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Abstract: We consider the foundational relation between arithmetic and set theory. Our goal is to
criticize the construction of standard arithmetic models as providing grounds for arithmetic truth.
Our method is to emphasize the incomplete picture of both theories and to treat models as their
syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the
revisability of the standard-model interpretation. We start briefly characterizing the expansion of
arithmetic ‘truth’ provided by the interpretation in a set theory. Interpreted versions of an arithmetic
theory into set theories generally have more theorems than the original. This theorem expansion is
not complete however. Using this, the set theoretic multiversalist concludes that there are multiple
legitimate standard models of arithmetic. We suggest a different multiversalist conclusion: while there
is a single arithmetic structure, its interpretation in each universe may vary or even not be possible.
We continue by defining the coordination problem. We consider two independent communities of
mathematicians responsible for deciding over new axioms for ZF and PA. How likely are they to
be coordinated regarding PA’s interpretation in ZF? We prove that it is possible to have extensions
of PA not interpretable in a given set theory ST. We further show that the number of extensions of
arithmetic is uncountable, while interpretable extensions in ST are countable. We finally argue that
this fact suggests that coordination can only work if it is assumed from the start.

Keywords: foundations of mathematics; arithmetic; set theory

1. Overview

In this article, we study the idea of reducing arithmetic to set theory as a strategy for
grounding arithmetic truth. The method of reduction we have in mind is interpretation.
We say that a theory T1 is interpreted in a theory T2, when there is a uniform mapping of
theorems of T1 in theorems of T2. This mapping should preserve the boolean structure
and bound quantifiers of T1 in a definable class of T2. We will next indicate how model
constructions can be understood as the establishment of interpretations between theories.

In what follows, we assume that mathematical structures exist independently of our
ability to completely describe them. It is common practice, however, to refer to models as
fully formed entities for which one can assert whether any formula is valid. This is generally
done with Gödel-Tarski method within a set-theoretic metatheory. The fact that one can
decide whether any formula ϕ is satisfied by a model M is simply given by the axiom of
excluded middle in the metatheory. Although this strategy may help us to understand
model-theoretic properties, it will not necessarily help us to concretely determine which
are the valid formulas. For example, considering the standard model N of arithmetic built
in a ZF metatheory, we indeed know that ψ = “twin prime conjecture” is satisfied or not by
the model. But that “N satisfies ψ” can still be unprovable from the point of view of ZF.

This is the reason why we will consider models via their syntactical representation
through interpretations. Understanding models in this way will allow us to distinguish
more precisely the undecidable instances of the form “N satisfies ψ” in the chosen metathe-
ory. Structures should not be treated as syntactical constructions nevertheless. One may
refer to a set-theoretic structure V as a platonic collection of objects; and due to our limited
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knowledge, the notion of satisfaction in V is vaguely defined. We can, however, define a
precise notion of knowledge about satisfaction by fixing a set theoretic theory ST:

We know that V � ϕ if, and only if, ST ` ϕ (1)

Now, each model definable in a given base model V � ST can be said be to the result
of bounding the elements of V to a given interpretation I (this will be define precisely in
the Section 2 with respect to arithmetic). By doing so, we can keep in mind our limited
knowledge of models. Since, ifM is definable in V (i.e.,M = IV) and we do not know
any other information about V other than that it satisfies ST, then

We knowM � ϕ if, and only if, ST ` ϕI (2)

Furthermore, we investigate the grounding relation represented by interpreting PA in
ZF. Notably, if one considers the standard interpretation of PA in ZF to be correct, then it
expands what one known to be arithmetically true—i.e., many independent formulas in PA
become theorems as we see them in ZF through the interpretation. But even though we
expect that interpretations of PA in ZF expand knowledge of arithmetic truth, ZF does not
completely decide on arithmetical formulas. Indeed, for every interpretation I of arithmetic
in a recursive extension S of ZF, there is an arithmetical formula that S does not decide
under this interpretation. At any stage in the development of ZF (a recursive extension),
the concept of arithmetical truth will still be open. Some arithmetic formulas will be
undecidable under the interpretation in any recursively extended set theory. Hence, it is
possible to build two structures satisfying the set theory that disagree about the truth value
of an arithmetic formula.

