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Abstract: Let G be a graph and σ : E(G)→ {+1,−1} be a mapping. The pair (G, σ), denoted by Gσ,
is called a signed graph. A (proper) l-edge coloring γ of Gσ is a mapping from each vertex–edge
incidence of Gσ to Mq such that γ(v, e) = −σ(e)γ(w, e) for each edge e = vw, and no two vertex–edge
incidences have the same color; that is, γ(v, e) 6= γ(v, f ). The chromatic index is the minimal number
q such that Gσ has a proper q-edge coloring, denoted by χ′(Gσ). In 2020, Behr proved that the
chromatic index of a signed graph is its maximum degree or maximum plus one. In this paper, we
considered the chromatic index of the signed generalized Petersen graph GP(n, 2) and show that its
chromatic index is its maximum degree for most cases. In detail, we proved that (1) χ′(GPσ(n, 2)) = 3
if n ≡ 3 mod 6(n ≥ 9); (2) χ′(GPσ(n, 2)) = 3 if n = 2p(p ≥ 4).

Keywords: chromatic index; signed graph; generalized Petersen graph

MSC: 05C15; 05C22

1. Introduction

The graphs considered in this paper are finite and simple. The Petersen graph GP(5, 2)
is a cubic graph with 10 vertices and 15 edges. The Petersen graph appears as a coun-
terexample in many aspects of graph theory. It does not have a 3-edge-coloring proved by
Naserasr et al. [1]. The Petersen graph has been widely studied in many aspects of graph
theory. Bezrukov et al. [2] defined the nth Cartesian power of Petersen graph GP(5, 2)n and
got its cutwidth and wirelength. Then, they generalized these results to the Cartesian prod-
uct of GP(5, 2)n and m-dimensional binary hypercube. In 1969, Watkins gave the definition
of generalized Petersen graph. Let n and k be positive integers with k < n/2; then the gen-
eralized Petersen graph GP(n, k) has vertex set {ui, vi : 1 ≤ i ≤ n} and three types of edges:
(i) spoke edges: {uivi : 1 ≤ i ≤ n}; (ii) outer-cycle edges: {uiui+1 : 1 ≤ i ≤ n}; (iii) inner-
cycle edges: {vivi+k : 1 ≤ i ≤ n}. All subscripts are modulo n. Obviously, the generalized
Petersen graph is a 3-regular graph. The outer-cycle edges form the outer cycle, denoted c0,
and the inner-cycle edges form the inner cycles, denoted cl , where l ∈ {1, 2, · · · , n

gcd(n,k)}
and |E(cl)| = n

gcd(n,k) . The spoke edges form a perfect matching, denoted Ms. For the edge
e = uv, the pairs (u, e), (v, e) are called the incidences. For terminology and notations not
defined here, we refer to [3,4].

Given a graph G and a mapping σ : E(G) → {+1,−1}, the pair (G, σ), denoted by
Gσ, is called a signed graph. Here, σ is a signature of (G, σ) and σ(e) is the sign of edge e.
An edge e is positive if σ(e) = +1, and it is negative otherwise. We denote by Eσ−(Gσ) the
set of negative edges of Gσ. We call graph G the underlying graph of the signed graph Gσ.
The sign of Gσ is the product of the signs of its edges. A cycle is balanced if its sign is +1 and
unbalanced otherwise. Switching at a vertex v means negating the sign of every edge that
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has v as an endpoint. Switching at a vertex set X means switching each v ∈ X in turn. If Gσ′

can be obtained from Gσ by switching at some vertices, then we say that they are switching
equivalent, denoted by Gσ′ ∼ Gσ. We also call σ′ and σ equivalent signatures of Gσ.

The coloring of signed graphs was first considered by Cartwright and Harry [5].
The coloring of Gσ is a mapping from V(Gσ) to a color set such that every two vertices
joined by a positive edge receive the same color and every two vertices joined by a negative
edge receive different colors. They observed that Gσ has a 2-coloring if and only if Gσ

is balanced. In 2016, Máčajová et al. [6] introduced the chromatic number of a signed
graph and proved the Brooks’ theorem for signed graph. The proper edge coloring of
signed graphs was introduced by Behr [7], and independently, by Zhang et al. [8]. These
two definitions are equivalent. Here, we use Behr’s definition, which is based on the
signed color set Mq; that is, Mq = {±1,±2, · · ·,±t} if q = 2t, and Mq = {0,±1,±2, · · ·,±t}
if q = 2t + 1. A (proper) q-edge coloring γ of Gσ is a mapping from each vertex–edge
incidence of Gσ to Mq such that γ(v, e) = −σ(e)γ(w, e) for each edge e = vw, and no two
vertex–edge incidences have the same color; that is, γ(v, e) 6= γ(v, f ). The chromatic index
is the minimal number q such that Gσ has a proper n-edge coloring, denoted by χ′(Gσ).
For an edge e = uv, if e is negative, (u, e) and (v, e) must be colored by the same color, say,
c; we can also say that e is colored by c in this case. If e is positive, (u, e) and (v, e) must
be colored by opposite colors, say, c and −c; we also say that e is colored by ±c. Note that
every edge can be colored by 0 if 0 ∈ Mq.

