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Abstract: The notion of general quasi-overlaps on bounded lattices was introduced as a special
class of symmetric n-dimensional aggregation functions on bounded lattices satisfying some bound
conditions and which do not need to be continuous. In this paper, we continue developing this topic,
this time focusing on another generalization, called general pseudo-overlap functions on lattices,
which in a given classification system measures the degree of overlapping of several classes and
for any given object where symmetry is an unnecessarily restrictive condition. Moreover, we also
provide some methods of constructing these functions, as well as a characterization theorem for them.
Also, the notions of pseudo-t-norms and pseudo-t-conorms are used to generalize the concepts of
additive and multiplicative generators for the context of general pseudo-quasi-overlap functions on
lattices and we explore some related properties.
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1. Introduction

Widely studied in the fuzzy set theory, aggregation functions have importance not
only in the measure and integration theory or theory of functional equations but also in
several applied fields. For example, for medical diagnosis, a mathematical model is given
by the equation S ⊗t X = T , where S and T are respectively the matricial forms of the
fuzzy relations of symptoms and patients, with the product t-norm, then the diagnostic
matrix is given by D = S−1 ⊗gn T , where gn denotes Goguen’s implication (see [1]). In [2],
a chapter is devoted to fuzzy decision-making in public health strategies based on fuzzy
aggregation functions. In this perspective, for a given fuzzy measure, the authors used
Sugeno integrals are used to determine the expected fuzzy value in the context of the
analysis of traffic accidents in the city of São Paulo, Brazil.

In some situations, it is necessary to measure the degree of overlapping of an object in
fuzzy rule-based classification systems with more than two classes. In this context, in order
to develop a classifier that tackles the problem of determining the risk of a to be suffering
from a cardiovascular disease within the next 10 years, in [3] the authors used rules of
the type:

Rule Rj : If xp1 is Aj1 and . . . and xpn is Ajn then Class = Cj with RWj,

where the inference procedure computes An
(
µAj1(xp1), . . . , µAjn(xpn)

)
for an aggregation

function An.
Overlap functions, introduced in [4], are continuous and commutative bivariate ag-

gregation functions on [0, 1] (not necessarily associative) satisfying appropriate boundary
conditions and have been widely investigated in the literature, as for example in [5–10].
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Since then, many generalizations and extensions of this notion arose, such as [11–17]. In
particular, in [18,19], the authors studied a special type of n-ary aggregation function on
[0, 1], called general overlap functions, which measure the degree of overlapping (inter-
section for non-crisp sets) of n different classes, for computing the matching degree in a
classification problem. In [20] the authors used a special class of binary general overlap
functions to expand the notion of BL-algebras (which are the algebraic counterpart of a
type of fuzzy logic modeled by Peter Hájek). This class of functions offers a promising field
of research [7,21–24].

In [23], Paiva et al., introduced the concept of quasi-overlap and overlap functions on
bounded lattices and investigated some important properties of them. Other important
theoretical results on these subjects can be found in [25–29]. Moreover, in [30] Paiva and
Bedregal introduced the notion of general overlap functions in the context of bounded
lattices and proposed some construction methods and a characterization theorem for this
class of functions. Recently, in his doctoral thesis, Batista [31] removed the commuta-
tivity requirement from the properties of overlap functions and introduced the notion
of pseudo-overlap functions to define new generalizations of Choquet integrals, named
Pseudo-Choquet Integrals and Absolute Choquet Integral. At the same time, but indepen-
dently, Zhang and Liang gave a talk where some examples and construction methods of
pseudo overlap functions and pseudo grouping functions, and the residual implication (co-
implication) operators derived from them were investigated, as well as some applications
of pseudo overlap (grouping) functions in multi-attribute group decision-making, fuzzy
math morphology, and image processing were discussed [32]. A complete version of this
preliminary work is derived in the paper [33]. Also recently, Liang and Zhang [34] formal-
ized the notion of interval-valued pseudo overlap functions and a few of their properties,
including migrativity and homogeneity, and give some construction theorems and specific
examples.

In this paper, we continue to consider this research by proposing a generalization
of these three types of variants of overlap functions on bounded lattices, called pseudo
general quasi-overlap functions, which are special aggregation functions on bounded
lattices, not necessarily bivariate, to be used in situations where symmetry and continuity
are unnecessary or irrelevant. For example, in Multi-Criteria Decision Making (MCDM),
criteria, in general, have different levels of importance or weights. Suppose that for each
alternative xi and criteria cj the expert provides a score si,j from a bounded lattice L. So, if
we have m criteria and n alternatives, we can apply an m-dimensional aggregation function
A on L to get an overall score for each alternative xi, i.e., score(xi) = A(si,1, . . . , si,m), which
can be used to rank alternatives. As the criteria have different weights, symmetry is not
desirable, associativity is meaningless when m > 2, and continuity is irrelevant. Therefore,
it is reasonable to use general pseudo-quasi-overlap functions on L as aggregation functions.
It is worth mentioning that this simple method of MCDM meets the principles of the
increasing nature, dominance, and insensibility to indexations pointed out as basic in [35]
for each MCDM.

On the other hand, the study of such generalizations will help us define new Choquet
and Sugeno integral classes on bounded lattices that can provide us with some potential
applications in the above fields and can provide also more flexibility in applications,
from uncertainty control to new forms of data fusion, since data fusion uses overlapping
information to determine relationships among data (the data association function) [36].

The rest of this paper is organized as follows: In Section 2, we recall some basic con-
cepts and terminologies over aggregation functions on bounded lattices and the algebra
of quasigroups which are used throughout the paper. In Section 3, the notion of general
pseudo-quasi-overlap functions is formalized, and characterization and construction meth-
ods of general pseudo-quasi-overlap functions are proposed. In Section 4, we use the
notions of pseudo t-norms and pseudo-t-conorms to generalize the concepts of additive
and multiplicative generators for the context of general pseudo-quasi-overlap functions on
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lattices and we explore some properties related. Finally, Section 5 contains some concluding
remarks.

