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1. Introduction

Professor Feng Qi, whose ORCID profile is at https://orcid.org/0000-0001-6239-2968,
received his PhD degree from the University of Science and Technology of China in 1999
and is currently a full Professor at Tiangong University and Henan Polytechnic University,
China. On 17 May 2022, he moved to Dallas as an independent researcher in mathematics.

December 2017 in Dallas

Among other institutions and universities, he has visited Victoria University in Aus-
tralia and the University of Hong Kong twice, the University of Copenhagen, Antalya IC
Hotel for attending a conference, several universities in South Korea, Sun Yat-sen Univer-
sity, Kaohsiung Normal University, and so on. He is, or was, the editor-in-chief, an associate
editor, or a member of the editorial board of over 40 reputable international journals. In
1993, Qi published his first academic paper in China. In 1996, Qi published his first aca-
demic paper abroad. To date, he has published over 670 papers in 220 journals, collections,
or proceedings. Currently, his academic interests and research fields mainly include the
theory of special functions, classical analysis, mathematical inequalities and applications,
mathematical means and applications, analytic combinatorics, analytic number theory, the
convex theory of functions, and so on.
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Now, let us start out by briefly presenting an overview and survey of some research
results obtained by Dr. Professor Feng Qi and his coauthors.

2. Concrete Contributions
2.1. Bell Numbers and Inequalities

From 2013 on, Dr. Qi began to consider some problems related to combinatorial
number theory and applied the logarithmically complete monotonicity to combinatorial
number theory.

December 2017 in Dallas

In the research article [1], Qi presented derivatives of the generating functions for
the Bell numbers by induction and by the well-known Faà di Bruno formula. Using this
approach, he recovered an explicit formula in terms of the Stirling numbers of the second
kind, found the logarithmically absolute and complete monotonicity of the generating
functions, and deduced some inequalities for the Bell numbers. The logarithmic convexity
of the sequence of the Bell numbers is shown after that.

As is well known, the Bell number Bn is defined as the number of all equivalence
relations on the set Nn = {1, 2, . . . , n} for n ∈ N. These numbers have been known already
in medieval Japan, but they are named after Eric Temple Bell, who systematically analyzed
them in the 1930s.

Let us recall that

B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52.

Since

eex
= e

∞

∑
k=0

Bk
xk

k!
and ee−x

= e
∞

∑
k=0

(−1)kBk
xk

k!
,

the functions ee±x
are called the generating functions for the Bell numbers Bk. The Bell

numbers are also called exponential numbers.
It is known that, for every positive integer n ∈ N, we have

dn eex

d xn = eex
n

∑
k=1

S(n, k) ekx and
dn ee−x

d xn = (−1)n ee−x
n

∑
k=1

S(n, k) e−kx,

where S(n, k) is the Stirling number of the second kind, which can be computed by

S(n, k) =
1
k!

k

∑
`=1

(−1)k−`
(

k
`

)
`n.

The Stirling numbers of the second kind satisfy the recurrence relation

S(n + 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1), 1 ≤ k ≤ n− 1.

From the above, we have

Bn =
1
e

lim
x→0

dn eex

d xn
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and therefore

Bn =
n

∑
k=1

S(n, k).

Several inequalities for the Bell numbers Bn have been proven, including the following
ones:

1. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two non-increasing tuples of non-
negative integers such that ∑k

i=1 ai ≥ ∑k
i=1 bi for 1 ≤ k ≤ n− 1 and ∑n

i=1 ai = ∑n
i=1 bi.

Then
Ba1 Ba2 · · · Ban ≥ Bb1 Bb2 · · · Bbn .

2. If ` ≥ 0 and n ≥ k ≥ 0, then we have

Bk
n+`Bn−k

` ≥ Bn
k+`.

3. If ` ≥ 0, n ≥ k ≥ m, 2k ≥ n, and 2m ≥ n, then we have

Bk+`Bn−k+` ≥ Bm+`Bn−m+`.

4. If k ≥ 0 and n ∈ N, then we have

(
n

∏
`=0

Bk+2`

)1/(n+1)

≥
(

n−1

∏
`=0

Bk+2`+1

)1/n

.

These results have been extended and generalized in [2–5] by Qi and his coauthors.

2.2. Partial Bell Polynomials

Partial Bell polynomials are also called the Bell polynomials of the second kind.
They are usually denoted by Bn,k(x1, x2, . . . , xn−k+1). They are closely connected with
the famous Faà di Bruno formula in combinatorics. In recent years, Qi and his coauthors
creatively considered some special values of Bn,k for special sequences x1, x2, . . . , xn−k+1
and successfully applied to some mathematical problems.

The survey article [6] is worth to be mentioned. We now just introduce the newest
results obtained by Qi and his coauthors.

1. In the papers [7,8], the following conclusions were proved.

(a) For m ∈ N and |t| < 1, the function
( arcsin t

t
)m, whose value at t = 0 is defined

to be 1, has Maclaurin’s series expansion(
arcsin t

t

)m

= 1 +
∞

∑
k=1

(−1)k Q(m, 2k; 2)

(m+2k
m )

(2t)2k

(2k)!
, (1)

where

Q(m, k; α) =
k

∑
`=0

(
m + `− 1

m− 1

)
s(m + k− 1, m + `− 1)

(
m + k− α

2

)`

(2)

for m, k ∈ N, the constant α ∈ R such that m + k 6= α, and the Stirling numbers
of the first kind s(m + k− 1, m + `− 1) are analytically generalized by

[ln(1 + x)]k

k!
=

∞

∑
n=k

s(n, k)
xn

n!
, |x| < 1.
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(b) For k, n ≥ 0 and xm ∈ C with m ∈ N, we have

B2n+1,k

(
0, x2, 0, x4, . . . ,

1 + (−1)k

2
x2n−k+2

)
= 0. (3)

For k, n ∈ N such that 2n ≥ k ∈ N, we have

B2n,k

(
0,

1
3

, 0,
9
5

, 0,
225

7
, . . . ,

1 + (−1)k+1

2
[(2n− k)!!]2

2n− k + 2

)
= (−1)n+k (4n)!!

(2n + k)!

k

∑
q=1

(−1)q
(

2n + k
k− q

)
Q(q, 2n; 2), (4)

where Q(q, 2n; 2) is given by (2).