Zhang et al. [8] mainly showed that χ′(Gσ) ≤ ∆ + 1 if ∆ ≤ 5 or if G is a planar graph.
Behr [7] proved the signed version of Vizing’s theorem; that is, for any signed graph Gσ,
∆ ≤ χ′(Gσ) ≤ ∆ + 1. The signed graph Gσ is type I (type II, respectively) if χ′(Gσ) = ∆(G)
(χ′(Gσ) = ∆(G) + 1, respectively). It is an interesting topic to determine whether a signed
graph is type I or type II. The generalized Petersen graph is a famous and well-studied
family of graphs. Steimle et al. [9] showed that if n is fixed, when GP(n, k) and GP(n, l) are
isomorphic, there are several properties for the pair (k, l). Ralucca et al. [10] studied the
spectrum of GP(n, k) and added GP(n, k) into the family of graphs with known spectra.
Ebrahimi et al. [11] proved the necessary and sufficient condition for GP(n, k) to have
an efficient dominating set, and for several specific cases, authors gave the domination
number of GP(n, k). We would like to lay more attention on the coloring of GP(n, k). A
Tait coloring of a cubic graph is an edge-coloring in three colors such that each color is
incident to each vertex. Castagna et al. [12] proved that all but the original Petersen graph
have a Tait coloring. Watkins [13] gave another method to prove that generalized Petersen
graphs, except the Petersen graph, have Tait coloring. Khennoufa et al. [14] studied the
chromatic number of the edge coloring the total k-labeling of generalized Petersen graphs,
and proved that for n ≥ 3 and 1 ≤ k ≤ b n−1

2 c, the edge coloring total k-labeling chromatic
number of GP(n, k) is 3 if n is odd or k is even, and the corresponding chromatic number
is 2 if n is even and k is odd. Chen et al. [15] showed that if k ≥ 4 and n > 2k, the strong
chromatic index of each generalized Petersen graph GP(n, k) is at most nine. Li et al. [16]
studied the injective edge coloring numbers of GP(n, 1) and GP(n, 2). They got specific
values for GP(n, 1) with n ≥ 3, and for GP(n, 2) with 4 ≤ n ≤ 7. Yang et al. [17] studied
the strong chromatic index of GP(n, k) when 1 ≤ k ≤ 3. In [18], Cai et al. studied the edge
coloring of the generalized Petersen graph and got the following results. When n ≥ 5,
the chromatic index of GP(n, 1) is three. When k = 5, 6, for all signatures σ but some special
cases, the chromatic index of GP(n, 2) is three. In this paper, we mainly considered the
edge coloring of signed generalized Petersen graph GPσ(n, k), where k = 2, and n satisfies
certain conditions: (1) n ≡ 3 mod 6(n ≥ 9); (2) n = 2p(p ≥ 4). The main aim in this paper
is to show that deleting perfect matching of the signed generalized Petersen graph consists
of balanced cycles. Note that the perfect matching can be colored by zero, and the left
balanced cycles can be colored by ±1; then, we get a 3-coloring of the signed generalized
Petersen graph.
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2. Preliminaries

In this section, we introduce some existing properties and results, which can be used
to prove our main theorems.

Firstly, we give some notation which will be used in the following paper. Obvi-
ously, the generalized Petersen graph has an outer-cycle, gcd(n, k), inner-cycles and spokes.
For convenience, we use Eσ−

c0
(GPσ(n, k)) ( Eσ−

cl
(GPσ(n, k)), l ∈ {1, 2, · · ·, gcd(n, k)}, respec-

tively) to denote the set of negative edges on the outer cycle (inner cycles, respectively)
of GPσ(n, k). We let Eσ−

c (GPσ(n, k)) = Eσ−
c0

(GPσ(n, k)) ∪ (
⋃gcd(n,k)

l=1 Eσ−
cl

(GPσ(n, k))). We
denote negative edges in spokes set Ms of GPσ(n, k) by Eσ−

s (GPσ(n, k)). We set Eσ−
s (M) =

Eσ−
s (GPσ(n, 2))∩Es(M). In the same way, Eσ−

c (M) = Eσ−
c (GPσ(n, 2))∩Ec(M), Eσ−(M) =

Eσ−(GPσ(n, 2)) ∩ E(M). Let X be a subset of E(G). We used G− X to denote a graph ob-
tained from G by deleting the subset X.

In [7], Behr gave several properties of edge coloring of some special structures of
signed graphs.

Lemma 1 ([7]). Every signed path can be properly edge colored with ±a (where a 6= 0). Further-
more, every signed path has exactly two different ±a colorings.

Lemma 2 ([7]). A signed cycle C can be properly edge colored with ±a (where a 6= 0) if and only
if C is balanced. Furthermore, every balanced cycle has exactly two different ±a colorings.

Behr also showed that switching does not affect the edge chromatic number of
signed graphs.

Lemma 3 ([7]). Suppose γ is a proper n-coloring of Gσ and Gσ′ is obtained from Gσ by switching
a vertex set X. Define a new coloring γ′ which is obtained from γ by negating all colors on all
incidences involving vertices from X. Then, γ′ is a proper n-coloring of Gσ′ .

Zaslavsky [19] gave the necessary and sufficient conditions of switching equivalence
of two signed graphs Gσ and Gσ′ .

Lemma 4 ([19]). Two signed graphs Gσ and Gσ′ are switching equivalent if and only if they have
the same set of unbalanced cycles.

Since we will use matchings of the generalized Petersen graph to complete our proofs,
we describe the structures of matchings of generalized Petersen graphs.

Proposition 1 ([20]). Let M(GP(n, 2)) be the set of perfect matchings of GP(n, 2).
(1) For M ∈ M(GP(n, 2)), if there are no spokes in M, then M should be one of the two

perfect matchings illustrated in Figure 1(a,b); if there are spokes in M, then the number of spokes
between any two consecutive spokes in M is even. Specifically, if there is only one spoke, it implies
that n is odd.

(2) Let α denote the number of spokes between any two consecutive spokes in perfect matching
M. M(GP(n, 2)) can be divided into two subsets:

M1(GP(n, 2)) = {M ∈M(GP(n, 2)|α ≡ 0 (mod 4) or M is illustrated in Figure 1(a)}, (1)

M2(GP(n, 2)) = {M ∈M(GP(n, 2))|α ≡ 2 (mod 4)or M is illustrated in Figure 1(b)}. (2)

(3) Let a, b, c and d denote the numbers of A, B, C and D, respectively. Each perfect matching
in M1(GP(n, 2)) consists of a sequence of A and B with 4a + b = n in Figure 1(c). Each perfect
matching in M2(GP(n, 2)) consists of a sequence of C and D with 3c + 4d = n in Figure 1(d).



Axioms 2022, 11, 393 4 of 12

Refer to Proposition 1. We use MBb Aa with 4a + b = n to denote perfect matching
M ∈M1(GP(n, 2)), and use MCcDd with 3c + 4d = n to denote M ∈M2(P(n, 2)).