Taking a multiversalist view of set theory, Hamkins and others (see [1–3]) use a similar
basis to advance a pluralist view of arithmetic. In [1], for example, Hamkins and Yang
show that there are models of ZF that agree about what the standard model of arithmetic
is and yet disagree about what is valid in the standard model. This (and other results)
suggests that there are alternative models of arithmetic. In this article we use a different
approach. Assuming we have good reasons to say that there is a unique arithmetic intended
structure while maintaining a multiversalist view of set theory (this view is suggested by
Koellner in [4]), we argue that the standard interpretation should be taken as revisable.
Furthermore, it may happen that the structure of arithmetic is not definable in some
set-theoretic universes.

It is due to this phenomena that we consider what we call the coordination problem:
consider that there are two groups of mathematicians responsible for deciding over new
axioms. The first will decide over axioms for arithmetic and the second for a set theory.
How should we consider the relation between the two groups? Note that if we consider that
the arithmetic group should conform to any development provided by the set theory group,
it becomes hard to see in what sense the interpretation of arithmetic into set theory has any
foundational role. This framework is indistinguishable from simply taking arithmetic to
live in set theory.

If, however, the interpretation of arithmetic in set theory has a meaningful foundational
role, it is important to consider the possibility of the coordination between the two theories
to break. Is it possible that an extension of arithmetic not to be interpretable in any extension
of a set theory? We show in Theorem 2 that for any extension A of PA and any extension S
of ZF, there is an extension A+ that is not interpretable in S. But, how likely is it to be the
case? We will further show in Theorem 3 that there are uncountable consistent extensions
of a recursive A, while only a countable number of interpretations of arithmetic in any
set theory. For this reason, the addition of axioms to set theory and arithmetic by the two
groups would preserve the interpretability relation only if coordination is assumed. We
further conclude that this perfect coordination would empty the reductivist foundational
role of set theory to arithmetic. Finally, we briefly explore an alternative foundational role
that would avoid this problem.
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2. The Standard Model of Arithmetic

The strategy of offering set-theoretical models to describe objects of a theory comes
from the work of Tarski, Mostowsky, and Robinson in the 1940s [5]. Ever since this date,
mathematicians and philosophers often resort to this strategy. It is generally accepted that
once we start talking about models, we put aside the formal aspects of the mathematical
subject and start talking about its objects and truths. Nevertheless, because of Gödel’s
incompleteness theorem and Löwenhein-Skolem theorem, there is no formal way to fix
the model of any recursive extension of Peano arithmetic. It is impossible to say that the
only model that satisfies our descriptions of arithmetic is the intended model, no matter
how extensively we describe it. Still, using a set-theoretical apparatus, we can describe the
intended model as N = 〈ω,+, ., 0, s〉 (called standard model). We can then show that a set
theory like ZF is expressive enough to define a truth predicate for this interpretation.

The literature on this subject generally presents two approaches for fixing the standard
model: (i) one should offer extra-logical (or second-order) reasons for choosing N from
the myriad possible models for arithmetic; (ii) one should abandon the model-theoretical
construction and find other ways to ground arithmetic truth. A renewed version of (ii)
can be seen in Gabbay’s defense of a new kind of formalism [6]; Moreover, others may
abandon a privileged emphasis on N, because we must focus on mathematical practice
(Ferreirós [7]) or because we must commit ourselves to a realistic multiverse (Hamkins [8]).
Still, differences of opinion are more common as to how and why we should follow project
(i). Those like Williamson [9] argue for metaphysical reasons for setting N, others like
Maddy [10], Quine [11] or Putnam [12] advocate ways to naturalize the reasons for N.
Finally, a recent approach by Rodrigo Freire grounds N in mathematical practice using a
normative basis in place of the Platonist commitment to N [13].