2. Terminology and Basic Notions

In this section, some basic concepts and terminologies used throughout the paper are
remembered.

2.1. Aggregation Functions on Bounded Lattices

In this subsection, it is assumed that the notions of posets or partial orders are familiar
to readers. For more details see [37–40].

We remember that a lattice is a poset (X,≤X) where each pair of elements x, y ∈ X
has infimum and supremum, denoted respectively by x ∧ y and x ∨ y. Moreover, if there
are 0X, 1X ∈ X such that for each x ∈ X, x ∧ 1X = x and x ∨ 0X = x, then (X,≤X) is
called bounded lattice. We will simply say that X is a lattice whenever the order ≤X is clear
in the context. Also, if (X1,≤X1), . . . , (Xn,≤Xn) are lattices and the Cartesian product of

the underlying sets is
n
∏
i=1

Xi = X1 × . . .× Xn, then the structure
(

n
∏
i=1

Xi,≤comp

)
is also a

lattice called product lattice of (X1,≤X1), . . . , (Xn,≤Xn), where ≤comp is the componentwise

partial order on the Cartesian product
n
∏
i=1

Xi given as follows: let ~x = (x1, . . . , xn) and

~y = (y1, . . . , yn) be two points of
n
∏
i=1

Xi. Therefore, ~x ≤comp ~y ⇔ xi ≤Xi yi, for every

i = 1, . . . , n.
Let n ∈ N be fixed and X a bounded lattice. An n-ary map ψ : Xn −→ X is increasing

if ψ(~x) ≤X ψ(~y) whenever ~x ≤comp ~y. If the orders ≤X and ≤comp are respectively replaced
by the strict orders <X and <comp, then one obtains a stronger requirement. A map with
this property is called strictly increasing. Moreover, if ψ(~y) ≤X ψ(~x) whenever ~x ≤comp ~y,
then ψ is a decreasing map. Similarly, strictly decreasing maps are defined. Recent studies
have focused on n-ary maps on bounded lattices [23,41,42].

Definition 1 ([41]). Consider X a bounded lattice. A map F : Xn −→ X is called an aggregation
function on X whenever it is increasing and satisfies boundary conditions: F(0X, . . . , 0X) = 0X

and F(1X, . . . , 1X) = 1X.

We also remember that an n-ary aggregation function F on a bounded lattice X is
called symmetric, if its value does not depend on the permutation of the arguments, i.e.,
F(x1, x2 . . . , xn) = F(xP(1), xP(2), . . . , xP(n)), for every ~x = (x1, x2, . . . , xn) and every per-
mutation P = (P(1), P(2), . . . , P(n)) of (1, 2, . . . , n).

Important examples of aggregation functions for this paper are pseudo-t-norms and
pseudo-t-conorms.

Definition 2 ([43]). Let X be a bounded lattice. An operation T : X2 −→ X (resp. S : X2 −→ X)
is called a pseudo-t-norm (resp. pseudo-t-conorm) if it is associative, increasing with respect to the
both variables and has a neutral element e = 1X (resp. e = 0X), i.e., T(1X, x) = T(x, 1X) = x
(resp. S(0X, x) = S(x, 0X) = x), for all x ∈ X.

Remark 1. Although pseudo-t-norms and pseudo-t-conorms are introduced as binary operations,
the associativity enables us to extend them to n-ary operations. For example, given n ≥ 2 and a
pseudo t-norm T, then T can be extended to T : Xn −→ X:

T(x1, . . . , xn) = T(. . . T(T︸ ︷︷ ︸
n−1 times

(x1, x2), x3), . . . , xn).
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Similarly, given a pseudo t-conorm S, then S can be extended to S : Xn −→ X:

S(x1, . . . , xn) = S(. . . S(S︸ ︷︷ ︸
n−1 times

(x1, x2), x3), . . . , xn).

Note that here we are using the overloading of operators (i.e., the same name for different
functions).

Definition 3. Let X be a bounded lattice. A n-dimensional pseudo t-norm T : Xn −→ X is called
positive if it satisfies the condition: T(x1, . . . , xn) = 0X ⇔ xi = 0X, for some i ∈ {1, . . . , n}.
Dually, a n-dimensional pseudo t-conorm S : Xn −→ X is called positive if it satisfies the condition:
S(x1, . . . , xn) = 1X ⇔ xi = 1X, for some i ∈ {1, . . . , n}.

Another important type of n-ary aggregation functions on lattice X are general quasi-
overlap functions [30].

Definition 4 ([30]). Consider X a bounded lattice. The map GO : Xn −→ X is a general
quasi-overlap function on X, if:

(GO1) GO is symmetric;
(GO2) GO(x1, . . . , xn) = 0X if xi = 0X, for some i ∈ {1, . . . , n};
(GO3) GO(x1, . . . , xn) = 1X if xi = 1X, for all i ∈ {1, . . . , n};
(GO4) GO is increasing.

In Section 3, the notion of general quasi-overlap functions will be extended by drop-
ping the requirement of symmetry in its definition. To obtain characterization theorems for
these functions, the next subsection will be dedicated to the algebraic structure used for
this purpose.

2.2. The Algebra of Quasigroups

In this subsection, we summarize some terminology and basic facts regarding quasi-
groups. For more details it is indicated [44–49]. The concept of quasigroup is a natural
generalization of the concept of a group and is nothing more than a set X equipped with a
binary operation ∗ on X (usually called multiplication) such that for any two elements a
and b of X, there must be two other elements x and y of X that transform a into b through
∗. Quasigroups differ from groups mainly in that they need not be associative and need
not have an identity element.

Definition 5 ([44]). Let X be a non-empty set and ∗ be a binary operation on X, called multiplica-
tion. The algebraic structure (X, ∗) is called a quasigroup if for any ordered pair (a, b) ∈ X2 there
exist a unique solution x, y ∈ X to the equations x ∗ a = b and a ∗ y = b.