Figure 1. All types of perfect matchings of GP(n, 2). Here, bold lines denote the edges in the
perfect matching.

Cai et al. gave the following lemma and proposition, which also play an important
role in our proofs.

Lemma 5 ([18]). If GPσ(n, k) has a perfect matching, denoted by M0, and (GPσ(n, k)−M0) is
formed of balanced cycles, then GPσ(n, k) is 3-edge-colorable.

Proposition 2 ([18]). For GPσ(n, k) with any signature σ, let σ′ ∈ [σ] such that |Eσ′−| is
minimized; then all of the following results hold.
(1) |Eσ′−

cl
| ≤ 1, where l ∈ {0, 1, 2, · · ·, gcd(n, k)};

(2) |Eσ′−
s | ≤ b n

2 c;
(3) Eσ′− forms a matching of GPσ(n, k).

By [20], GPσ(n, 2) has the four types of perfect matchings: (1) the matching consists of
all spokes, denoted by Ms; (2) the matching is only formed of structure A(C, D, respectively),
denoted by MAq(MCq , MDq , respectively), where n = 4q(n = 3q, n = 4q, respectively);
(3) the matching consists of structures A and B, denoted by MAsBt , where n = 4s + t

(here we let these structures A be consecutive; that is,

s︷ ︸︸ ︷
AA · · · A

t︷ ︸︸ ︷
BB · · · B); (4) the matching

consists of structures C and D, denoted by MCsDt , where n = 3s+ 4t (here we let these struc-
tures C be consecutive). If n takes some certain values, we can obtain several special perfect
matchings of GP(n, 2). For proving later results, we make use of the following matchings.

Proposition 3. There are several perfect matchings of GP(n, 2) to be used in our proof, which are
(1) Ms and MCp , when n ≡ 3 mod 6(n ≥ 9);
(2) Ms, MAp , MDp and MAsBt(4s + t = n), when n = 4p;
(3) Ms, MC2Dp−1 and MAsBt(4s + t = n), when n = 4p + 2.

By Proposition 3, it is easy to check that for n ≡ 3 mod 6(n ≥ 9), GP(n, 2) has the
perfect matching MCp . Moreover, the edge set of MCp has special properties. Thus, we give
the specific edge set of the perfect matching MCp .
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Definition 1. For n ≡ 3 mod 6(n ≥ 9), let i ∈ {1, 2, 3} and E(MCp
i
) = {ujvj, uj+1uj+2,

vj+2vj+4 : j ≡ i(mod 3),1 ≤ j ≤ n}. Furthermore, MCp
i

′s is a partition of GP(n, 2) that is⋃
i Es(MCp

i
) = Es(GP(n, 2)) and Es(MCp

h
) ∩ Es(MCp

l
) = ∅, where h, l ∈ {1, 2, 3}.

In Figure 2, we give an example of the matching MCp
i

for n = 9.

Figure 2. The matching MC3
i
(i ∈ {1, 2, 3}) of GP(9, 2). Here bold lines denote the edges in the

perfect matching.

Proposition 4. If n ≡ 3 mod 6(n ≥ 9), GP(n, 2)−MCp
i

is a Hamilton cycle for i ∈ {1, 2, 3}.

Proof. Due to symmetry, we prove the case i = 1, and other cases can be proved using
the same method. All subscripts are modulo n. Let H = GP(n, 2)−MCp

1
. Firstly, it is easy

to check that H is a 2-regular graph. Moreover, H has three kinds of edge: (a) spokes:
{ujvj, uj+1vj+1 : j ≡ 2(mod 3), 1 ≤ j ≤ n}; (b) outer-cycle edges: {uj−1uj, ujuj+1 : j ≡
1(mod 3), 1 ≤ j ≤ n}; (c) inner-cycle edges: {vjvj+2, vj+2vj+4 : j ≡ 2(mod 3), 1 ≤ j ≤ n}.

To show GP(n, 2) − MCp
i

is a Hamilton cycle, we use {u3t, u3t+1, u3t+2, v3t+2, v3t+4,

v3t+6 : 1 ≤ t ≤ p} to denote p 6-paths. It is easy to check that {u3tu3t+1, u3t+1u3t+2} ⊆
Ec0(H) and {v3t+2v3t+4, v3t+4v3t+6} ⊆ Ecr (H). Then p 6-paths contain all edges of H.
Therefore, H is a Hamilton cycle, that is u3, u4, u5, v5, v7, v9, u9, · · · , u3t, u3t+1, u3t+2, v3t+2,
v3t+4, v3t+6, · · · , u3p−3, u3p−2, u3p−1, v3p−1, v3p+1, v3, u3, where 1 ≤ t ≤ p.

According to Proposition 3, for n = 2p(p ≥ 4), there are several special perfect match-
ings of the generalized Petersen graph GP(n, 2). Next, we discuss the graph obtained from
GP(n, 2) by deleting the above perfect matching. If n = 2p, the generalized Petersen graph
GP(n, 2) has an outer cycle c0 and two inner cycles denoted by c1 and c2. For convenience,
we set cr = c1 ∪ c2. In the following, we characterize several matchings that play an
important role in our proofs.

In Figure 3, we depict three kinds of perfect matching of GP(12, 2).

Figure 3. For i = 1, the perfect matchings MAh
i Bs (h ∈ {1, 2}) and MDp

i
of GP(12, 2). Here, bold lines

denote the edges in the perfect matching.

Definition 2. Here we define the edge sets of three special perfect matchings.
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Case 1. If n = 4p(p ≥ 2), for i ∈ {1, 2, 3, 4}, the perfect matching MDp
i

has the following
edges:

(i) Es(MDp
i
) = ∅;

(ii) Ec0(MDp
i
) = {uj−2uj−1, ujuj+1 : j ≡ i(mod 4),1 ≤ j ≤ n};

(iii) Ecr (MDp
i
) = {vj−1vj+1, vjvj+2 : j ≡ (i + 2)(mod 4),1 ≤ j ≤ n}.