Maclaurin’s series expansion (1) was recovered in (Section 6 [9]) and was generalized
in (Section 4 [10]) as(

arcsin t
t

)α

= 1 +
∞

∑
n=1

(−1)n

[
2n

∑
k=1

(−α)k
(2n + k)!

k

∑
q=1

(−1)q
(

2n + k
k− q

)
Q(q, 2n; 2)

]
(2t)2n (5)

for α ∈ R and |t| < 1 by rediscovering a special case of (3) and the closed-form
Formula (4), where Q(q, 2n; 2) is given by (2) and the rising factorial of a complex
number α ∈ C is defined by

(α)m =
m−1

∏
k=0

(α + k) =

{
α(α + 1) · · · (α + m− 1), m ∈ N;
1, m = 0.

(6)

2. In [9], among other things, by establishing the Taylor series expansion

[
(arccos x)2

2(1− x)

]k

= 1 + (2k)!
∞

∑
n=1

Q(2k, 2n; 2)
(2k + 2n)!

[2(x− 1)]n (7)

for k ∈ N and |x| < 1, Qi derived the specific value

Bm,k

(
− 1

12
,

2
45

,− 3
70

,
32
525

,− 80
693

, . . . ,
(2m− 2k + 2)!!
(2m− 2k + 4)!

Q(2, 2m− 2k + 2; 2)
)

= (−1)k[2(m− k)]!!
(

m
k

) k

∑
j=1

(−1)j(2j)!
(

k
j

)
Q(2j, 2m; 2)
(2j + 2m)!

for m ≥ k ∈ N and then generalized the series expansion (7) to[
(arccos x)2

2(1− x)

]α

= 1 +
∞

∑
n=1

[
n

∑
j=1

(−α)j

j!

j

∑
`=1

(−1)`(2`)!
(

j
`

)
Q(2`, 2n; 2)
(2`+ 2n)!

]
[2(x− 1)]n

for α ∈ R, where Q(2j, 2m; 2) is defined by (2).
3. In [10], among other things, by establishing the specific values

B2r+k,k
(
1, 0, 1, 0, 9, 0, 225, 0, . . . , [(2r− 3)!!]2, 0, [(2r− 1)!!]2

)
= (−1)r22rQ(k, 2r; 2)

and
B2r+k−1,k

(
1, 0, 1, 0, 9, 0, 225, 0, . . . , [(2r− 3)!!]2, 0

)
= 0

for r, k ∈ N, Qi concluded
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(
2 arccos t

π

)α

= 1 +
∞

∑
r=1

(−1)r

[
r

∑
`=1

(−1)`
(−α)2`−1

π2`−1 Q(2`− 1, 2r− 2`; 2)

]
(2t)2r−1

(2r− 1)!

+
(−α)2

π2
(2t)2

2!
+

∞

∑
r=2

(−1)r

[
r

∑
`=1

(−1)`
(−α)2`

π2` Q(2`, 2r− 2`; 2)

]
(2t)2r

(2r)!

for α ∈ R and |t| < 1, where (α)r for α ∈ R and r ∈ N is defined by (6) and Q(k, 2r; 2)
is given by (2).

4. In [11], among other things, by establishing a special case of (3) and the explicit
formula

B2m,k

(
0,−1

3
, 0,

1
5

, . . . ,
(−1)m

2m− k + 2
sin

kπ

2

)
= (−1)m+k 22m

k!

k

∑
j=1

(−1)j
(

k
j

)
T(2m + j, j)

(2m+j
j )

, 2m ≥ k ≥ 1,

Qi showed that,

(a) when α ≥ 0, the series expansions

sincα z = 1 +
∞

∑
q=1

(−1)q

[
2q

∑
k=1

(−α)k
k!

k

∑
j=1

(−1)j
(

k
j

)
T(2q + j, j)

(2q+j
j )

]
(2z)2q

(2q)!
(8)

is convergent in z ∈ C;
(b) when α < 0, the series expansion (8) is convergent in |z| < π;

where

sinc z =


sin z

z
, z 6= 0

1, z = 0

is called the sinc function,

T(n, `) =


1, (n, `) = (0, 0)

0, n ∈ N, ` = 0

1
`!

`

∑
j=0

(−1)j
(
`

j

)(
`

2
− j
)n

, n, ` ∈ N

for n ≥ ` ∈ N0 = {0, 1, 2, . . . } is called the central factorial numbers of the second
kind [12,13], and the rising factorial (α)k is defined by (6).

On new results and applications of special values of partial Bell polynomials Bn,k in
recent years by Qi and his coauthors, please refer to [14–25] and closely related references
therein.

2.3. Wallis Ratio

Starting from 1999, Qi began to be interested in special functions and applications.
Through these work, he posed mathematical notions such as logarithmically completely
monotonic function and completely monotonic degree.

The new approximation formula and the inequalities for the Wallis ratio

Wn =
(2n− 1)!!
(2n)!!

, n ∈ N
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have been examined in a joint research article [26] with C. Mortici. In (Theorems 4.1
and 4.2 [26]), the authors have proved the asymptotic formula

Wn ∼
√

e
n

(
1− 1

2n

)n 1√
n

exp
(

1
24n2 +

1
48n3 +

1
160n4 +

1
960n5 + · · ·

)
, n→ ∞

and the inequality

Wn >

√
e
n

(
1− 1

2n

)n 1√
n

exp
(

1
24n2 +

1
48n3 +

1
160n4 +

1
960n5

)
, n ≥ 1

respectively. In (Theorem 5.2 [26]), the double inequality√
e
π

[
1− 1

2(n + 1/3)

]n+1/3 1√
n

< Wn <

√
e
π

[
1− 1

2(n + 1/3)

]n+1/3 e1/144n3

√
n

has been proved for each integer n ≥ 1.
In the branch of the Wallis ratio and inequalities, Qi and his coauthors published

also the papers [27–33] and applied some results from [31] to the derivation of the series
expansion (8).

2.4. Additivity of Polygamma Functions

The classical Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =
∫ ∞

0
e−t tx−1 d t.

The function ψ(x) = Γ′(x)
Γ(x) is usually called the psi or digamma function, while the function

ψ(k)(x) for k ∈ N is called the polygamma function.

August 2008 in Sydney

The properties of the gamma function, the digamma function, and the polygamma
functions have been investigated in many research papers by now. In a joint work [34] with
B.-N. Guo and Q.-M. Luo, F. Qi proved that for each positive integer i ∈ N the function
|ψ(i)(ex)| is subadditive on (ln θi, ∞) and superadditive on (−∞, ln θi), where θi ∈ (0, 1) is
the unique root of the equation 2|ψ(i)(θ)| = |ψ(i)(θ2)|.

An earlier paper similar to [34] is [35] in which the convexity and concavity of the
functions ψ(k)(ex) and ψ(k)(xc) for x ∈ R and c 6= 0 were considered by Qi and his two
coauthors.