From Definition 5 it follows, that any two elements from the triple (a, b, a ∗ b) specify
the third element in a unique way. Indeed, for any elements a and b there exists a unique
element a ∗ b. This follows from the definition of operation ∗. Elements a and a ∗ b
determine the third element in a unique way since there exists a unique solution to the
equation a ∗ y = b. Elements b, a ∗ b determine the third element uniquely since there exists
a unique solution to the equation x ∗ a = b.

Example 1. Consider the following:

(1) Let Z4 be the set of integers modulo 4, equipped with the operation of subtraction and consider
the equation

x− y = z (1)
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between elements x, y, z of Z4. If x and y are given, then (1) specifies z uniquely. If (1) holds,
and y, z are given, then x is specified uniquely as x = y + z. Moreover, if (1) holds, and x, z
are given, then y is specified uniquely as y = x− z. Therefore, (Z4,−) is a quasigroup.

(2) Consider R the set of real numbers equipped with the binary operator ∇, where for any two
real numbers x and y, x∇y = x+y

2 . Consider also the equation

x∇y = z (2)

between real numbers x, y, and z. Under these conditions, z is uniquely specified by x and y.
Moreover, if y and z are given, then x is uniquely specified as x = 2z− y. Similarly, y is
uniquely specified by (2) in terms of x and z. Therefore (R,∇) is a quasigroup.

As is well known, in some multiplicative structures such as rings and fields, division
is not always possible. Indeed, we cannot divide by 0 in the field R of real numbers, nor
by the element 2 within the ring Z of integers. However, quasigroups are defined so that
division is always possible. In fact, there are two forms of division in a quasigroup: from
the right and from the left.

Definition 6 ([46]–Quasigroup divisions). Let (X, ∗) be a quasigroup and consider elements x
and y of X. Under these conditions:

(i) The element x\y of X is defined as the unique solution z of the equation x ∗ z = y. In
other words,

x ∗ (x\y) = y. (3)

The element x\y may be read as “x dividing y” or “x backslash y”. Moreover, the
operation \ on the set X is known as a left division in the quasigroup (X, ∗).

(ii) the element x/y of X is defined as the unique solution z of the equation z ∗ y = x. In
other words,

(x/y) ∗ y = x. (4)

The element x/y may be read as “x divided by y” or “x slash y”. Moreover, the operation
/ on the set X is known as a right division in the quasigroup (X, ∗).

Example 2. Let (R,∇) be the arithmetic mean quasigroup structure on the real line, as given in
item (2) of Example 1. In solving (4) for x in terms of y and z, it was shown there that z/y = 2z− y.
This operation of right division in the arithmetic mean quasigroup has a geometrical interpretation,
as the reflection of y in a mirror located at z. Similarly, in solving (3) for y in terms of x and z, it was
shown there that x\z = 2z− x. This operation of left division in the arithmetic mean quasigroup
also has a geometrical interpretation, as the reflection of x in a mirror located at z.

Lemma 1 ([46]–Characterization of quasigroups). A set X forms a quasigroup (X, ∗) under a
multiplication ∗ if and only if it is equipped with a left division \ and a right division / such that
for all x, y in X one has:

(C1) x ∗ (x\y) = y;
(C2) x\(x ∗ y) = y;
(C3) (x/y) ∗ y = x;
(C4) (y ∗ x)/x = y.

Theorem 1 ([46]–Divisions as quasigroup multiplications). Let (X, ∗) be a quasigroup, with
left division \ and right division /. Then (X, \) and (X, /) are quasigroups.

Remark 2. Theorem 1 gives an immediate proof for the content of item (1) in the Example 1,
showing that the set Z4 of integers modulo 4 forms a quasigroup under subtraction. Notice that
subtraction is the right division for the addition in any additive group like (Z4,+).
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Theorem 2 ([45]). If the structure (X, ∗) is an associative quasigroup, then necessarily (X, ∗) has
a unique identity element e.

In this way, it is concluded that every associative quasigroup is a group. In this
perspective, a quasigroup is Abelian if it is commutative and associative, so is an Abelian
group. In addition, given an Abelian group (X, ∗), we remember that for an element a ∈ X,
any other b ∈ X is called inverse of a, denoted by b = a−1, when a ∗ b = b ∗ a = e.

Remark 3 ([46]). Let (X, ∗) be a group, considered as a quasigroup. Then x\y = x−1 ∗ y and
y/x = y ∗ x−1. When a quasigroup is Abelian, since the operator ∗ is commutative, for any x, y in
X, its left division x\y and right division y/x coincides.

In the next section, the notions of quasigroups and groups will be useful to present a
characterization theorem.

3. General Pseudo Quasi-Overlap Functions

In this section, the concept of general pseudo quasi-overlap functions is formalized
and construction methods and characterization of general pseudo quasi-overlap functions
are proposed.

Definition 7. Consider X a bounded lattice. The map GP : Xn −→ X is a general pseudo
quasi-overlap function on X, if:

(GP1) GP(x1, . . . , xn) = 0X if xi = 0X, for some i ∈ {1, . . . , n};
(GP2) GP(x1, . . . , xn) = 1X if xi = 1X, for all i ∈ {1, . . . , n};
(GP3) GP is increasing.