Case 2. If n = 2p(p ≥ 4), for 1 ≤ i ≤ n, the perfect matching MAh
i Bs has the following

edges:
(i) Es(MAh

i Bs) = {ujvj : i + 4h ≤ j ≤ i + (n− 1)};
(ii) Ec0(MAh

i Bs) = {ui+4tui+4t+1, ui+4t+2ui+4t+3 : 0 ≤ t ≤ h− 1};
(iii) Ecr (MAh

i Bs) = {vi+4tvi+4t+2, vi+4t+1vi+4t+3 : 0 ≤ t ≤ h− 1}.

Case 3. If n = 4p + 2(p ≥ 2), for 1 ≤ i ≤ n, the perfect matching MC2
i Dp−1 has the

following edges:
(i) Es(MC2

i Dp−1) = {uivi, ui+3vi+3};
(ii) Ec0(MC2

i Dp−1) = {ui+1ui+2, ui+2tui+2t+1 : 2 ≤ t ≤ n−i−1
2 };

(iii) Ecr (MC2
i Dp−1) = {vi+(n−1)vi+1, vi+2vi+4, vi+4t+1vi+4t+3, vi+4t+2vi+4t+4 : 1 ≤ t ≤

p− 1}.

Proposition 5. For n = 4p(p ≥ 2) and i ∈ {1, 2, 3, 4}, GP(n, 2)−MDp
i

consists of p cycles.

Proof. Without loss of generality, we prove the case i = 1. Let R = GP(n, 2)−MDp
1
. It is

easy to check that R is a 2-regular graph. Moreover, by Definition 2(case 1), R has three
kinds of edge: (a) spokes: all; (b) outer-cycle edges: Ec0(R) = {uj−2uj−1, ujuj+1 : j ≡ 2(mod
4),1 ≤ j ≤ n}; (c) inner-cycle edges: Ecr (R) = {vj−1vj+1, vjvj+2 : j ≡ 1(mod 4),1 ≤ j ≤ n}.

R has p 8-cycles: {u4t, u4t+1, v4t+1, v4t+3, u4t+3, u4t+2, v4t+2, v4t, u4t : 1 ≤ t ≤ p}. Each
cycle contains two outer-cycle edges and two inner-cycle edges, and it is easy to check
that {u4tu4t+1, u4t+2u4t+3} ⊆ Ec0(R) and {v4tv4t+2, v4t+1v4t+3} ⊆ Ecr (R). Then, p 8-cycles
contain all edges of R. Thus, GP(n, 2)−MDp consists of p 8-cycles, where n = 4p.

Proposition 6. For n = 2p(p ≥ 4) and 1 ≤ i ≤ n, GPσ(n, 2)− MAh
i Bs is a Hamilton cycle,

where n = 4h + s.

Proof. Let Wh
i = GP(n, 2)−MAh

i Bs . Without loss of generality, we prove the case i = 1. It

is easy to check that Wh
1 is a 2-regular graph. All subscripts are modulo n.

(1) When h = 1, by Definition 2(case 2), W1
1 has three kinds of edge: (a) spokes:

Es(W1
1 ) = {u1v1, u2v2, u3v3, u4v4}; (b) outer-cycle edges: Ec0(W

1
1 ) = {u2u3, ujuj+1 : 4 ≤

j ≤ n}; (c) inner-cycle edges: Ecr (W
1
1 ) = {vjvj+2 : 3 ≤ j ≤ n}.

Firstly, starting at u2, it passes through u3; then it passes the edge u3v3 to the inner
cycle. In the inner cycle it consecutively passes vertices {v2t+3 : 0 ≤ t ≤ (p− 1)}. Here it
goes through p inner-cycle vertices with odd subscripts.

Next, it passes the edge u1v1 to the outer cycle. It will pass vertices u1, un, un−1, un−2, · · · ,
u5, u4. Then, it passes through n− 2 outer-cycle vertices.

Then, it can pass the edge u4v4 to the inner cycle. On the inner cycle it will pass {v2t :
2 ≤ t ≤ (p+ 1)}. Here it passes through p inner-cycle vertices with even subscripts. Finally,
it will pass the edge v2u2 to the outer cycle. Now we obtain a cycle. Moreover, the cycle
passes through all outer-cycle vertices and inner-cycle vertices. Thus, W1

1 is a Hamilton
cycle; that is, u2, u3, v3, v5, · · · , vn−1, v1, u1, un, un−1, un−2, · · · , u5, u4, v4, v6, · · · , vn, v2.

(2) When h ≥ 2, by Definition 2(case 2), Wh
1 has three kinds of edge: (a) spokes:

Es(Wh
1 ) = {ujvj : 1 ≤ j ≤ 4h}; (b) outer-cycle edges: Ec0(W

h
1 ) = {u2tu2t+1, ujuj+1 : 1 ≤
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t ≤ 2h− 1, 4h ≤ j ≤ n}; (c) inner-cycle edges: Ecr (W
h
1 ) = {v4t−1v4t+1, v4tv4t+2, vjvj+2 : 1 ≤

t ≤ h− 1, 4h ≤ j ≤ n}.
Firstly, starting at u2, it goes through the following vertices: {u2, u3; v3, v5, u5, u4, v4, v6, u6,

u7; v7, v9, u9, u8, v8, v10, u10, u11; · · · ; v4h−5, v4h−3, u4h−3, u4h−4, v4h−4, v4h−2, u4h−2, u4h−1}.
Now it passes 4h− 2 outer-cycle vertices and 2(h− 1) inner-cycle vertices with odd sub-
scripts and even subscripts, respectively.

Secondly, it passes the edge u4h−1v4h−1 to the inner cycle. On the inner cycle it will
passes vertices {v2t+1 : 2h− 1 ≤ t ≤ p}. Here, it passes through p− 2h + 2 inner-cycle
vertices with odd subscripts.

Thirdly, it passes the edge u1v1 to the outer cycle; it passes vertices: {u1, un, un−1, · · · ,
u4h}. Here it goes through n− 4h + 2 outer-cycle vertices.