2.5. Bounds for Mathematical Means in Terms of Mathematical Means

In [36], a joint work with X.-T. Shi, F.-F. Liu, and Z.-H. Yang, Qi examined a double
inequality for an integral mean in terms of the exponential and logarithmic means. Among
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many other results, it has been proved that, for every two distinct positive real numbers
a > 0 and b > 0, we have

L(a, b) <
2
π

∫ π/2

0
acos2 θbsin2 θ d θ < I(a, b),

where

L(a, b) =
b− a

ln b− ln a
and I(a, b) =

1
e

(
bb

aa

)1/(b−a)

are called [37] the logarithmic and exponential means, respectively.
The paper [36] is a starting point of [38,39] and many other papers such as [40–48] by

other mathematicians.
In a joint research article [49] with W.-D. Jiang, F. Qi proved a double inequality for the

combination of the Toader mean and the arithmetic mean in terms of the contraharmonic
mean. Qi and his coauthors also published many other papers such as [50–56] in which
some special means are bounded in terms of elementary and simple mathematical means.

2.6. Complete Elliptic Integrals

There is no need to say that the theory of complete elliptic integrals has attracted F.
Qi and his coauthors, who provided many significant contributions in this field. Some
new bounds for the complete elliptic integrals of the first and second kind and their
generalizations were given in [57–62], for example.

2.7. Matrices

In [63], Qi and his two coauthors analytically discovered the inverse of the interesting
matrix

An = (ai,j)n×n =



(1
0) 0 0 0 · · · 0 0 0 0
(1

1) (2
0) 0 0 · · · 0 0 0 0

0 (2
1) (3

0) 0 · · · 0 0 0 0
0 (2

2) (3
1) (4

0) · · · 0 0 0 0
0 0 (3

2) (4
1) · · · 0 0 0 0

0 0 (3
3) (4

2) · · · 0 0 0 0
0 0 0 (4

3) · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · (n−3
0 ) 0 0 0

0 0 0 0 · · · (n−3
1 ) (n−2

0 ) 0 0
0 0 0 0 · · · (n−3

2 ) (n−2
1 ) (n−1

0 ) 0
0 0 0 0 · · · (n−3

3 ) (n−2
2 ) (n−1

1 ) (n
0)


n×n

(9)

for n ∈ N, where

ai,j =


0, i < j(

j
i− j

)
, j ≤ i ≤ 2j

0, i > 2j

for 1 ≤ i, j ≤ n. Basing on this result, they presented an inversion theorem which states
that

sn

n!
=

n

∑
k=1

(−1)k
(

k
n− k

)
Sk if and only if nSn =

n

∑
k=1

(−1)k

(k− 1)!

(
2n− k− 1

n− 1

)
sk,
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where sk and Sk are two sequences independent of n such that n ≥ k ≥ 1. Moreover, they
deduced several identities, including

b(j−1)/2c

∑
`=0

(−1)`
(

j− `− 1
`

)
Ci−`−1 =

j
i

(
2i− j− 1

i− 1

)
, i ≥ j ≥ 1

and
∑m−1
`=0 (−1)`(2m−`−1

` ) n+2`+1
n−`+1 Cn−`−1

∑m−1
`=0 (−1)`(2m−`−2

` ) 1
2m−2`−1 Cn−`−1

= m(2m− 1), n ≥ 2m ≥ 2, (10)

relating to the Catalan numbers Cn = 1
n+1 (

2n
n ), where bxc denotes the floor function whose

value is the largest integer less than or equal to x.
We remark that the inverse of the matrix An defined in (9) was also combinatorially

studied and connected in ([64] p. 8), while the identity in (10) was also combinatorially
discussed and compared at the end on ([65] p. 3162). We emphasize that the approaches
and methods used in [64,65] are quite different from those in [63]. This means that the
approaches and methods used by Qi and his coauthors in [63] are novel and innovative.

October 2007 at Weinan Normal University, China

By the way, as for the Catalan numbers Cn, we recommend the new papers [66–69] by
Qi and his coauthors. In these papers, the Catalan numbers Cn were generalized, some new
properties of Cn were discovered by considering logarithmically complete monotonicity of
their generating functions, integral representations of Cn were surveyed in [70] and applied
in [63].

In [71], Hong and Qi clarified several new inequalities for generalized eigenvalues
of perturbation problems on Hermitian matrices. If A ∈ Cn×n is a Hermitian complex
matrix of format n× n, then A has the pure real spectrum. Let us denote its eigenvalues by
λ1(A), λ2(A), . . . , λn(A) and assume that

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

By ‖ · ‖2 we denote the spectral norm of a matrix. If E ∈ Cn×n is also a Hermitian complex
matrix of format n× n, then the famous Weyl theorem states that

max
1≤i≤n

∣∣λi(A)− λi(A + E)
∣∣ ≤ ‖E‖2.

Besides this result, we know that the following inequalities hold: If A, B ∈ Cn×n are
Hermitian complex matrices of format n× n and i, j, k, `, m ∈ N satisfy j + k − 1 ≤ i ≤
`+ m− n− 1, then we have

λ`(A) + λm(B) ≤ λi(A + B) ≤ λj(A) + λk(B).

In particular,
λi(A) + λn(B) ≤ λi(A + B) ≤ λj(A) + λ1(B).

Accurately, Hong and Qi proved in [71] the following results:
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1. Suppose that A, B, H, E ∈ Cn×n are Hermitian complex matrices of format n × n,
that B is positive definite, that ν = ‖E‖2/λn(B) < 1, and that the positive integers
i, j, k, `, m ∈ N satisfy j + k− 1 ≤ i ≤ `+ m− n− 1.

(a) If λi(A + H) ≥ 0, then

λ`(AB−1) + λm(HB−1)

1 + ν
≤ λi

(
(A+ H)(B+ H)−1) ≤ λj(AB−1) + λk(HB−1)

1− ν
.

(b) If λi(A + H) ≤ 0, then

λj(AB−1) + λk(HB−1)

1− ν
≤ λi

(
(A+ H)(B+ H)−1) ≤ λ`(AB−1) + λm(HB−1)

1 + ν
.

2. Suppose that A, B, H, E ∈ Cn×n are Hermitian complex matrices of format n× n, that
B is positive definite, and that ν = ‖E‖2/λn(B) < 1. Then we have

βi(A)λi(AB−1) + βn(H)λn(HB−1) ≤ λi
(
(A + H)(B + H)−1)

≤ αi(A)λi(AB−1) + α1(H)λ1(HB−1).