The question of the adequacy of N is often overlooked. Though one may find a vast
literature on non-standard models of arithmetic, these are generally regarded as ‘deviant’
or not intended. They are indeed existing structures that satisfy an arithmetic theory,
but they are not the one true model of arithmetic. The assumption behind this is that
if something is a model of arithmetic, then it is N. We may not know why this is the
intended model or even deny that such a model exists, but the conformity to N is hardly
questioned. However, presenting N as an object without further consideration is a category
mistake. Notably, a similar category mistake would be to say that ‘there have been two sun
revolutions since so and so’. The phrase ‘two sun revolutions’ is used as quantity of time,
even though it describes a movement in reference to the Sun. Hence, the statement would
be a category mistake unless, for instance, an implicit reference to Earth and not Mars is
assumed. Precisely stated, N is an interpretation of PA in the language of membership. It
represents therefore a construction of objects for arithmetic in terms of objects of a given set
theory. Hence, it is only when we fix the objects for a set theory that the objects expressed
in the construction N gain life.

For any given model of set theory V � ZF, an arithmetic interpretation I can be under-
stood as a procedure for obtaining a modelN for PA. The modelN = 〈Obj,+N , .N , 0N , sN〉
is a set in the vaguely defined V with the appropriate meaning for the arithmetic symbols
+ (sum), . (multiplication), 0 (constant zero) and s (successor function). The model N is
built from the interpretation I = 〈U, f+, f., fs, zero〉. The elements of I are formulas in the
language of ZF: U is a formula with one free variable, f+ and f. are formulas with three
free variables, fs is a formula with two free variables and zero is a formula with one free
variable. It is then necessary to prove in V that the formulas in f+(x, y, z), f.(x, y, z), fs(x, z)
indeed represent functions with respect to the variable z and that zero(x) is satisfied by a
unique element in V. With these ingredients, we explicitly build in V the model N :

1. Obj = {x ∈ V | V � U(x)}.
2. 0N = a such that V � zero(a).
3. +N = {〈x, y, z〉 | x, y, z ∈ Obj and V � f+(x, y, z)}.
4. .N = {〈x, y, z〉 | x, y, z ∈ Obj and V � f.(x, y, z)}.
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5. sN = {〈x, y〉 | x, y ∈ Obj and V � fs(x, y)}.

We may refer to the model obtained from V using I as IV . In this context, the standard
interpretation N = 〈U, f+, f., fs, Zero〉 is the case where U(x) expresses in set theory ‘x is
an finite ordinal’, f+(x, y, z) expresses ‘z is the ordinal sum of x and y’, f.(x, y, z) expresses
‘z is the ordinal product of x and y’, fs(x, z) expresses ‘z is the ordinal successor of x’ and
Zero(x) expresses ‘x is the empty set’. We can then obtain that, independently on the choice
of the base model V � ZF, the model NV � PA.

Syntactically, we may use I to produce a uniform strategy for mapping formulas in
the language of arithmetic L(PA) to formulas in the language of set theory L(ZF). As
we assumed that f+(x, y, z) is a function in V, we may use, for simplicity, a function-like
language defining F+(x, y) in ZF as “the z such that f (x, y, z)”. Similarly, we define F., Fs
and Zero. For every arithmetic formula ϕ, we define the partially interpreted formula ϕI∗

by:

1. replacing in every atomic subformula of ϕ occurrence of the form x + y, x.y, s(x), for
F+(x, y)), F.(x, y), Fs(x) respectively;

2. replacing every occurrence of ∀x(ψ) for ∀x(U(x)→ ψ);
3. replacing every occurrence of ∃x(ψ) for ∃x(U(x) ∧ ψ);

If ϕ has free variables x1, x2, . . . , xn, the interpreted formula ϕI is defined as (U(x1) ∧
U(x2) ∧ . . . ∧U(xn)) → ϕI∗ . With this, we can now say that ZF interprets PA with the
standard interpretation N since every ϕ ∈ PA is such that ZF ` ϕN .

Our idea is to insist on the incomplete picture of the set-theoretical representation of
arithmetic. All we know about the vaguely defined V is that it is based on an incomplete
theory ZF. Therefore, the picture of arithmetic obtained from reducing PA to V by N is also
incomplete. In this context, it is worth paying attention to precisely what is decidedly valid
in the standard construction with the syntactic notion ZF ` ϕN . If one only commits to the
validity of the axioms of a set theory ST, the undecidable formulas in ST of the form ϕI are
precisely the arithmetic formulas that one does not know if they are valid or not.