Example 3. (1) Let X be a bounded lattice and a ∈ X. The map GP : Xn −→ X given by

GP(x1, . . . , xn) =


n∧

i=1
xi if

∨n
i=1 xi ≤ a

n∨
i=1

xi otherwise

is a general pseudo quasi-overlap function on X. A variant of this map given by

GP(x1, . . . , xn) =


n∧

i=1
xi if xi ≤ a for each i = 1, . . . , n

n∨
i=1

xi otherwise

is also a general quasi-overlap function on X.
(2) Let X be a non-empty set and (℘(X),⊆) be the lattice of the powersets of X with the

inclusion order. The map GP : ℘(X)2 −→ ℘(X) given by

GP(X1, . . . , Xn) =
n⋃

i=1

Xi −
n⋂

i=1

Xi

is a general pseudo quasi-overlap function on ℘(X). Another general pseudo quasi-overlap
function on ℘(X) is given by

GP j(X1, . . . , Xn) =

 ∅ if
n⋂

i=1
Xi = ∅

Xj otherwise,

where j ∈ {1, . . . , n} is fixed.
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(3) Consider X a non-empty set and let F (X) be the lattice of fuzzy sets on X, where the order
considered is the inclusion of fuzzy sets. If f : [0, 1]n −→ [0, 1] is given by

f (x1, . . . , xn) =
n

∏
i=1

xαi
i ·
(

max

{
n

∑
i=1

xi − (n− 1), 0

})
,

with integers αi ≥ 1 for all i ∈ {1, . . . , n}, then the map

GP f (A1, . . . , An) = {(x, f (A1(x), . . . , An(x))) | x ∈ X}

is a general pseudo quasi-overlap function on F (X).
(4) The function f from the previous item is a general pseudo-quasi-overlap function on the

n-dimensional cube [0, 1]n which is not a general quasi-overlap function. Furthermore, the
function GPGM : [0, 1]n −→ [0, 1] given by

GPGM(x1, . . . , xn) = n

√
n

∏
i=1

xαi
i ·
(

max

{
n

∑
i=1

xi − (n− 1), 0

})
,

with integers αi ≥ 1 for every i ∈ {1, . . . , n} is also a general pseudo quasi-overlap function
which it is not a general quasi-overlap function.

Obviously, every general quasi-overlap function is a general pseudo-quasi-overlap
function. A general pseudo-quasi-overlap is said to be proper if it is not commutative. In
Example 3, the only proper general pseudo quasi-overlap functions are GP j, GP f and
GPGM. The following theorems show how to transform (proper) general pseudo-quasi-
overlap functions into general quasi-overlap functions.

Theorem 3. Let X be a bounded lattice and GP : Xn −→ X a general pseudo-quasi-overlap func-
tion. The map GO : Xn −→ X given by GO(x1, x2, . . . , xn) = GP(xP(1), xP(2), . . . , xP(n)), for
every ~x = (x1, x2, . . . , xn) and arbitrary permutation P = (P(1), P(2), . . . , P(n)) of
(1, 2, . . . , n), is a general quasi-overlap function.

Proof. Direct.

Theorem 4. Let X be a bounded lattice, the maps A : Xn! −→ X an aggregation function
and GP : Xn −→ X a general pseudo quasi-overlap function. The map GO : Xn −→ X
given by GO(x1, . . . , xn) = A

(
GP(xP1(1), . . . , xP1(n)), . . . , GP(xPn!(1), . . . , xPn!(n))

)
, for every

~x = (x1, . . . , xn) and every permutation Pj =
(

Pj(1), . . . , Pj(n)
)

of (1, 2, . . . , n) and
j = 1, . . . , n!, is a general quasi-overlap function if satisfies:

(i) A is symmetric;
(ii) A(x1, . . . , xn!) = 0X whenever xi = 0X, for some i ∈ {1, . . . , n!};
(iii) A(x1, . . . , xn!) = 1X whenever xi = 1X, for all i ∈ {1, . . . , n!}.

Proof. Suppose A is an aggregation function that satisfies the properties (i), (ii) and
(iii). Then, by the symmetry of A ((i)), for every ~x = (x1, . . . , xn) and every permutation
Pj =

(
Pj(1), . . . , Pj(n)

)
of (1, 2, . . . , n) and j = 1, . . . , n!, one has that:

GO(x1, . . . , xn) = A
(
GP(xP1(1), . . . , xP1(n)), . . . , GP(xPn!(1), . . . , xPn!(n))

)
= GO(xPj(1), . . . , xPj(n)).

Thus, GO satisfies (GO1). Moreover, if

GO(x1, . . . , xn) = A
(
GP(xP1(1), . . . , xP1(n)), . . . , GP(xPn!(1), . . . , xPn!(n))

)
= 0X,
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then by (ii) GP(xPj(1), . . . , xPj(n)) = 0X for some j ∈ {1, . . . , n!}, which implies by (GP1)
that xPj(i) = 0X for some j ∈ {1, . . . , n!} and any i ∈ {1, . . . , n} fixed. Similarly, using
(iii) it is shown that GO satisfies (GP2). Finally, if for each j ∈ {1, . . . , n!} and for any
i ∈ {1, . . . , n} fixed, one has that xPj(i) ≤ z then, since A is increasing and (GP2) is true, it
follows that
GO(xPj(1) , . . . , xPj(i) , . . . , xPj(n)) = A

(
GP(xP1(1) , . . . , xP1(i) , . . . , xP1(n)), . . . , GP(xPn!(1) , . . . , xPn!(i) , . . . , xPn!(n))

)
≤X A

(
GP(xP1(1) , . . . , z, . . . , xP1(n)), . . . , GP(xPn!(1) , . . . , z, . . . , xPn!(n))

)
= GO(xPj(1) , . . . , z, . . . , xPj(n)).

Thus, GO satisfies (GO4). Therefore, GO is a general quasi-overlap function on X.

Theorem 5. Let ⊕ and ⊗ be two increasing binary operations on a bounded lattice X, such that ⊗
distributes over ⊕ and consider that 0X is the unique u ∈ X such that u⊗ v = 0X , for each v ∈ X.
Suppose that (X,⊕, 0X) is a quasigroup with identity element 0X and right division 	 and that

(X,⊗, 1X) is an Abelian group with division
/

. The function GP : Xn −→ X is a general pseudo

quasi-overlap function if and only if

GP(x1, . . . , xn) = f (x1, . . . , xn)

/
[ f (x1, . . . , xn)⊕ g(x1, . . . , xn)] (5)

for some f , g : Xn −→ X such that

(i) f (x1, . . . , xn) = 0X if xi = 0X, for some i ∈ {1, . . . , n};
(ii) g(x1, . . . , xn) = 0X if xi = 1X, for all i ∈ {1, . . . , n};
(iii) f is increasing and g is decreasing;
(iv) f (x1, . . . , xn)⊕ g(x1, . . . , xn) 6= 0X.