Next, it can pass the edge u4hv4h to the inner cycle. In the inner cycle it will passes the
following vertices: {v2t : 2h ≤ t ≤ p + 1}. Here it passes through p− 2h + 2 inner-cycle
vertices with even subscripts.

Finally, it will pass the edge v2u2 to the outer cycle. Now, we obtain a cycle. Further-
more, the cycle passes through all inner-cycle vertices and outer-cycle vertices. Thus, Wh

1 is
Hamilton cycle; that is, u2, u2, u3, v3, v5, u5, u4, v4, v6, u6, u7, v7, v9, u9, u8, v8, v10, u10, u11, · · · ,
v4h−5, v4h−3, u4h−3, u4h−4, v4h−4, v4h−2, u4h−2, u4h−1, v4h−1, v4h+1, · · · , v1, u1, un, un−1, · · · ,
u4h, v4h, v4h+2, · · · , vn, v2, u2.

We portray three kinds of perfect matchings of GP(14, 2) in Figure 4.

Figure 4. For i = 1, the perfect matchings MAh
i Bs (h ∈ {1, 2}) and MC2

i Dp−1 of GP(14, 2). Here, bold
lines denote the edges in the perfect matching.

Proposition 7. For n = 4p + 2 and i ∈ {1, 2, · · · , n},
(1) when p = 2, GP(10, 2)−MC2

i D is a Hamilton cycle;
(2) when p > 2, GP(n, 2) − MC2

i Dp−1 consists of p − 2 cycles of length 8 and a cycle of
length 20.

Proof. In the following, we prove the case i = 1. Due to symmetry, the other cases can be
proved by the same method.

(1) Let V = GP(10, 2)−MC2
1 D. By Definition 2(case 3), then V has three kinds of edge:

(a) spokes: {u2v2, u3v3, ujvj : 5 ≤ j ≤ 10}; (b) outer-cycle edges: {u1u2, u3u4, u4u5, u6u7,
u8u9, u10u1}; (c) inner-cycle edges: {v1v3, v2v4, v4v6, v5v7, v8v10, v9v1}.

Starting at u1, we can obtain a Hamilton cycle, which is u1, u2, v2, v4, v6, u6, u7, v7, v5, u5,
u4, u3, v3, v1, v9, u9, u8, v8, v10, u10, u1. Thus, V is a Hamilton cycle.

(2) Let V′ = GP(n, 2)−MC2
1 Dp−1 . By Definition 2(case 3), V′ has three kinds of edge:

(a) spokes: {u2v2, u3v3, utvt : 5 ≤ t ≤ n}; (b) outer-cycle edges: {u1u2, u3u4, u4tu4t+1, u4t+2
u4t+3 : 1 ≤ t ≤ p}; (c) inner-cycle edges: {v1v3, v2v4, v4tv4t+2, v4t+1v4t+3 : 1 ≤ t ≤ p}. The
graph V′ consists of 2p + 2 outer-cycle edges and inner-cycle edges, respectively, and 4p
spokes.

Firstly, starting at point u1, we obtain a 20-cycle T: u1, u2, v2, v4, v6, u6, u7, v7, v5, u5, u4,
u3, v3, v1, vn−1, un−1, un−2, vn−2, vn, un, u1. The cycle T consists of six outer-cycle edges, six
inner-cycle edges and eight spokes.



Axioms 2022, 11, 393 8 of 12

Furthermore, starting at points u4l : 2 ≤ l ≤ p− 1, we get p− 2 cycles {u4l , u4l+1, v4l+1,
v4l+3, u4l+3, u4l+2, v4l+2, v4l , u4l : 2 ≤ l ≤ p− 1}. It is easy to check that {u4lv4l , u4l+1v4l+1,
u4l+2v4l+2, u4l+3v4l+3} ⊆ Es(V′) , {u4lu4l+1, u4l+2u4l+3} ⊆ Ec0(V

′) and {v4lv4l+2, v4l+1
v4l+3} ⊆ Ecr (V

′). Moreover, the 20-cycle and p− 2 8-cycles contain all edges of V′. Thus,
GP(n, 2)−MC2Dp−1 consists of p− 2 8-cycles and a 20-cycle, where n = 6 + 4p(p > 2).

Definition 3. By Proposition 5, there is always an 8-cycle between two adjacent structures D. Let
Wt = GP(n, 2)−MAtBn−4 , and we denote the 8-cycles by Ot = {ut, ut+1, vt+1, vt+3, ut+3, ut+2,
vt+2, vt, ut : 1 ≤ t ≤ n}. Moreover, Ec(MAtBn−4) = {utut+1, ut+2ut+3, vt+1vt+3, vtvt+2},
Es(Wt) = {utvt, ut+1vt+1, ut+2vt+2, ut+3vt+3}. It is easy to get that E(Ot) = Ec(MAtBn−4) ∪
Es(Wt).

3. Main Results and Proof

In the following, we introduce our main results and proofs.
For n ≡ 3 mod 6(n ≥ 9), the signed generalized Petersen graph GPσ(n, 2) has perfect

matchings MCp
i
(1 ≤ i ≤ 3). Next, we study the parity of |Eσ−

s (GPσ(n, 2))| and |Eσ−
s (MCp

i
)|.

Lemma 6. For any signature σ, n ≡ 3 mod 6(n ≥ 9). Let i, j, k ∈ {1, 2, 3} and j, k 6= i. If
|Eσ−

s (GPσ(n, 2))| and |Eσ−
s (MCp

i
)| have opposite parity, then |Eσ−

s (MCp
j
)| and |Eσ−

s (MCp
k
)| have

opposite parity.

Proof. Without loss of generality, we assume that |Eσ−
s (GPσ(n, 2))| is odd and |Eσ−

s (MCp
i
)|

is even. By the Definition 1, |Eσ−
s (MCp

j
) ∪ Eσ−

s (MCp
k
)| is odd. Then, |Eσ−

s (MCp
j
)| and

|Eσ−
s (MCp

k
)| have opposite parity, since Es(MCp

j
) ∩ Es(MCp

k
) = ∅.