So to what are we committing in the case where we say that N is the standard model of
arithmetic? As we will discuss in the next section, it depends on what is the chosen model
V. It is in fact showing that the standard model has many representations (even isomorphic,
though with different truth predicates), that Hamkins and Yang in [1] proposes a pluralist
view of arithmetic. Notably, however, they still fix the standard interpretation–evaluating
this interpretation in different structures of set theory. It seems like the single construction
for the intended model of arithmetic is based on the idea condensed in the sentence: ‘no
matter which model of set theory one is assuming, the model of arithmetic would be given
by N’. Indeed, the picture provided by the literature is that of revisable truth for set theory
and arithmetic–but unrevisable reduction of arithmetic in set theory. In the next sections,
we argue that to take the standard model to have a foundational role, one should assume
the interpretation to be revisable. For now, we consider the characterization of arithmetic
in set theory in more details.

Foundational Characterization of PA in ZF

Being I an interpretation of arithmetic in a set theory S, we call the set AS
I = {ϕ ∈

L(PA) | S ` ϕI} the expansion of arithmetic truth under the interpretation. Indeed
some undecidable formulas ϕ of PA are ‘true’ in the standard model (ZF ` ϕN). This is
the case for the Gödel formula, Goodstein’s theorem and many others arithmetic results.
We will thus consider more broadly the question of expansion of arithmetic truth from
interpretations in set theories.

Given that I is an interpretation of an arithmetic theory A in a set theory S and
Th(A) = {ϕ | A ` ϕ}, we expect to have Th(A) $ AS

I $ Arithmetic truth, as we see in
Figure 1:
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A ` α S ` αI Arithmetic
Truth

Figure 1. Expansion of validity under interpretation.

The reason for the expansion Th(A) $ AS
I is that, in the usual case, one expects to

build a set-size model of arithmetic. Consequently, a consistency predicate for A should
be expressed and proved in S. Consider the base case of PA and ZF with the standard
interpretation N. Assuming a model V for ZF, we can build a model NV satisfying PA.
We then know that there are many valid formulas in NV that are not provable in PA. The
most immediate example is the consistency predicate Con(PA); in fact, we know that the
predicate is valid in NV or, in other words, that ZF ` (Con(PA))I .

Of course, from a given recursive extension S of ZF, one may simply choose the
recursive arithmetic theory corresponding to the theorems in ST about the standard inter-
pretation (i.e., AS

N). But this is to put the cart before the horse, being open to the evaluation of
extra valid formulas with respect to the current axiomatization of arithmetic (e.g., ϕ ∈ AS

N
but such that ϕ is not proved in the current axiomatization of arithmetic) is a fundamental
aspect in this study. In addition, there are important recent results that show fundamental
mismatches between arithmetic and set theory. In fact, no subtheory of any extension of
ZF is bi-interpretable with any extension of PA. This is a simple consequence of a theorem
by Enayat and independently discovered by Hamkins and me: two different extensions of
ZF can never be bi-interpretable [14–16] (the direct proof is done in the dissertation ([17]
pp. 150–152). Together with the bi-interpretation of finite set theory and Peano arithmetic,
the result follows. Hence, in order to obtain a set theory equivalent to PA we must add
an axiom that contradicts ZF. Similarly, no compatible (with ZF) collection of set-theoretic
concepts can perfectly mirror an axiomatization of arithmetic that extends PA.

We also note that the characterization of the foundation relation by theorem expansion
relates to the mathematical practice. With the discovery of the Gödel’s incompleteness
theorem in [18], some resistance to the result was argued in the sense that the obtained
undecidable statement had little mathematical meaning. Later on, Goodstein [19] proved
that there are fast growing functions (called Goodstein sequences) that cannot be proved
to be total in PA. The existence of these sequences is directly connected to the traditional
Hydra problem, and thus it bears a clear mathematical meaning (see Caicedo’s “Goodstein’s
function” [20]). Thus the question of foundation arises as to whether the interpretation of
PA in set theory answers a significant arithmetical problem that was not possibly addressed
by the axiomatization. And this is indeed the case as we consider Goodstein sequences.