Proof. (⇒) Suppose that GP is a general pseudo quasi-overlap function and for each
~x ∈ Xn take f (~x) = GP(~x). Then, from the right division of ⊕ take g(~x) = GP(~x)	 1X . By
Lemma 1, item (C1), we have:

f (~x)⊕ g(~x) = GP(~x)⊕ (GP(~x)	 1X) = 1X. (6)

Thus, since 1X is an identity element of ⊗, by Equation (6), we can write the following:

GP(~x) = f (~x), because f (~x) = GP(~x) for each ~x ∈ Xn;

=

(
f (~x)

/
1X

)
⊗ 1X, by Lemma 1, item (C3);

=

(
f (~x)

/
[ f (~x)⊕ g(~x)]

)
⊗ 1X

= f (~x)
/

[ f (~x)⊕ g(~x)]. (7)

In particular, one easily verifies that conditions (i) and (iv) hold. For condition (ii), if
xi = 1X, for all i ∈ {1, . . . , n}, then by Equation (6) we have that 1X ⊕ g(1X, . . . , 1X) = 1X

if and only if g(1X, . . . , 1X) = 1X 	 1X. On the other hand, since 0X is an identity element
of ⊕, it follows that w⊕ 0X = w and therefore, because 	 is the right divisor, 0X = w	 w
for all w ∈ X. Hence, 1X 	 1X = 0X and so g(x1, . . . , xn) = 0X whenever xi = 1X,
for all i ∈ {1, . . . , n}. For condition (iii), because f (~x) = GP(~x) for each ~x ∈ Xn, it
follows that f is increasing and so ~x ≤comp ~y implies f (~x) ≤X f (~y). On the other hand, as
g(~x) = f (~x)	 1X for all ~x ∈ Xn, it’s easy to see that the closer f (~x) is to 1X , the closer to 0X

is g(~x), thus g(~y) ≤X g(~x) whenever ~x ≤comp ~y and so g is decreasing.
(⇐) Consider f , g : Xn −→ X satisfying the conditions (i)–(iv). We show that the

map of Equation (5) is a general pseudo-quasi-overlap function on X. Let us prove that
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the conditions (GP1), (GP2) and (GP3) hold. Let ~x ∈ Xn be such that xi = 0X for some
i ∈ {1, . . . n}. Due to conditions (i) and (iv), it holds that f (~x) = 0X and f (~x)⊕ g(~x) 6= 0X .
Then, GP(~x)⊗ [ f (~x)⊕ g(~x)] = 0X and consequently GP(~x) = 0X. Similarly, let ~x ∈ Xn

be such that xi = 1X for all i ∈ {1, . . . n}. Due to conditions (ii) and (iv), it holds that

g(~x) = 0X and f (~x)⊕ g(~x) 6= 0X. So, f (x) 6= 0X and consequently, GP(~x) = f (~x)
/

f (~x).

However, since 1X is an identity element of ⊗, it follows that r ⊗ 1X = r and therefore

1X = r
/

r for all r ∈ X. Thus, f (~x)
/

f (~x) = 1X and so GP(~x) = 1X whenever xi = 1X, for

all i ∈ {1, . . . , n}. Finally, let us see that (GP3) also holds. Consider~x,~y ∈ Xn. Without loss
of generality, suppose that ~x ≤comp ~y. Due to condition (iii), it holds that f (~x) ≤X f (~y) and
g(~y) ≤X g(~x). Similarly, we find that f (~x)⊗ g(~y) ≤X f (~y)⊗ g(~x). Since⊕ also is increasing,
we have [ f (~x)⊗ f (~y)]⊕ [ f (~x)⊗ g(~y)] ≤X [ f (~x)⊗ f (~y)]⊕ [ f (~y)⊗ g(~x)]. Moreover, since
⊗ distributes over ⊕, f (~x) ⊗ [ f (~y) ⊕ g(~y)] ≤X f (~y) ⊗ [ f (~x) ⊕ g(~x)]. Thus, since (X,⊗)

is an Abelian group, we have GP(~x) = f (~x)
/

[ f (~x)⊕ g(~x)] ≤X f (~y)
/

[ f (~y)⊕ g(~y)] =

GP(~y).

Example 4. Let f the function of Example 3. For each A, B ∈ F (X) and x ∈ X define

(A⊗ B)(x) = A(x)B(x), (A⊕ B)(x) = max(A(x), B(x)). Then,
(

A
/

B
)
(x) = A(x)

B(x) .

Moreover, if F, G : F (X)n −→ F (X) are defined for each A1, . . . , An ∈ F (X) and x ∈ X
by F(A1, . . . , An)(x) = f (A1(x), . . . , An(x)) and G(A1, . . . , An)(x) = (A1(x), . . . , An(x))
then

GP f (A1, . . . , An)(x) =

(
F(A1, . . . , An)

/
(F(A1, . . . , An)⊕ G(A1, . . . , An))

)
(x)

= F(A1, ..., An)(x)
max(F(A1, ..., An)(x),G(A1, ..., An)(x))

= f (A1(x), ..., An(x))
max( f (A1(x), ..., An(x)),max(1−A1(x), ..., 1−An(x)))

= ∏n
i=1 Ai(x)

max(∏n
i=1 Ai(x),max(1−A1(x), ..., 1−An(x)))

= min
(

1, ∏n
i=1 Ai(x)

1−A1(x) , . . . , ∏n
i=1 Ai(x)

1−An(x)

)
Theorem 6. Consider X a totally ordered bounded lattice and let GP : Xn −→ X be an aggregation
function. Under these conditions, if GP ≤ min, then GP is a general pseudo quasi-overlap function.

Proof. First, since GP is an aggregation function, by boundary condition (GP2) is sat-
isfied. In addition, it follows that GP is increasing and so (GP3) is satisfied. Moreover,
if xi = 0X, for some i ∈ {1, . . . , n}, then GP(x1, . . . , xn) ≤ min(x1, . . . , xn) = 0X. Thus
GP(x1, . . . , xn) = 0X, hence (GP1) is satisfied. Therefore, GP is a general pseudo quasi-
overlap function on X.

