2.634 ×105

We can observe the following from the results of the above three examples: (a) the
convergence of the method when the number of iterations increases; (b) an estimate of the
rate of convergence and of the computational cost of the method; (c) a comparison with
other numerical schemes proposed in the literature, like Legendre collocation method; (e) a
detailed examination of the convergence in terms of its simplicity, implementation and high
accuracy; (f) when the fractional derivative tends to positive integer, then the approximate
solution continuously tends to the exact solution.

6. Conclusions

The main objective of this paper, is to present an effective method in which we used
the Sumudu transform to solve nonlinear integro-differential equations with fractional
derivatives, where the difficulty of the nonlinear terms was overcome by using Adomian’s
polynomials. In order to ensure the effectiveness of the method, three examples were
presented and the solutions were studied. The results were presented through tables and
graphs that showed the accuracy and effectiveness of the method. It should be noted
that the method can be used in the same way to solve systems of integral equations
with fractional derivatives that have many engineering applications. We hope to refer to
problems of this type in a later study.
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