By Proposition 2, each cycle has at most one negative edge. If |Eσ−
c (GP(n, 2))| = 1,

due to symmetry, we can assume that the negative edge is on the outer cycle.

Lemma 7. Let Eσ−
c (GPσ(n, 2)) = {u1u2}. For i ∈ {1, 2}, if |Eσ−

s (GPσ(n, 2))| and |Eσ−
s (MCp

i
)|

have opposite parity, then GPσ(n, 2)−MCp
i

is a balanced Hamilton cycle.

Proof. According to Proposition 4, we know that GPσ(n, 2) − MCp
i

is a Hamilton cycle.

Without loss of generality, for i ∈ {1, 2}, if we assume that |Eσ−
s (GPσ(n, 2))| is odd and

|Eσ−
s (MCp

i
)| is even, then |Eσ−

s (GPσ(n, 2))| − |Eσ−
s (MCp

i
)| is odd. For i ∈ {1, 2}, it is easy

to check that u1u2 /∈ E(MCp
i
). There are even negative edges in the Hamilton cycle. Thus,

GPσ(n, 2)−MCp
i

is a balanced Hamilton cycle.

In the following, we consider the case that there is a negative edge on each cycle.

Lemma 8. Let Eσ−
c (GPσ(n, 2)) = {u1u2, vjvj+2}. For i ∈ {1, 2, 3}, if |Eσ−

s (GPσ(n, 2))| and
|Eσ−(MCp

i
)| have the same parity, then GPσ(n, 2)−MCp

i
is a balanced Hamilton cycle.

Proof. |Eσ−(GPσ(n, 2))| = |Eσ−
s (GPσ(n, 2))|+ |Eσ−

c (GPσ(n, 2))|. It is easy to check that
|Eσ−

s (GPσ(n, 2))| and |Eσ−(GPσ(n, 2))| have the same parity. If |Eσ−
s (GPσ(n, 2))| and

|Eσ−(MCp
i
)| have the same parity, then |Eσ−(GPσ(n, 2))| and |Eσ−(MCp

i
)| have the same

parity. Therefore, GPσ(n, 2)−MCp
i

is a balanced Hamilton cycle.

The following theorem settles the issue for k = 2, n ≡ 3 mod 6(n ≥ 9).

Theorem 1. For any σ, χ′(GPσ(n, 2)) = 3, where n ≡ 3 mod 6(n ≥ 9).
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Proof. Firstly, we show that there is always a perfect matching M such that GPσ(n, 2)−M
consists of balanced cycles.

Claim 1. For n ≡ 3 mod 6(n ≥ 9), there must be a perfect matching M such that GPσ(n, 2)−M
consists of balanced cycles.

Proof of Claim 1. When n ≡ 3 mod 6(n ≥ 9), the generalized Petersen graph GP(n, 2) has
an outer cycle c0 and an inner cycle c1 since gcd(n, 2) = 1. Let σ′ ∈ [σ] such that Eσ′− is
minimized. According to Proposition 2, |Eσ′−

c0
(GP(n, 2))| ≤ 1, |Eσ′−

c1
(GP(n, 2))| ≤ 1. In the

following, we continue the proof according to the number of negative edges on the outer
cycle and the inner cycle.

Case 1. |Eσ′−
c0

(GPσ′(n, 2))| = 0 and |Eσ′−
c1

(GPσ′(n, 2))| = 0.
In this case, Eσ′−(GP(n, 2)) ⊆ E(Ms); then, GPσ′(n, 2) − Ms consists of two bal-

anced cycles.
If |Eσ′−

c (GPσ′(n, 2))| = 1, then the negative edge may be on the outer cycle or the
inner cycle. Due to symmetry, we assume that the negative edge is on the outer cycle.
By Proposition 4, GPσ′(n, 2)−Mcp

i
(i ∈ {1, 2, 3}) is a Hamilton cycle.

Case 2. |Eσ′−
c0

(GPσ′(n, 2))| = 1 and |Eσ′−
c1

(GPσ′(n, 2))| = 0.
Without loss of generality, let σ′(u1u2) = −1. In this case, u1u2 /∈ E(MCp

i
) for i ∈

{1, 2}, u1u2 ∈ E(MCp
3
). If |Eσ′−

s (GPσ′(n, 2))| and |Eσ′−
s (MCp

3
)| have the same parity, then

|Eσ′−
s (GPσ′(n, 2))| − |Eσ′−

s (MCp
3
)| is even. Thus, GPσ′(n, 2)−MCp

3
is a balanced Hamilton

cycle, since u1u2 ∈ E(MCp
3
). If |Eσ′−

s (GPσ′(n, 2))| and |Eσ′−
s (MCp

3
)| have opposite parity,

then by Lemma 6, |Eσ′−
s (MCp

1
)| and |Eσ′−

s (MCp
2
)| have opposite parity. There must be

a matching MCp
j

such that |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−

s (MCp
j
)| have opposite parity for

j ∈ {1, 2}. By Lemma 7, GPσ′(n, 2)−MCp
j

is a balanced Hamilton cycle.

Case 3. |Eσ′−
c0

(GPσ′(n, 2))| = 1 and |Eσ′−
c1

(GPσ′(n, 2))| = 1.
Let Eσ′−

c (GPσ′(n, 2)) = {u1u2, vjvj+2}. We continue our proof according to whether
the edge vjvj+2 is on the matching MCp

3
.

Subcase 3.1. vjvj+2 ∈ E(MCp
3
).

In this case, |Eσ′−
c (MCp

i
)| is even for i ∈ {1, 2, 3}. It is not difficult to get that

|Eσ′−(MCp
i
)| = |Eσ′−

c (MCp
i
)| + |Eσ′−

s (MCp
i
)|. If |Eσ′−

s (GPσ′(n, 2))| and |Eσ′−
s (MCp

3
)| have

the same parity, then |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−(MCp

3
)| have the same parity. By Lemma 8,

GPσ′(n, 2)−MCp
3

is a balanced Hamilton cycle. If |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−

s (MCp
3
)| have

opposite parity, then by Lemma 6, |Eσ′−
s (MCp

1
)| and |Eσ′−

s (MCp
2
)| have opposite parity.