Corollary 1. Consider X a totally ordered bounded lattice and let ψ : X −→ X be an increasing
function satisfying ψ(0X) = 0X and ψ(1X) = 1X . Hence, if ψ(F(1X , . . . , 1X , t, 1X , . . . , 1X)) ≤ t,
for each t ∈ X, and at any position, then GP = ψ ◦ F is a general pseudo quasi-overlap function.

Proof. In fact, for any fixed position i, and any ~x = (x1, . . . , xn) one has that GP(~x) ≤
max

xj∈X,j 6=i
GP(~x) = GP(1X, . . . , 1X, xi, 1X, . . . , 1X) ≤ xi. This holds for every i, thus

GP(~x) ≤ min(~x). By applying Theorem 6 we complete the proof.

Corollary 2. Consider X a totally ordered bounded lattice and let ψ : X −→ X be an increasing
function satisfying ψ(0X) = 0X and ψ(1X) = 1X. If ψ(F(1X, . . . , 1X, t, 1X, . . . , 1X)) ≤ t, for
each t ∈ X, and at any position, then 0X is an annihilator of ψ ◦ F.
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Theorem 7. Consider X a bounded lattice and let ρ1, . . . , ρn, ψ : X −→ X be increasing bijections.
For any general pseudo quasi-overlap function GP , the map

G̃P(x1, . . . , xn) = ψ

(
GP
(
ρ1(x1), . . . , ρn(xn)

))
is a general pseudo quasi-overlap function.

Proof. In fact, the property (GP3), it follows from the fact that the maps ρ1, . . . , ρn, ψ are
strictly increasing and GP is increasing. Moreover, as for the properties (GP1) and (GP2),
they follows from the fact that for each increasing bijection ϕ : X −→ X one has that
ϕ(x) = 0X iff x = 0X and ϕ(x) = 1X iff x = 1X. Thus, since GP is a general pseudo quasi-
overlap function, if xi = 0X for some i ∈ {1, . . . , n}, it follows that ρi(xi) = 0X, which by

(GP1) implies that GP
(
ρ1(x1), . . . , ρn(xn)

)
= 0X and so ψ

(
GP
(
ρ1(x1), . . . , ρn(xn)

))
=

0X . Therefore, G̃P(x1, . . . , xn) = 0X . On the other hand, if xi = 1X for every i ∈ {1, . . . , n},
it follows that ρi(xi) = 1X, which by (GP2) implies that GP

(
ρ1(x1), . . . , ρn(xn)

)
= 1X.

Then ψ

(
GP
(
ρ1(x1), . . . , ρn(xn)

))
= 1X, which implies that G̃P(x1, . . . , xn) = 1X.

4. General Pseudo Quasi-Overlap Generated by Pseudo t-Norms and Pseudo
t-Conorms

The importance to define multivalued functions by means of its one-place addi-
tive/multiplicative generators is to provide less computational cost in applications. In
this section, we use the notions of pseudo t-norms and pseudo-t-conorms to generalize
the concepts of additive and multiplicative generators for the context of general pseudo
quasi-overlap functions on lattices and we explore some properties related.

Definition 8. Let X be a bounded lattice, T : Xn −→ X an n-dimensional pseudo t-norm and
η, ζ : X −→ X two increasing functions. If a n-dimensional function GP ζ,η : Xn −→ X is given
for each (x1, . . . , xn) ∈ Xn by

GP ζ,η(x1, . . . , xn) = ζ(T(η(x1), . . . , η(xn))) (8)

then, the pair (ζ, η) is called a pseudo-multiplicative generator pair of GP ζ,η while GP ζ,η is said to
be pseudo-multiplicatively generated function by the pair (ζ, η).

In the following theorem, we show in which conditions the two increasing functions
η, ζ : X −→ X can pseudo-multiplicatively generate a general pseudo-quasi-overlap
function.

Theorem 8. Let X be a bounded lattice, T : Xn −→ X a positive pseudo-t-norm and two increasing
mappings η, ζ : X −→ X such that

(i) η(x) = 0X if x = 0X;
(ii) η(x) = 1X if x = 1X;
(iii) ζ(x) = 0X if x = 0X;
(iv) ζ(x) = 1X if x = 1X.

Then, the n-dimensional function GP ζ,η : Xn −→ X given in Equation (8) is a general pseudo
quasi-overlap function.
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Proof. (GP1):

GP ζ,η(x1, . . . , xn) = 0X ⇔ ζ(T(η(x1), . . . , η(xn))) = 0X

⇔ T(η(x1), . . . , η(xn)) = 0X, by item (iii)

⇔ η(xi) = 0X, for some i ∈ {1, . . . , n}, by Definition 3

⇔ xi = 0X, for some i ∈ {1, . . . , n}, by item (i)

(GP2):

GP ζ,η(x1, . . . , xn) = 1X ⇔ ζ(T(η(x1), . . . , η(xn))) = 1X

⇔ T(η(x1), . . . , η(xn)) = 1X, by item (iv)

⇔ η(xi) = 1X, for all i ∈ {1, . . . , n}, since 1X is neutral element of T

⇔ xi = 1X, for all i ∈ {1, . . . , n}, by item (ii)

(GP2): It follows immediately from the fact that T, η, and ζ are increasing mappings.

Example 5. Consider (X,≤, 0X, 1X) a bounded lattice and let a ∈ X − {0X, 1X} such that
Ia = {x ∈ X | a ‖ x} = ∅. Then Ta : X2 −→ X defined for all x, y ∈ X by

Ta(x, y) =
{

x ∧ y if x ≤ a or 1X ∈ {x, y}
a ∧ y otherwise

then Ta is a positive pseudo t-norm on X. Let η, ζ : X −→ X be increasing functions such that

1. η(0X) = ζ(0X) = 0X,
2. η(1X) = ζ(1X) = 1X,
3. η(a) = a.