For more information on this topic, see also the joint papers [72,73] with Y. Hong, in
which the authors considered determinantal inequalities of the Hua–Marcus–Zhang type
for quaternion matrices and refined two determinantal inequalities for positive semidefinite
matrices.

2.8. Bounds for Ratio of Bernoulli Numbers

One of the most influential scientific results of F. Qi was presented in [74], in which
Qi considered a double inequality for the ratio of two non-zero neighboring Bernoulli
numbers. This result has been quoted almost one hundred times in recent years.

It is well known that the Bernoulli numbers Bn can be generated by

z
ez−1

= 1− z
2
+

∞

∑
k=1

B2k
z2k

(2k)!
, |z| < 2π.

Since the function x
ex −1 − 1 + x

2 is even on R, all of the Bernoulli numbers B2n+1 for n ∈ N
are equal to 0. Due to (Theorem 1.1 [74]), we have

22k−1 − 1
22k+1 − 1

(2k + 1)(2k + 2)
π2 <

∣∣B2k+2
∣∣∣∣B2k
∣∣ <

22k − 1
22k+2 − 1

(2k + 1)(2k + 2)
π2 , k ∈ N. (11)

This double inequality immediately implies

lim
k→∞

∣∣B2k+2
∣∣

k2
∣∣B2k

∣∣ = 1
π2 .

In order to achieve his aims, Qi used the well-known identity

B2k = 2
(−1)k+1(2k)!

(2π)2k ζ(2k), k ∈ N,

where ζ(·) is the Riemann zeta function.
The double inequality (11) and related results in [75,76] have been extended, refined,

generalized, improved, non-self-cited, and applied in over 50 preprints and papers such
as [77–92] by many mathematicians, combinatorists, and physicists around the world.
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2.9. Special Polynomials

The Boole polynomials Bln(x; α) are defined by

(1 + t)x

1 + (1 + t)α
=

∞

∑
n=0

Bln(x; α)
tn

n!
.

The Peters polynomials (or higher-order Boole polynomials) sn(x; α, ν), defined by

(1 + t)x

[1 + (1 + t)α]ν
=

∞

∑
n=0

sn(x; α, ν)
tn

n!
,

clearly generalize the Boole polynomials. It is also known that the Peters polynomials
can be further generalized. For example, the degenerate Peters polynomials sn(x; α, ν; λ),
which are defined by

ex[(1+t)λ1]/λ(
1 + eα[(1+t)λ1]/λ

)ν =
∞

∑
n=0

sn(x; α, ν; λ)
tn

n!
,

generalize the Peters polynomials.
In a joint research article [93] with Y.-W. Li and M. C. Dağlı, F. Qi showed that

sn(x; α, ν; λ) = (n− 1)!
n

∑
k=1

[
(−1)k

λk−1k!

k

∑
`=1

(−1)``
(

k
`

)(
λ`− 1
n− 1

)]

×
[

k

∑
`=1

〈−ν〉`
2ν+` ∑

r+s=`
∑

i+j=k

(
k
i

)(
− x

ν

)i(
α− x

ν

)j

S(i, r)S(j, s)

]
,

where the falling factorial 〈z〉n is defined for z ∈ C by

〈z〉n =
n−1

∏
k=0

(z− k) =

{
z(z− 1) · · · (z− n + 1), n ≥ 1;
1, n = 0.

Setting x = 0 in this formula, we obtain the special result stated in (Theorem 4.1 [93]).
In addition to the paper [93], Dr. Feng Qi and his coauthors conducted more work in

the papers [94–114], for example, in this branch. Many of these papers are related to partial
Bell polynomials Bn,k mentioned above.

2.10. Complete Monotonicity Properties Related to Polygamma Functions

In [115], Qi employed the convolution theorem for the Laplace transform, Bernstein’s
theorem for completely monotonic functions, and some other analytic techniques to reveal
some necessary and sufficient conditions for two functions defined by two derivatives of a
function involving trigamma function to be completely monotonic or monotonic. See also a
joint paper [116] with R. P. Agarwal, where the authors analyzed the complete monotonicity
for several classes of functions related to ratios of gamma functions, and a joint paper [117]
with D. Lim, where the authors investigated a ratio of finite many gamma functions and
its monotonicity properties. We notice that the papers [115,117] are companions of the
papers [118–126]. This series of articles originate from the paper [127] and its preprints.
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2008 at Victoria University, Footscray, Melbourne, Australia

2.11. Convex Functions and Inequalities

From 2012 on, F. Qi collaborated with Professor Bo-Yan Xi and his academic group at
Inner Mongolia University for Nationalities and paid much attention on generalizations of
convex functions and on establishment of integral inequalities of the Hermite–Hadamard
type.

The theory of convex functions is extremely significant in many areas of pure and
applied sciences. The Jensen inequality and the Hermite–Hadamard type inequalities are
still very attractive fields of research within the theory of convex functions. Concerning
the scientific work of Professor Feng Qi in this area, we would like to mention the research
articles [128–140] and references cited therein.

In this issue, we will briefly describe the results obtained in collaboration of Professor
Feng Qi with Y. Wang and M.-M. Zheng in [133] only. Suppose that α ∈ (0, 1] and m ∈ (0, 1].
Let us recall that a function f : [0, b]→ R, where 0 < b < ∞, is said to be (α, m)-convex if
and only if

f (tx + m(1− t)y) ≤ tα f (x) + m(1− tα) f (y)

for x, y ∈ [0, b] and t ∈ [0, 1]. If α = 1, then an (α, m)-convex function f : [0, b]→ R is also
said to be m-convex. Further on, a non-empty set S ⊆ Rn is said to be invex with respect to
the map ν : S× S→ Rn if and only if x + tν(x, y) ∈ S for all t ∈ [0, 1] and x, y ∈ S. If this is
the case, a function f : S→ R is said to be preinvex with respect to ν if and only if

f (y + tν(x, y)) ≤ t f (x) + (1− t) f (y), x, y ∈ S, t ∈ [0, 1].

We know the following conclusions:

1. If −∞ < c < a < b < d < ∞, the function f : [c, d] → R is differentiable, and the
derivative | f ′| is convex on [a, b], then we have∣∣∣∣ f (a) + f (b)

2
− 1

b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ b− a
8
(∣∣ f ′(a)

∣∣+ ∣∣ f ′(b)∣∣).
2. For 0 ≤ a < b < ∞, if the function f : [0, b] → R is m-convex for m ∈ (0, 1] and the

Lebesgue integrable, then we have∣∣∣∣ 1
b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ min
{

f (a) + m f (b/m)

2
,

f (b) + m f (a/m)

2

}
.