There must be a matching MCp
t

such that |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−

s (MCp
t
)| have the

same parity for t ∈ {1, 2}, so |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−(MCp

t
)| have the same parity.

By Lemma 8, GPσ′(n, 2)−MCp
t

is a balanced Hamilton cycle.
Subcase 3.2. vjvj+2 /∈ E(MCp

3
).

By Definition 1, MCp
i

′s are a partition of GPσ′(n, 2). As vjvj+2 /∈ E(MCp
3
), vjvj+2 ∈

E(MCp
i
) for i ∈ {1, 2}. Due to symmetry, we only consider the case vjvj+2 ∈ E(MCp

1
). In this

case, |Eσ′−
c (MCp

i
)| is odd for i ∈ {1, 3} and |Eσ′−

c (MCp
2
)| is even. It is not difficult to get that

|Eσ′−(MCp
i
)| = |Eσ′−

c (MCp
i
)| + |Eσ′−

s (MCp
i
)|. If |Eσ′−

s (GPσ′(n, 2))| and |Eσ′−
s (MCp

2
)| have

the same parity, then |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−(MCp

2
)| have the same parity. By Lemma 8,

GPσ′(n, 2) − MCp
2

is a balanced Hamilton cycle. If |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−

s (MCp
2
)|

have opposite parity, then by Lemma 6, |Eσ′−
s (MCp

1
)| and |Eσ′−

s (MCp
3
)| have opposite
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parity. There must be a matching MCp
t

such that |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−

s (MCp
t
)| have

opposite parity for t ∈ {1, 3}, so |Eσ′−
s (GPσ′(n, 2))| and |Eσ′−(MCp

t
)| have the same parity.

By Lemma 8, GPσ′(n, 2)−MCp
t

is a balanced Hamilton cycle.

By Claim 1, there is always a matching M such that GPσ′(n, 2)−M consists of balanced
cycles. Then, χ′(GPσ′(n, 2)) = 3 by Lemma 5, where n ≡ 3 mod 6(n ≥ 9).

In the following, we study the edge coloring of the generalized Petersen graph
GPσ(n, 2) for any signature σ and n = 2p(p ≥ 4).

Lemma 9. Let Wh
i = GPσ(n, 2) − MAh

i Bs . For n = 2p, if we can find a matching MAh
i Bs

satisfying one of the following conditions:
(i) |Eσ−

c (GPσ(n, 2))| is odd. |Eσ−
c (MAh

i Bs)| and |Eσ−
s (Wh

i )| have opposite parity.

(ii) |Eσ−
c (GPσ(n, 2))| is even. |Eσ−

c (MAh
i Bs)| and |Eσ−

s (Wh
i )| have the same parity.

Then Wh
i is a balanced Hamilton cycle.

Proof. By Proposition 6, Wh
i is a Hamilton cycle.

(i) It is easy to check that |Eσ−
c (GPσ(n, 2))| = |Eσ−

c (Wh
i )| + |Eσ−

c (MAh
i Bs)|. When

|Eσ−
c (GPσ(n, 2))| is odd, |Eσ−

c (Wh
i )| and |Eσ−

c (MAh
i Bs)| have opposite parity. Since

|Eσ−
s (Wh

i )| and |Eσ−
c (MAh

i Bs)| have opposite parity, |Eσ−
c (Wh

i )| and |Eσ−
s (Wh

i )| have the

same parity. Moreover, |Eσ′−(Wh
i )| = |Eσ′−

c (Wh
i )| + |Eσ′−

s (Wh
i )|, so Wh

i contains even
negative edges. Therefore, Wh

i is a balanced Hamilton cycle.
(ii) It is easy to check that |Eσ−

c (GPσ(n, 2))| = |Eσ−
c (Wh

i )| + |Eσ−
c (MAh

i Bs)|. When

|Eσ−
c (GPσ(n, 2))| is even, |Eσ−

c (Wh
i )| and |Eσ−

c (MAh
i Bs)| have the same parity. Since

|Eσ−
s (Wh

i )| and |Eσ−
c (MAh

i Bs)| have the same parity, |Eσ−
c (Wh

i )| and |Eσ−
s (Wh

i )| have the

same parity. Moreover, |Eσ′−(Wh
i )| = |Eσ′−

c (Wh
i )| + |Eσ′−

s (Wh
i )|, so Wh

i contains even
negative edges. Therefore, Wh

i is a balanced Hamilton cycle.

Theorem 2. For any σ, χ′(GPσ(n, 2)) = 3, where n = 2p(p ≥ 4).

Proof. Firstly, we show that there is always a perfect matching M such that GPσ(n, 2)−M
consists of balanced cycles.

Claim 2. For n = 2p(p ≥ 4), there must be a perfect matching M such that GPσ(n, 2)− M
consists of balanced cycles.

Proof of Claim 2. If n = 2p(p ≥ 4), then the generalized Petersen graph GP(n, 2) has
an outer cycle c0 and two inner cycles c1, c2. Let σ′ ∈ [σ] such that Eσ′− is minimized.
According to Proposition 2, each cycle has at most one negative edge. In the following, we
continue the proof according to the number of negative edges on cycles.

Case 1. |Eσ′−
c (GPσ′(n, 2))| is odd.

In the following, we continue our discussion according to the parity of p.
Subcase 1.1. p is an odd integer.
Let Wi = GPσ′(n, 2) − MAi Bn−4 . It is easy to check that Wi is a Hamilton cycle for

i ∈ {1, 2, · · · , n}. By Lemma 9(i), if we can find a matching MAi Bn−4 satisfying the condi-
tion, then GPσ′(n, 2)−MAi Bn−4 is a balanced Hamilton cycle. Otherwise, for arbitrary i,
|Eσ′−

c (MAi Bn−4)| and Eσ−
s (Wi) have the same parity.