So, GP ζ,η : X2 −→ X given for each x, y ∈ X by

GP ζ,η(x, y) = ζ(Ta(η(x), η(y))) =
{

ζ(η(x) ∧ η(y)) if x ≤ a or 1X ∈ {x, y}
ζ(a ∧ η(y)) otherwise

is a general pseudo-quasi-overlap function pseudo-multiplicatively generated by the pair (ζ, η).

Theorem 9. Let X be a bounded lattice, T : Xn −→ X a positive pseudo-t-norm and two increasing
mappings η, ζ : X −→ X such that

(i) x = 0X whenever ζ(x) = 0X;
(ii) x = 1X whenever ζ(x) = 1X;
(iii) GP ζ,η : Xn −→ X defined in Equation (8) is a general pseudo quasi-overlap function.

Then the following statements hold:

(1) η(x) = 0X whenever x = 0X;
(2) η(x) = 1X whenever x = 1X.

Proof. (1): If x = 0X then, by item (iii), GP ζ,η(x, . . . , x) = ζ(T(η(x), . . . , η(x))) = 0X.
Moreover, by item (i), T(η(x), . . . , η(x)) = 0X. Thus, as T is a positive pseudo t-norm, it
follows that η(x) = 0X.
(2): If x = 1X then, by item (iii), GP ζ,η(x, . . . , x) = ζ(T(η(x), . . . , η(x))) = 1X . Moreover,
by item (ii), T(η(x), . . . , η(x)) = 1X. Thus, as 1X is the neutral element of T, it follows
that η(x) = 1X.
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Definition 9. Let X and Y be two bounded lattices, S : Yn −→ Y a pseudo-t-conorm and consider
the two decreasing mappings ξ : X −→ Y and ϑ : Y −→ X. If a n-dimensional function
GPϑ,ξ : Xn −→ X is given for each (x1, . . . , xn) ∈ Xn by

GPϑ,ξ(x1, . . . , xn) = ϑ(S(ξ(x1), . . . , ξ(xn))) (9)

then, the pair (ϑ, ξ) is called a pseudo-additive generator pair of GPϑ,ξ while GPϑ,ξ is said to be
pseudo-additively generated by the pair (ϑ, ξ).

In the following results, we show in which conditions the two decreasing functions
ξ : X −→ Y and ϑ : Y −→ X can pseudo-additively generate a general pseudo-quasi-
overlap function.

Lemma 2. Let X and Y be two bounded lattices, S : Yn −→ Y a positive pseudo t-conorm and
ξ : X −→ Y a decreasing mapping such that:

(i) S(ξ(x1), . . . , ξ(xn)) ∈ Ran(ξ), for xi ∈ X and i = 1, . . . , n;
(ii) if ξ(x) = ξ(0X) then x = 0X.

Under these conditions, ξ(0X) ≤Y S(ξ(x1), . . . , ξ(xn)) whenever xi = 0X, for some i ∈
{1, . . . , n}.

Proof. Since ξ is decreasing and S(ξ(x1), . . . , ξ(xn)) ∈ Ran(ξ), for xi ∈ X with i = 1, . . . , n
then one has that S(ξ(x1), . . . , ξ(xn)) ≤Y ξ(0X). Therefore, if
S(ξ(x1), . . . , ξ(xn)) ≥Y ξ(0X), then it holds that S(ξ(x1), . . . , ξ(xn)) = ξ(0X). Suppose
that ξ(0X) = 0Y. Then, since ξ is decreasing, one has that ξ(xi) = 0Y for each xi ∈ X
with i = 1, . . . , n, which is contradiction with condition (ii), and, therefore, it holds that
0Y <Y ξ(0X). Now, suppose that ξ(0X) 6= 0Y and ξ(0X) 6= 1Y. Then, since ξ(0X) 6= 0Y one
has that S(ξ(0X), . . . , ξ(0X)) >Y ξ(0X), which is also a contradiction. So, it follows that
ξ(0X) = 1Y and, therefore, since S is positive and S(ξ(x1), . . . , ξ(xn)) = ξ(0X) , we have
that ξ(xi) = 1Y for some xi ∈ X, with i ∈ {1, . . . , n}. Hence, by condition (ii), one has that
xi = 0X for some i ∈ {1, . . . , n}.

Lemma 3. Let X and Y be two bounded lattices, S : Yn −→ Y a positive pseudo t-conorm and
consider mappings the ξ : X −→ Y and ϑ : Y −→ X such that, for each x0 ∈ X, if it holds that

ϑ(ξ(x)) = x0 whenever x = x0,

then ξ(x) = x0 whenever x = x0.

Proof. Based on considerations similar to [7], if ϑ(ξ(x)) = x0wheneverx = x0, so in par-
ticular, ϑ(ξ(x0)) = x0. Now, if ξ(x) = ξ(x0) then ϑ(ξ(x)) = ϑ(ξ(x0)) = x0 and, thus
x = x0.

Theorem 10. Let X and Y be two bounded lattices, S : Yn −→ Y a positive pseudo t-conorm,
ξ : X −→ Y and ϑ : Y −→ X two decreasing mappings such that:

(i) S(ξ(x1), . . . , ξ(xn)) ∈ Ran(ξ), for xi ∈ X and i = 1, . . . , n;
(ii) ϑ(ξ(x)) = 0X whenever x = 0X;
(iii) ϑ(ξ(x)) = 1X whenever x = 1X;
(iv) S(ξ(x1), . . . , ξ(xn)) = ξ(1X) whenever xi = 1X for every i = 1, . . . , n.

Then, the n-dimensional function GPϑ,ξ : Xn −→ X given in Equation (9) is a general pseudo
quasi-overlap function.