3. For 0 ≤ a < b < ∞ and α, m ∈ (0, 1], if the function f : [0, b] → R is (α, m)-convex
and differentiable and its first derivative is the Lebesgue integrable, then we have
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∣∣∣∣ f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ b− a
2

1
21−1/q

×min
{[

v1
∣∣ f ′(a)

∣∣q + v2m
∣∣ f ′(b)∣∣q]1/q

,
[
v1
∣∣ f ′(b)∣∣q + v2m

∣∣ f ′(a)
∣∣q]1/q

}
,

provided that the function | f ′|q is (α, m)-convex for some real number q ≥ 1, where

v1 =
α + 1/2α

(α + 1)(α + 2)
and v2 =

1
(α + 1)(α + 2)

(
α2 + α + 2

2
− 1

2α

)
.

August 2014 in China

In (Definition 7 [133]), the authors introduced the following notion: Suppose that a
non-empty set S ⊆ Rn is invex with respect to ν for α ∈ (0, 1]. We say that a function
f : S→ R is α-preinvex with respect to ν if and only if

f (y + tν(x, y)) ≤ tα f (x) + m
(
1− tα

)
f (y)

for x, y ∈ S and t ∈ [0, 1]. The main results are the Hermite–Hadamard type inequalities in
(Theorems 5 to 9 [133]), where the authors mainly use the assumption that the function | f ′|q
is α-preinvex for some real number α ∈ (0, 1] and q ≥ 1. Until now, Qi and Xi’s academic
group have jointly published over 120 papers in reputable peer-review journals. Due to their
better work in generalizing convex functions and in establishing the Hermite–Hadamard
type inequalities, Qi and Xi’s group acquired financial support from the National Natural
Science Foundation of China with Grant No. 11361038 between 2014 and 2017.

2.12. Fractional Derivatives and Integrals

Let us note that Professor F. Qi analyzed, in three joint work [141–143] with W.-S.
Du, A. Ghaffar, C.-J. Huang, S. M. Hussain, K. S. Nisar, and G. Rahman, the Čebyšev
and Grüss type inequalities for conformable k-fractional integral operators, where the
authors investigated the Hermite–Hadamard type inequalities for k-fractional conformable
integrals.

Concerning the integral inequalities, it is also worth noting that F. Qi and his coauthors
have generalized, in [144–147], the Young integral inequality using the Taylor theorems in
terms of higher order derivatives and their norms; the authors have applied their results
for the estimation of several concrete definite integrals.

2.13. Differential Geometry

From September 1982 to July 1986, F. Qi majored in mathematical education as a
bachelor student at Department of Mathematics, Henan University, China. From September
1986 to June 1989, he majored in differential geometry as his master’s research supervised
by Professor Yi-Pei Chen at the Department of Mathematics, Xiamen University, China.
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From March 1996 to January 1999, he majored in analysis and topology as his doctoral
supervised by Professor Sen-Lin Xu at the Department of Mathematics, University of
Science and Technology of China. In this period, he jointly published over 10 papers,
including [148–152], in differential geometry.

2.14. Pólya Type Integral Inequalities

Starting from 1993, Qi’s research was extended to mathematical inequalities and
applications, including generalizations of the Pólya integral inequality [153]. As for the
Pólya type integral inequalities, his first paper is [154], his last paper is [155]. On this
topic, he also published the papers [156–163]. Then, he surveyed the Pólya type integral
inequalities from the origin to date in [164]. Some of these results have been applied to
refine the famous Young’s integral inequality in the papers [145–147].

October 2015 in Huizhou, Guangdong, China

2.15. Properties of Special Mathematical Means

Starting from 1997, Qi’s research was further extended to mathematical means and
applications. He started out by publishing [165,166]. His newest and creative papers in this
area are [38,167–178], for example. In these papers, he discovered logarithmic convexity
and Schur convexity of the extended mean values (or say, Stolarsky’s means), considered
the logarithmically complete monotonicity of special mathematical means, established
integral and Lévy–Khintchine representations of some special mathematical means and
their reciprocals. Concretely speaking, for example, Qi and his coauthors obtained the
following results:

1. Let n ∈ N be not less than 2 and a = (a1, a2, . . . , an) be a positive sequence, that is,
ak > 0 for 1 ≤ k ≤ n. The arithmetic and geometric means An(a) and Gn(a) of the
positive sequence a are defined, respectively, as

An(a) =
1
n

n

∑
k=1

ak and Gn(a) =

(
n

∏
k=1

ak

)1/n

.

For z ∈ C \ (−∞,−min{ak, 1 ≤ k ≤ n}] and n ≥ 2, let e = (

n︷ ︸︸ ︷
1, 1, . . . , 1) and

Gn(a + ze) =

[
n

∏
k=1

(ak + z)

]1/n

.

In (Theorem 1.1 [176]), by virtue of the Cauchy integral formula in the theory of
complex functions, the following integral representation was established.
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Let σ be a permutation of the sequence {1, 2, . . . , n} such that the sequence
σ(a) =

(
aσ(1), aσ(2), . . . , aσ(n)

)
is a rearrangement of a in an ascending order

aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n). Then the principal branch of the geometric
mean Gn(a + ze) has the integral representation

Gn(a + ze) = An(a) + z− 1
π

n−1

∑
`=1

sin
`π

n

∫ aσ(`+1)

aσ(`)

∣∣∣∣∣ n

∏
k=1

(ak − t)

∣∣∣∣∣
1/n

d t
t + z

(12)

for z ∈ C \ (−∞,−min{ak, 1 ≤ k ≤ n}].
Taking z = 0 in the integral representation (12) yields the fundamental inequality

Gn(a) = An(a)− 1
π

n−1

∑
`=1

sin
`π

n

∫ aσ(`+1)

aσ(`)

[
n

∏
k=1
|ak − t|

]1/n
d t
t
≤ An(a). (13)

For 0 < a1 ≤ a2 ≤ a3, taking n = 2, 3 in (13) gives

a1 + a2

2
−
√

a1a2 =
1
π

∫ a2

a1

√(
1− a1

t

)(
a2

t
− 1
)

d t ≥ 0

and

a1 + a2 + a3

3
− 3
√

a1a2a3 =

√
3

2π

∫ a3

a1

3

√∣∣∣∣(1− a1

t

)(
1− a2

t

)(
1− a3

t

)∣∣∣∣d t ≥ 0.

These texts are excerpted from the site https://math.stackexchange.com/a/4256320/
945479 on 10 July 2022.