Notably, important results in number theory have recently become so loaded with
complicated techniques that mathematicians have begun to question whether the proofs
extrapolated Peano’s axioms. This is the case of Fermat’s last theorem and the weak Gold-
bach conjecture, proved respectively by Andrew Wiles [21,22] and by Harald Helfgott [23].
This type of question is akin to the program of reverse mathematics and has drawn the at-
tention of mathematicians like Harvey Friedman. However, the validity of those theorems,
whether they depend or not on more axioms than PA, is hardly questioned. The choice is
not commonly to add axioms to PA, but to investigate arithmetic truths in a theory that
expands the extension of theorems. One is not however simply doing ‘finite ordinal set
theory’ when dealing more loosely with arithmetic’s axiomatization, as these ‘stronger than
PA’ assumption should correspond to number theorists’ intuitions about natural numbers.
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We have discussed that interpretations of arithmetic in set theories generally expand
what may be taken to be arithmetical truth (Th(A) $ AS

I ). Yet this expansion is not
necessarily complete (AS

I = arithmetic truth). A confusion in this regard is due to the
idea that model constructions in set theories offer venues for defining truth for interpreted
theories. Each interpretation I represents the appropriate model construction such that
the grounding set theoretic model V can provide the notion of satisfaction IV � ϕ for any
formula. Eventually, we would have that for any formula γ, either V I � γ or V I � ¬γ.
However, as we have already discussed, a more syntactical approach makes it clear that
this is simply the expression of the excluded middle. Indeed, “either V I � γ or V I � ¬γ”
should be syntactically represented by

ZF ` γI ∨ ¬γI (3)

Instead, what is really wanted is a notion like

ZF ` γI or ZF ` ¬γI (4)

As we suppose a base model V for ZF, we are at hand with an interpretation for
ZF itself or with a loosely defined model. In this case, the notion of truth in a model is
represented by “either IV � γ or IV � ¬γ”. However, if our supposition of a model V is not
informed by any specific information other than V � ZF, the interpretation works simply
as the identity. Therefore, we return to the problem of establishing a notion as in (4).

However, Equation (4) is not achievable for any recursive extension of ZF. For a
given interpretation I of arithmetic in a recursive extension S of ZF, there will be formulas
of L(PA) that are undecidable about arithmetic in S, that is, formulas ϕ in L(PA) such
that S 0 ϕI and S 0 (¬ϕ)I . One may think that this is a direct consequence of Gödel’s
incompleteness for PA, as S could be seen as a recursive extension of PA. But this is false. As
mentioned before, no subtheory of an extension of ZF is bi-interpretable with any extension
of PA. Indeed, PA is bi-interpretable with the theory ZFf in composed of ZF without axiom
of infinity and with the addition of negation of infinity and transitive closure (see [24]).
However, no extension of ZFf in can be S, since S asserts the existence of infinite sets. In
view of this, we prove the very simple theorem:

Theorem 1. For a given interpretation I of PA in a recursive extension S of ZF, there will be
formulas of L(PA) such that S 0 ϕI and S 0 (¬ϕ)I .

Proof. To prove this, we should reinternalize the provability predicate under the inter-
pretation. Let as consider A = {ϕ | S ` ϕI}. Notably, PA ⊆ A and thus A can produce
arithmetization for arithmetic formulas and for set-theoretic formulas. Let pϕq be the Gödel
number of any formula ϕ in A or in S and p〈ϕ1, ϕ2, . . . , ϕn〉q the Gödel number of any
sequence of formulas 〈ϕ1, ϕ2, . . . , ϕn〉 in A or in S (as done in ([25] pp. 122–126)).

Since S is recursive, “p〈ϕ1, ϕ2, . . . , ϕn〉q is a proof in S” is recursive. From the repre-
sentation theorem (see [25] pp. 126–128), there is a predicate PrS(x, y) such that

A ` PrS(p〈ϕ1, ϕ2, . . . , ϕn〉q, pψq) ⇐⇒ 〈ϕ1, ϕ2, . . . , ϕn〉 is a proof in S and ψ is ϕn (5)

Moreover, the statement “ψ is the ϕI of some ϕ” is recursive. Then, from the represen-
tation theorem, there is a predicate FmlI(x) such that

A ` FmlI(pψq) ⇐⇒ ψ is the ϕI of some ϕ (6)

Defining ThA
S (y) as ∃x(PrS(x, y) ∧ FmlI(y)), we can then use the diagonal lemma for

the formula ¬ThA
S (y), obtaining a formula G such that

A ` G ↔ ¬ThS(pGq) (7)
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If S ` GI , then A ` FmlI(pGq) and A ` ThS(pGq) from (5) and (6). From (7), we
have A ` ¬ThS(pGq), contradiction. To obtain a contradiction from S ` ¬GI , we should
reformulate the proof using the Rosser trick, although it will also work the same way as
in ([25] pp. 131–132). Then the formula G obtained in the diagonalization for the equivalent
Rosser-Gödel predicate is the undecidable arithmetic formula in S.