Proof. (GP1): Suppose xi = 0X, for some i ∈ {1, . . . , n}. Since Condition (ii) holds,
by Lemma 3, ξ(xi) = 0Y. Moreover, as Lemma 3 and Condition (ii) hold, by Lemma 2
we have S(ξ(x1), . . . , ξ(xn)) = ξ(0X) = 0Y. Therefore, by Equation (9) it follows that
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GPϑ,ξ(x1, . . . , xn) = 0X.
(GP2): Suppose xi = 1X, for every i ∈ {1, . . . , n}. Since Condition (iv) holds, by
Lemma 3, ξ(xi) = 1Y. Moreover, as Lemma 3 and Condition (iii) hold, by Lemma 2
we have S(ξ(x1), . . . , ξ(xn)) = ξ(1X) = 1Y. Therefore, by Equation (9) it follows that
GPϑ,ξ(x1, . . . , xn) = 1X. Finally, to prove the condition (GP3), considering zi ∈ X, with
xi ≤X zi, for every i ∈ {1, . . . , n}, then ξ(xi) ≥Y ξ(zi), It follows that GPϑ,ξ(x1, . . . , xn) =
ϑ(S(ξ(x1), . . . , ξ(xn))) ≤X ϑ(S(ξ(z1), . . . , ξ(zn))) = GPϑ,ξ(z1, . . . , zn) since ϑ and ξ are
two decreasing mappings and S is an increasing mapping.

Corollary 3. Let X and Y be two bounded lattices, S : Yn −→ Y a positive pseudo t-conorm,
ξ : X −→ Y and ϑ : Y −→ X two decreasing mappings such that GPϑ,ξ(x1, . . . , xn) =
ϑ(S(ξ(x1), . . . , ξ(xn)))

(i) ξ(x) = 1Y whenever x = 0X;
(ii) ξ(x) = 0Y whenever x = 1X;
(iii) ϑ(x) = 1X whenever x = 0Y;
(iv) ϑ(x) = 0X whenever x = 1Y.

Then, the n-dimensional function GPϑ,ξ : Xn −→ X given in Equation (9) is a general pseudo
quasi-overlap function.

Proof. It follows from Theorem 10.

Example 6. Consider (Y,≤, 0Y, 1Y) a bounded lattice and let a ∈ Y − {0Y, 1Y} such that Ia =
{y ∈ Y | a ‖ y} = ∅. Then Sa : Y2 −→ Y defined for all x, y ∈ Y by

Sa(x, y) =
{

x ∨ y if x ≥ a or 0Y ∈ {x, y}
a ∨ y otherwise

then Sa is a positive pseudo-t-conorm on Y. Let ξ : X −→ Y and ϑ : Y −→ X two decreasing
functions such that

1. ξ(0X) = 1Y,
2. ξ(1X) = 0Y,
3. ϑ(0Y) = 1X,
4. ϑ(1Y) = 0X,
5. ξ(x) = a if and only if x = b for some b ∈ X−{0X , 1X} such that Ib = {y ∈ X|b ‖ y} = ∅.

So, GP ξ,ϑ : X2 −→ X given for each x, y ∈ X by

GP ξ,ϑ(x, y) = ϑ(Sa(ξ(x), ξ(y))) =
{

ϑ(ξ(x) ∨ ξ(y)) if x ≥ b or 0X ∈ {ξ(x), ξ(y)}
ϑ(a ∨ ξ(y)) otherwise

is a general pseudo quasi-overlap function pseudo-additively generated by the pair (ϑ, ξ).

5. Conclusions

In this paper, we studied the concept of general pseudo quasi-overlap functions on
bounded lattices. As discussed extensively in the introduction, these functions generalize,
in the bounded lattice setting, the concepts of overlap functions, pseudo-overlap functions,
and general quasi-overlap functions and are suitable for use in situations where symmetry
and continuity are unnecessary or irrelevant. We have proved a characterization theorem
and some construction methods for these functions and used the notions of pseudo t-norms
and pseudo-t-conorms to generalize the concepts of additive and multiplicative generators
for the context of general pseudo-quasi-overlap functions on lattices and explore some
properties related.

One possibility for future works is to explore the dual notion of general pseudo-quasi-
overlap functions on bounded lattices, namely general pseudo-quasi-grouping functions on
bounded lattices, in order to measure the amount of evidence for or against several alterna-
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tives when performing comparisons in multi-criteria decision making or multi-criteria pref-
erences, based on fuzzy preference relations as done in [50] with an n-dimensional t-conorm
and t-norm. Moreover, one other possibility is to extend the concepts of pseudo-additive
and pseudo-multiplicative generators to the context of general pseudo-quasi-grouping
functions and explore how these notions are related.

In another perspective, Dimuro et al. [51] propose some generalizations of the standard
form of the Choquet Integral and among these generalizations, one uses a particular type of
aggregation function, called overlap functions, which are a particular class of quasi-overlap
functions. Likewise, Batista [31] introduced the notion of Pseudo-Choquet Integrals and
Absolute Choquet Integrals obtained from the notion of pseudo-overlap functions and
Batista et al. in [52] introduced the Quasi-Overlap-based discrete Choquet integral. In this
perspective, we propose a generalization of the standard form of the Choquet integral,
for future research, using general pseudo-quasi-overlap functions on lattices, in order to
obtain applications in decision making and multi-criteria decision making or multi-criteria
preferences, especially for the applications of discrete Choquet integrals in fuzzy rule-based
classification systems and ensembles of classifiers.

A third research perspective goes in the direction of [26], where quasi-overlap functions
on lattices were equipped with a topological space structure, namely, Alexandroff’s spaces.
From a theoretical point of view, equipping general pseudo-quasi-overlap functions with
the property of continuity arising from Alexandroff’s spaces introduces the concept of
proximity (that is close to but not necessarily identical to), which enables us to extend any
operation defined in an algebraic structure. Moreover, the ordering structure equipped
with the topological structure carries much more information than only the structure of
a poset, which is useful when dealing with intuitions about “continuity”, “connectivity”
and notions of “far” and “near”. On the other hand, from the point of view of potential
applications, a focused study on Alexandroff spaces and therefore all the properties of
finite spaces can provide an important contribution to image analysis, digital topology, and
computer graphics.
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