2. The weighted version of the integral representation (12) can be found in the paper
(Theorem 3.1 [175]). We recite the weighted version as follows.
For n ≥ 2, a = (a1, a2, . . . , an), and w = (w1, w2, . . . , wn) with ak, wk > 0 and
∑n

k=1 wk = 1, the weighted arithmetic and geometric means Aw,n(a) and Gw,n(a)
of a with the positive weight w are defined, respectively, as

Aw,n(a) =
n

∑
k=1

wkak and Gw,n(a) =
n

∏
k=1

awk
k .

Let us denote α = min{ak, 1 ≤ k ≤ n}. For a complex variable z ∈ C \ (−∞,−α], we
introduce the complex function

Gw,n(a + z) =
n

∏
k=1

(ak + z)wk .

With the aid of the Cauchy integral formula in the theory of complex functions, the
following integral representation was established in (Theorem 3.1 [175]).

Let 0 < ak ≤ ak+1 for 1 ≤ k ≤ n − 1 and z ∈ C \ (−∞,−a1]. Then
the principal branch of the weighted geometric mean Gw,n(a + z) with a
positive weight w = (w1, w2, . . . , wn) has the integral representation

Gw,n(a + z)− Aw,n(a)

= z− 1
π

n−1

∑
`=1

sin

[(
`

∑
k=1

wk

)
π

] ∫ a`+1

a`

n

∏
k=1
|ak − t|wk

d t
t + z

. (14)

https://math.stackexchange.com/a/4256320/945479
https://math.stackexchange.com/a/4256320/945479
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Letting z = 0 in the integral representation (14) gives the fundamental inequality

Gw,n(a) = Aw,n(a)− 1
π

n−1

∑
`=1

sin

[(
`

∑
k=1

wk

)
π

] ∫ a`+1

a`

n

∏
k=1
|ak − t|wk

d t
t

≤ Aw,n(a).

(15)

Setting n = 2 in (15) leads to

aw1
1 aw2

2 = w1a1 + w2a2 −
sin(w1π)

π

∫ a2

a1

(
1− a1

t

)w1( a2

t
− 1
)w2

d t

≤ w1a1 + w2a2

(16)

for w1, w2 > 0 such that w1 + w2 = 1. These texts are excerpted from the site
https://math.stackexchange.com/a/4256320/945479 on 10 July 2022.

3. For ak < ak+1 and wk > 0 with ∑n
k=1 wk = 1 and n ≥ 2, the principal branch of the

reciprocal Ha,w,n(z) of the weighted geometric mean Gw,n(a + z) can be represented
by

Ha,w,n(z) =
1

∏n
k=1(z + ak)wk

=
1
π

n−1

∑
`=1

sin

(
π

`

∑
k=1

wk

) ∫ a`+1

a`

1
∏n

k=1 |t− ak|wk

d t
t + z

,
(17)

where z ∈ C \ [−an,−a1]. Consequently, the reciprocal Ha,w,n(t− a1) of the weighted
geometric mean Gw,n(a + t − a1) is a Stieltjes function and a logarithmically com-
pletely monotonic function. See (Theorem 2.1 [172]).

2.16. Invited Visits and Promotions

Due to his better work in mathematical inequalities and applications, F. Qi and his
academic groups obtained support from the National Natural Science Foundation of China
with Grant No. 10001016 between 2001 and 2003. Due to this, Qi obtained an invitation
and support from Dr. Professor Sever S. Dragomir to visit Victoria University (Melbourne,
Australia) for collaboration between November 2001 and January 2002. This is his first visit
abroad. Supported by the China Scholarship Council, he visited Victoria University again
to collaborate with Dr. Professor Pietro Cerone and Sever S. Dragomir between March 2008
and February 2009.

May 2017 in Jiaozuo, China

Due to inventing the notion of logarithmically completely monotonic functions and his
better work in special functions, Qi obtained an invitation and support from Dr. Professor
Christian Berg at Copenhagen University to attend the Workshop on Integral Transforms,
Positivity and Applications between 1 and 3 September 2010.

Dr. Feng Qi was also invited and supported by Dr. Professor Ahmet Ocak Akdemir,
Wing-Sum Cheung, Yeol Je Cho, Junesang Choi, Wei-Shih Du, Taekyun Kim, and Jen-Chih

https://math.stackexchange.com/a/4256320/945479
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Yao, to visit the University of Hong Kong twice in 2004, to visit Dongguk University at
Gyeongju, Gyeongsang National University, Kwangwoon University, Kyungpook National
University, and several other universities in South Korea from 2012 to 2015, to visit Antalya
in Turkey in 2016, and to visit Sun Yat-sen University and Kaohsiung Normal University
in Taiwan in 2018, for academic collaborations and international conferences, including
taking part in the International Congress of Mathematicians 2014.

Due to his excellent works in university mathematics education, administration, and
academic research, Qi was promptly and quicker promoted from a lecturer to an associate
professor, to a full professor, and to a Specially-Appointed-Professor for Universities of
Henan Province at Henan Polytechnic University in November 1995, October 1999, and
November 2005.

2.17. Editorial and Refereeing Appointments

Currently, Dr. Qi is editors-in-chief, associate editor, editor, member of editorial
board for over 25 internationally-reputed and peer-reviewed journals such as the Journal
of Inequalities and Applications which is being indexed by the Science Citation Index-
Expanded and Scopus.

The first academic journal specializing in mathematical inequalities, the Journal of
Inequalities and Applications, was found by Dr. Professor Ravi Prakash Agarwal in 1997.
This history was cultivated in Qi’s survey article [164]. In addition, the following seven
journals have also specialized in mathematical inequalities:

1. Advances in Inequalities and Applications (since 2012);
2. Advances in Nonlinear Variational Inequalities (since 1998);
3. Journal of Inequalities and Special Functions (since 2010);
4. Journal of Inequalities in Pure and Applied Mathematics (since 2000 to 2009);
5. Journal of Mathematical Inequalities (since 2007);
6. Mathematical Inequalities and Applications (since 1998);
7. Turkish Journal of Inequalities (since 2017).

It is also worth to mentioning the Monographs in Inequalities: Series in Inequalities at the
site http://books.ele-math.com/ accessed on 10 July 2022.

Professor Qi was a recipient of the Top Peer Reviewer powered by Publons in the
years 2016 and 2019. See Certificates in Figure 1.

Figure 1. Qi’s Certificates for Top Peer Reviewer powered by Publons in 2016 and 2019.