This theorem can be understood as a very small expansion of Gödel’s incompleteness
theorem as we consider decidability under relations between theories. Moreover, it relates
to results available in Satisfaction is not absolute [1]. In this article, Hamkins and Yang
considered the idea that there may be arithmetical formulas ρ that two models of ZF
disagree–even as these same models agree on what is the standard model for arithmetic.
Though very important in the context of this paper, the result lacks a construction for the ρ
formula. This formula is obtained as the existential for a number representing a formula.
In fact, exhibiting ρ is not possible, since it would imply the inconsistency of ZF.

Put another way, we have shown a similar phenomenon in which disagreement can
be exhibited. To make it possible, we considered a foundational view that accommodates
our incomplete understanding of set theory and arithmetic. Thus, agreement on arithmetic
is to be understood as having similar sets of known arithmetical truths {ϕ | S ` ϕN},
S being some stage (or alternative stage) in the development of ZF. In this sense, there
is a formula ρ that would be true in some possible development of S and false in some
other possible development of S. As a reviewer pointed out, Ali Enayat [26] has recently
studied this phenomenon in a similar light. He points out that NZF ( NZFI , where I
indicates the existence of an inaccessible cardinal. Interestingly, he also creates a natural
way of describing the S’s expansion of arithmetic. If θ0, θ1, . . . , θi, . . . is an enumeration
of formulas of S and Sn = {θi | i < n}, the resulting arithmetic obtained from S is PA
together with statements ϕ → Con(Sn ∪ {ϕN}). Enayat later shows a series of results
on how and to what extent set theory models can disagree over the standard model of
arithmetic. The limit of his method for the purposes of the present article is that his main
concern is a model-theoretical characterization of ’nonstandard’ models (with respect to
some background V) that are obtained in some S using the standard interpretation.

There are indeed various important open statements of finite set theory. The recent
book “Extremal problems for finite sets” ([26] pp. 211–215) deals with some of those system-
atically: Erdős matching conjecture, Chvátal conjecture, Frankl’s union-closed conjecture
and so on. If some of these turn out to be undecidable in ZF (or ZFC), they will correspond
to undecidable statements of arithmetic under the standard interpretation. The question
we would like to propose is this: assuming that the standard interpretation of PA in ZF
produces true arithmetic statements, should we simply say that if some set theorists decide
to include some of those conjectures as axioms, then should number theorists accept the
corresponding statements as arithmetic truths?

In particular, there has been an important debate regarding the multiversalist picture
of set theory. Many set theorists today consider that there are indeed equally legitimate
non-isomorphic set theoretic models. The motivations for this are various (see [8]). But do
those motivations apply to arithmetic? With set theory, there is a fundamental limitation
generally accepted even by many conservative set theorists: whenever we deal with a
model of set theory, we should always set a limit to an ordinal level in the cumulative
hierarchy. Therefore, there is at least a multiverse of set-theoretic models with respect to
ordinal levels. Nothing similar to this is found in arithmetic intuitions. Natural numbers
are precisely those one can effectively count and there is little to no reason to take a pluralist
view with respect to arithmetic. Notice, however, that by accepting the multiversalist
view of set theory together with the view that the one true reduction of arithmetic to set
theory is the standard interpretation, we are consequently subscribing to a pluralist view
of arithmetic. And this is precisely the conclusion drawn by Hamkins. Now, if there
is only one model of arithmetic and many legitimate set theoretic models, it becomes
fundamentally important to consider that the interpretation of arithmetic in set theory
is revisable and that the model of arithmetic may not even characterizable in some set
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theoretic models. It is in view of this consideration that we should now investigate what
we call the coordination problem.