If p = 5, by Proposition 7, GPσ′(n, 2)−MC2
i D is a Hamilton cycle. We denote the Hamil-

ton cycle by T. We set E(Tl) = {ulul+1, ul+2ul+3, vlvl+2, vl+1vl+3, ulvl , ul+1vl+1, ul+2vl+2,
ul+3vl+3}, where l ∈ {i− 3, i, i + 3}. It is easy to check that E(Tl) = Ec(MAl Bn−4) ∪ Es(Wl)

for l ∈ {i − 3, i, i + 3} by Definition 3. Since |Eσ′−
c (MAl Bn−4)| and Eσ′−

s (Wl) have the
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same parity, |Eσ′−(Tl)| is even. Furthermore, E(T) = (E(Ti−3)− uivi) ∪ (E(Ti)− uivi −
ui+3vi+3) ∪ (E(Ti+3)− ui+3vi+3), so |Eσ′−(T)| is even. Therefore, T is a balanced Hamil-
ton cycle.

If p 6= 5, by Proposition 7, GPσ′(n, 2)− MC2
i Dp−1 consists of a 20-cycle and p− 2 8-

cycles. Firstly, we denote the 20-cycle by T. Let E(Tl) = {ulul+1, ul+2ul+3, vlvl+2, vl+1vl+3,
ulvl , ul+1vl+1, ul+2vl+2, ul+3vl+3}, where l ∈ {i− 3, i, i + 3}. By Definition 3, it is easy to
check that E(Tl) = Ec(MAl Bn−4) ∪ Es(Wl) for l ∈ {i− 3, i, i + 3}, where Wl = GPσ′(n, 2)−
MAl Bn−4 . Since |Eσ′−

c (MAl Bn−4)| and Eσ−
s (Wl) have the same parity, |Eσ′−(Tl)| is even.

Furthermore, E(T) = (E(Ti−3)− uivi) ∪ (E(Ti)− uivi − ui+3vi+3) ∪ (E(Ti+3)− ui+3vi+3),
so |Eσ′−(T)| is even. Therefore, T is a balanced cycle. Next, by Definition 3, we denote
p − 2 8-cycles by {Ot : t = i + 7 + 4q, 0 ≤ q ≤ p − 3}. Then, E(Ot) = Ec(MAtBn−4) ∪
Es(Wt), where Wt = GPσ′(n, 2)−MAtBn−4 . Since Ec(MAtBn−4) ∩ Es(Wt) = ∅, |Eσ′−(Ot)| =
|Eσ′−

c (MAtBn−4)|+ |Eσ′−
s (Wt)|. Since |Eσ′−

c (MAtBn−4)| and |Eσ′−
s (Wt)| have the same parity,

|Eσ′−(Ot)| is even. Therefore, p− 2 8-cycles are balanced.
Subcase 1.2. p is an even integer.
In this case, we continue our proof by using the matching MDp

i
. By Proposition 5,

GPσ′(n, 2) − MDp
i

consists of p 8-cycles. By Definition 3, we denote the p 8-cycles by

{Oj : j ≡ (i + 3)(mod 4)}. Then, E(Oj) = Ec(MAjBn−4) ∪ Es(Wj), where Wj = GPσ′(n, 2)−
MAjBn−4 . Since Ec(MAjBn−4) ∩ Es(Wj) = ∅, |Eσ′−(Oj)| = |Eσ′−

c (MAjBn−4)| + |Eσ′−
s (Wj)|.

Since |Eσ′−
c (MAjBn−4)| and Eσ−

s (Wj) have the same parity, every 8-cycle contains even
negative edges. Therefore, GPσ′(n, 2)−MDp

i
consists of p balanced cycles.

Case 2. |Eσ′−
c (GP′σ(n, 2))| is even.

By Lemma 9(ii), if we can find a matching MAi Bn−4 satisfying the condition, then

GPσ′(n, 2)−MAi Bn−4 is a balanced Hamilton cycle. Otherwise, for arbitrary i, |Eσ′−
c (MAi Bn−4)|

and |Eσ′−
s (Wi)| have opposite parity.

Next, we continue our proof by using the matching MA2
i Bn−8 . Let W2

i = GPσ′(n, 2)−
MA2

i Bn−8 . By Proposition 6, it is easy to know that W2
i is a Hamilton cycle. For arbitrary i,

Eσ′−
c (MA2

i Bn−8) = Eσ′−
c (MAi Bn−4) ∪ Eσ′−

c (MAi+4Bn−4), Eσ′−
s (W2

i ) = Eσ′−
s (Wi) ∪ Eσ′−

s (Wi+4).

If |Eσ′−
c (MAi Bn−4)| and |Eσ′−

c (MAi+4Bn−4)| have the same parity, then |Eσ′−
s (Wi+4)| and

|Eσ′−
s (Wi)| have the same parity. If |Eσ′−

c (MAi Bn−4)| and |Eσ′−
c (MAi+4Bn−4)| have opposite

parity, then |Eσ′−
s (Wi)| and |Eσ′−

s (Wi+4)| have opposite parity. Thus, |Eσ′−
c (MA2

i Bn−8)| and

|Eσ′−
s (W2

i )| have the same parity. By Lemma 9, W2
i is a balanced Hamilton cycle.

According to Claim 2, for n = 2p(p ≥ 4), there is always a perfect matching
M such that GPσ′(n, 2) − M consists of balanced cycles. Thus, according to Lemma 5,
χ′(GPσ′(n, 2)) = 3 for n = 2p(p ≥ 4).

4. Conclusions

In this paper, we proved that (1) χ′(GPσ(n, 2)) = 3 if n ≡ 3 mod 6(n ≥ 9); (2) if n = 2p
(p ≥ 4), χ′(GPσ(n, 2)) = 3. For k = 2, there are still two unsolved cases, which are n ≡ 1
mod 6 and n ≡ 5 mod 6. When n ≡ 1 mod 6, GP(n, 2) − MAsBt(4s + t = n) is not a
Hamilton cycle, and when n ≡ 5 mod 6, GP(n, 2) itself is not Hamiltonian. Thus, our
method in this paper is not suitable for these two cases, which is one subject of our future
work. In addition, it is also an interesting and challenging problem to consider GP(n, k) for
k ≥ 3, since there is no characterization of perfect matchings of GP(n, k).
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