3. Statistics of Qi’s Contributions

Since 1993, Qi has published over 670 peer-reviewed articles, including over 42 papers
published in Chinese, in over 220 journals, book chapters, collections, and conference
proceedings in mathematics, see Table 1.

http://books.ele-math.com/
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Table 1. The year distribution of Qi’s papers formally published since 1993.

Year Papers Year Papers Year Papers Year Papers

1993 9 1994 5 1995 5 1996 6

1997 7 1998 9 1999 14 2000 7

2001 7 2002 7 2003 37 2004 21

2005 23 2006 31 2007 21 2008 22

2009 14 2010 14 2011 7 2012 26

2013 38 2014 51 2015 52 2016 43

2017 35 2018 45 2019 39 2020 23

2021 26 2022 23 2023 3 2024 1

In Feng Qi’s Google Scholar profile dated on 2 August 2022, his over 850 papers,
preprints, and other works were indexed and they were totally cited 16858 times. See the
screenshot in Figure 2.

Figure 2. Statistics from Qi’s Google Scholar profile dated on 2 August 2022.

In Feng Qi’s Scopus profile dated on 2 August 2022, his 417 articles were indexed and
they were cited 6590 times by 2007 documents. See the screenshot in Figure 3.

Figure 3. Statistics from Qi’s Scopus profile dated on 2 August 2022.

In Qi’s Publons profile dated on 2 August 2022, his 412 papers were indexed by the
Web of Science Core Collection and they were cited 5915 times. See the screenshots in
Figure 4.

https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1993/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1994/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1995/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1996/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1997/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1998/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-1999/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-2000/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-2001/
https://qifeng618.wordpress.com/2010/08/18/some-papers-published-in-2002/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2003/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2004/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2005/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2006/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2007/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2008/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2009/
https://qifeng618.wordpress.com/2010/08/19/some-papers-published-in-2010/
https://qifeng618.wordpress.com/2011/02/09/some-papers-published-in-2011/
https://qifeng618.wordpress.com/2011/03/22/some-papers-published-in-2012/
https://qifeng618.wordpress.com/2011/08/15/some-papers-published-in-2013/
https://qifeng618.wordpress.com/2012/08/25/some-papers-published-in-2014/
https://qifeng618.wordpress.com/2014/02/08/some-papers-published-in-2015/
https://qifeng618.wordpress.com/2015/05/27/some-papers-published-in-2016/
https://qifeng618.wordpress.com/2016/01/25/some-papers-published-in-2017/
https://qifeng618.wordpress.com/2017/03/01/some-papers-published-by-feng-qi-in-2018/
https://qifeng618.wordpress.com/2017/12/18/some-papers-published-in-2019-by-feng-qi/
https://qifeng618.wordpress.com/2019/03/28/some-papers-published-in-2020/
https://qifeng618.wordpress.com/2018/07/31/some-papers-published-by-feng-qi-in-2020/
https://qifeng618.wordpress.com/2018/11/27/some-papers-published-by-feng-qi-in-2020-2/
https://qifeng618.wordpress.com/2022/07/06/some-papers-published-in-2023-by-dr-prof-feng-qi/
https://qifeng618.wordpress.com/2021/04/06/some-papers-and-preprints-in-2024-by-dr-prof-feng-qi/
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Figure 4. Statistics from Qi’s Publons profile dated on 2 August 2022.

From 2014 to 2021, Qi consecutively ranked as the Most Cited Chinese Researchers in
Mathematics. These rankings were carried out jointly by Elsevier and ShanghaiRanking
Consultancy. See Figure 5.

Figure 5. Certificate of the 2021 Most Cited Chinese Researchers.

In the Stanford University’s 2021 list of World’s Top 2% Scientists, Qi ranked 61510/
190064 in the Single Year Impact Data (2020) and ranked 96040/186178 in the Career-
long Data (1960–2020). For more data, please click the link https://doi.org/10.17632
/btchxktzyw.3 accessed on 10 July 2022.

In the 2022 edition of the World’s Top Mathematics Scientists by Research.com dated
on 2 August 2022, Qi ranked 330 worldwide and his 580 papers were indexed and were
cited 11291 times. See Figure 6 or click the link https://research.com/u/feng-qi accessed
on 8 July 2022.

Figure 6. Statistics from Qi’s Research.com profile dated on 2 August 2022.

Since the year 1992, Qi took charge of and participated in two national research
projects supported by the National Natural Science Foundation of China, several provincial
scientific projects supported by Henan Province, and several university scientific projects
supported by Henan Polytechnic University and Tianjin Polytechnic University. Totally he
acquired about one and a half millions CNY of funding support.

Since 2002, his names “Feng Qi”, “F. Qi”, and “Qi” have appeared in titles of over 89
papers or preprints which were published or announced by hundreds of mathematicians
in the globe. See, for example, the papers [40–48,88,179–185].

Currently, Qi’s 49 papers or preprints were cited at the Wikipedia site https://en.
wikipedia.org/wiki/Euler_numbers accessed on 10 July 2022 and in eight monographs or
handbooks [37,186–192].

After the notion “logarithmically completely monotonic function” was explicitly
defined in the preprints [193,194] and the papers [195,196], an important paper on loga-
rithmically completely monotonic functions is [197], and the notion has been seemingly
and gradually becoming a standard terminology in mathematical community. Currently,

https://doi.org/10.17632/btchxktzyw.3
https://doi.org/10.17632/btchxktzyw.3
https://research.com/u/feng-qi
https://en.wikipedia.org/wiki/Euler_numbers
https://en.wikipedia.org/wiki/Euler_numbers
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except over 60 preprints and papers by Qi and his coauthors, there have been over 40 pa-
pers and preprints whose titles contain the phrases “logarithmically completely mono-
tonic function”, “logarithmically complete monotonicity”, and “logarithmically completely
monotone” by other mathematicians. See, for example, the monographs [191,192] and the
papers [198–201]. Qi pointed out several times that the terminology of the logarithmically
completely monotonic function was first used without explicit definition in the paper [202].

By the Web of Science Core Collection, Feng Qi’s papers have been cited at least in
the following 50 research areas: mathematics, science technology other topics, computer
science, plant sciences, mathematical computational biology, engineering, business eco-
nomics, physics, mechanics, communication, telecommunications, biochemistry molecular
biology, agriculture, operations research management science, food science technology,
genetics heredity, life sciences biomedicine other topics, materials science, nutrition dietet-
ics, anatomy morphology, chemistry, pharmacology pharmacy, biodiversity conservation,
cell biology, environmental sciences ecology, instruments instrumentation, mathemati-
cal methods in social sciences, physiology, psychology, thermodynamics, transportation,
acoustics, astronomy astrophysics, behavioral sciences, biophysics, biotechnology applied
microbiology, cardiovascular system cardiology, developmental biology, energy fuels, gov-
ernment law, health care sciences services, infectious diseases, pathology, polymer science,
psychiatry, public administration, public environmental occupational health, social issues,
sociology, toxicology, and the like.