3. The Coordination Problem

Let us consider the following fictional scenario for the development of set theory and
arithmetic. There are two groups of mathematicians who would decide about new axioms
for set theory and arithmetic. The first Gs is responsible for one (among possibly many)
set-theoretic universe, and the second Ga for the arithmetic structure. Let us further assume
that Ga agrees with the standard expansion of arithmetic in ZF (AZF

N is considered valid for
Ga). How should we frame the relation between the two groups?

Consider that Gs have decided in favor of new axiom α to set theory ZF. In particular,
this would expand the set of arithmetic truths in AZF+α

N . Should Ga consider this new set
to be true? This being the general attitude towards arithmetic means that the standard
reduction determines new truths for arithmetic. In what sense does the standard inter-
pretation provide a foundation for new arithmetical truths? If we think that the standard
interpretation does this, it seems like we have simply assumed that arithmetic lives in set
theory, without any further considerations. After all, this framework bounds the expansion
of arithmetic truth to the expansion of set-theoretic truth. Therefore, Ga would not have
any authority over new arithmetic axioms after all.

In order to make room for this setting, one should consider that we have a better
understanding on how arithmetic is reduced to set theory than we have for each of the
theories. And, for this to work in general, we should consider the reduction of arithmetic
in set theory unrevisable.

Very often we consider ourselves to have a good understanding on relations between
things that we may not have a good understanding. This is the case for translating a sen-
tence like “Napoleon was an emperor”. We may have a lot of doubts about the ontological
status of the words used in this sentence and still be confident about how to translate it
into Chinese.

Indeed, we may be more confident about the way we reduce arithmetic to set theory
than about the truth in these theories. Yet this is not sufficient to assume the unrevisability
of the reduction relation. After some investigation over the concept of emperor, one has
realized that the standard translation of emperor in Chinese does not really represents
what English speakers refer with ‘emperor’. For instance, emperor is usually translated as
‘Huangdi’ in Chinese, even though this word associate the monarch with his divinity. In
English, although often associated with divinity, the word emperor can be used without
divine association. So a more intricate description as ‘Napoleon was the non-divine man
who ruled over the French empire’ would be better (even if it is not practical).

If there are grounds for taking N to be a privileged interpretation, those would be
based on partial representations of arithmetic and set theory. Therefore, the idea that N
correctly works as a connection between the theories may be simply because we have not
advanced the theories enough. This would be a similar case if a Chinese working in the
translation of a western modern history book has been translating ‘Emperor’ as ‘Huangdi’.
It seems perfectly fine if he believed this to be a general translation, given that the only
time he applied the translation was for the ‘Emperor of the Holy Roman Empire’. But as he
starts translating the Napoleonic period, the broader picture would force him to reconsider
the generality of the translation.

A different picture would be the case where the Chinese translator invented a language
where w means ‘blue chair’. Finding someone else using w to refer to a red chair, he could
correctly accuse the person to be using the word incorrectly. So this would be similar to the
case where we consider arithmetic to be a definition inside set theory. But this being the
case would imply that there is no foundational gain in studying the relation between the
theories.

Whereas set theory has a foundational role for arithmetic, we may now consider that
the standard interpretation is a good yet revisable set-theoretic inspection over arithmetic.
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It is precisely because we assume the interpretation to be revisable that a foundational
relation can be argued. As truth expands in both theories, we evaluate conflicts and revise,
if necessary, the interpretation to accommodate changes. A summary of the steps in the
coordination of Ga and Gs can be:

1. Every addition of axioms to one theory should provoke an inspection over the ade-
quacy of the current interpretation of arithmetic in set theory.

2. If a conflict arises in the development of the theories, the two groups should meet to
adjust the interpretation to prevent the conflict.

3. The adequacy of an interpretation should have reasons for itself apart from accommo-
dating the interpretation.

As we see in Step 2, the two communities should sit together and reevaluate the state
of the reduction, if necessary. Hopefully, these conferences would hardly occur. But we
should allow some independence to each group. Otherwise, their development, especially
on arithmetic, would turn out to be assumed by definition in the development of the other.