4. Conclusions

Recommended by Dr. Professor Ravi Prakash Agarwal, Dr. Professor Feng Qi is
currently an editor of the Journal of Inequalities and Applications, the first academic journal
specializing in mathematical inequalities in the world and in the history, founded by Dr.
Professor Ravi Prakash Agarwal in 1997, as mentioned in Section 2.17. As one of the first
two master students supervised by Dr. Professor Feng Qi between September 2004 and June
2007, Dr. Professor Jian Cao published the papers [27,35,66,203–218] jointly with Qi. As one
of academic friends, Dr. Professor Wei-Shih Du published the papers [95,101,110,142] jointly
with Qi. Currently Dr. Professor Feng Qi is an editor of the journal Results in Nonlinear
Analysis founded by Dr. Professor Erdal Karapinar. As one of international colleagues, Dr.
Professor Marko Kostić and his coauthors published the papers [77–79,82,84] in which Qi’s
results mentioned in Section 2.8 were cited and applied many times.

There have been more mathematical studies by Dr. Professor Feng Qi and his coauthors
than those summarized in this paper. From the review articles [116,164,219–224], for
example, we can also see more systematic contributions by F. Qi and his coauthors in
mathematics. We think that we just summarized a small part of works and ideas created
by Dr. Professor Feng Qi. This manuscript is the survey of the scientific work by Feng Qi
and his coauthors, but not a total survey of all the topics Feng Qi and his coauthors have
worked on. If this manuscript were an overall survey of or an almost complete overview of
Qi’s work, then it would be a book of more than 500 pages.
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213. Qi, F.; Cao, J.; Niu, D.-W.; Ujević, N. An upper bound of a function with two independent variables. Appl. Math. E-Notes 2006, 6,

17.
214. Qi, F.; Jiang, W.-D.; Cao, J. Two double inequalities for the Seiffert mean in terms of the arithmetic, centroidal, and contra-harmonic

means. Adv. Stud. Contemp. Math. (Kyungshang) 2015, 25, 547–552.
215. Qi, F.; Li, A.-J.; Zhao, W.-Z.; Niu, D.-W.; Cao, J. Extensions of several integral inequalities. J. Inequal. Pure Appl. Math. 2006, 7, 107.

Available online: http://www.emis.de/journals/JIPAM/article706.html (accessed on 10 July 2022).
216. Qi, F.; Niu, D.-W.; Cao, J. An infimum and an upper bound of a function with two independent variables. Octogon Math. Mag.

2006, 14, 248–250.
217. Qi, F.; Niu, D.-W.; Cao, J. Logarithmically completely monotonic functions involving gamma and polygamma functions. J. Math.

Anal. Approx. Theory 2006, 1, 66–74.
218. Qi, F.; Niu, D.-W.; Cao, J.; Chen, S.-X. Four logarithmically completely monotonic functions involving gamma function. J. Korean

Math. Soc. 2008, 45, 559–573. [CrossRef]
219. Mahmoud, M.; Qi, F. Bounds for completely monotonic degrees of remainders in asymptotic expansions of the digamma function.

Math. Inequal. Appl. 2022, 25, 291–306. [CrossRef]
220. Ouimet, F.; Qi, F. Logarithmically complete monotonicity of a matrix-parametrized analogue of the multinomial distribution.

Math. Inequal. Appl. 2022, 25, 703–714. [CrossRef]
221. Qi, F. Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, 2010, 493058. [CrossRef]

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521192255
http://dx.doi.org/10.1515/9783110269338
http://rgmia.org/v7n1.php
http://rgmia.org/v7n1.php
http://dx.doi.org/10.1017/S1446788700011393
http://dx.doi.org/10.1016/j.jmaa.2004.04.026
http://dx.doi.org/10.1017/S1446788700011393
http://dx.doi.org/10.1007/s00009-004-0022-6
http://dx.doi.org/10.2298/FIL1404821G
http://dx.doi.org/10.1007/s13324-022-00678-6
http://dx.doi.org/10.1016/j.jmaa.2021.125868
http://dx.doi.org/10.1155/IJMMS/2006/70786
http://dx.doi.org/10.1515/ms-2016-0208
http://www.emis.de/journals/JIPAM/article744.html
http://dx.doi.org/10.1080/10652460701635886
http://dx.doi.org/10.1016/j.amc.2008.05.054
http://dx.doi.org/10.1080/00207390600733873
http://www.emis.de/journals/JIPAM/article706.html
http://dx.doi.org/10.4134/JKMS.2008.45.2.559
http://dx.doi.org/10.7153/mia-2022-25-17
http://dx.doi.org/10.7153/mia-2022-25-45
http://dx.doi.org/10.1155/2010/493058


Axioms 2022, 11, 385 27 of 27

222. Qi, F. Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity. Turkish
J. Anal. Number Theory 2014, 2, 152–164. [CrossRef]

223. Qi, F. Complete monotonicity for a new ratio of finitely many gamma functions. Acta Math. Sci. Ser. B (Engl. Ed.) 2022, 42B,
511–520. [CrossRef]

224. Qi, F.; Niu, D.-W.; Guo, B.-N. Refinements, generalizations, and applications of Jordan’s inequality and related problems. J.
Inequal. Appl. 2009, 2009, 271923. [CrossRef]

http://dx.doi.org/10.12691/tjant-2-5-1
http://dx.doi.org/10.1007/s10473-022-0206-9
http://dx.doi.org/10.1155/2009/271923

	Introduction
	Concrete Contributions
	Bell Numbers and Inequalities
	Partial Bell Polynomials
	Wallis Ratio
	Additivity of Polygamma Functions
	Bounds for Mathematical Means in Terms of Mathematical Means
	Complete Elliptic Integrals
	Matrices
	Bounds for Ratio of Bernoulli Numbers
	Special Polynomials
	Complete Monotonicity Properties Related to Polygamma Functions
	Convex Functions and Inequalities
	Fractional Derivatives and Integrals
	Differential Geometry
	Pólya Type Integral Inequalities
	Properties of Special Mathematical Means
	Invited Visits and Promotions
	Editorial and Refereeing Appointments

	Statistics of Qi's Contributions
	Conclusions
	References