We have added some life to the grounding relation by allowing it to fail. However,
there is still a deeper problem. The following scenario is still possible:

(i) Each instance of development allows one to fix the interpretation between the theories.
(ii) And at least one of the extensions of any state of arithmetic is not possibly interpreted

in set theory.

Allowing both of these possibilities weakens the edifice of the grounding relation.
Each moment in the development of the theories is an incomplete stage in which we cannot
anticipate the impossibility of reductions occurring further in the development of the
theories. From (i), any addition to the theories allows one to find (or keep) an interpretation
of arithmetic. However, from (ii), finding those interpretations does not add to the idea
that arithmetic is indeed reducible to a given set theory. This scenario is possible, as we
will see in the next theorem.

Theorem 2. Let S be a consistent extension of ZF and A a consistent recursive extension of PA,
then there is a consistent extension A∗ of A that is not interpretable in S.

Proof. We extend the theory A by generating a sequence of theories that are not inter-
pretable in S by a particular interpretation I. Being these theories compatible with each
other, the union of them will not be interpretable in S.

Let A0 = A and {I1, I2, . . .} be an enumeration of all interpretations from PA language
to ZF language. We generate a sequence of theories A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . by adding
one formula in each step. It should be noticed that the proof here is not constructive,
meaning we are not using a recursive method to determine the new formula added to Ai to
obtain Ai+1. Nonetheless, since every theory Ai will be the addition of i formulas to the
recursively axiomatized A0, then Ai is also recursively axiomatized. In this case, for every
i, there is a formula Gi obtained by the Rosser-Gödel diagonalization argument. With this
in mind, we define the Ai’s as follows (abbreviation: T ≤J T′ represents “T is interpreted
in T′ by J”):

Let ϕ0, ϕ1, . . . , ϕk, . . . be an enumeration of arithmetic formulas.

1. If Ai ≤Ii S and there is a least k such that Ai 0 ϕk and S ` ϕ
Ii
k , then

Ai+1 = Ai ∪ {¬ϕk}

2. Otherwise,
Ai+1 = Ai ∪ Gi

Let A∗ =
⋃

i∈ω
Ai. We note that A∗ is a consistent extension of A because in each step

we add an unprovable formula.
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Suppose A∗ is interpretable by I in S, then I = Ik for some natural number k. Notably,
if a theory T is interpreted in a theory T′, then any subtheory of T is interpreted in T′ by
the same interpretation. Thus the entire sequence of theories {A1, A2, . . .} is interpreted
in S by Ik. In particular, we have Ak ≤Ik S and Ak+1 = Ai + ¬ϕq or Ak+1 = Ak + Gk as in
the definition. If Ak+1 = Ai + ¬ϕq, then option 1 in the definition was used and we have
S ` ϕ

Ik
q . However, since S also interprets Ak+1 with Ik, we have the contradiction S ` ¬ϕ

Ik
q .

If Ak+1 = Ak + Gk, then option 1 is not applied and we have either (i) Ak �Ik S or (ii) that,
for all n, Ai ` ϕn if, and only if, S ` ϕ

Ik
n . Note that (i) contradicts Ak ≤Ik S. Moreover,

since Ai 0 Gi, it follows from (ii) that S 0 GIk
k –which, in turn, implies the contradiction

Ak+1 �Ik S. Therefore, A∗ is not interpretable in S.

Let A = AZF
N , Ak be the Ackermann interpretation of membership in arithmetic

language and consider that a formula ϕ is equivalent to (con(ZF))Ak in A. Suppose
also that the group Ga considers ϕ to be valid. Notably, this formula would represent
a relation between natural numbers such that the standard interpretation stops being a
correct interpretation of arithmetic. Similar constructions can be used to generate a myriad
of examples. However, each of these examples can be subject to a ‘contrary to intuition’
kind of criticism. In the case presented, one may suggest that (con(ZF))Ak means that we
are adding an axiom representing the consistency of ZF in the arithmetic without doing the
same in the set theory. Simply adding the axiom con(ZF) to our set theory would make
the standard interpretation work again nicely. Nevertheless, we note that the phenomenon
presented in the theorem is not exactly to add isolated axioms, but to add an enumeration
of axioms to the arithmetic. Our suggestion is therefore that a bundle addition of axioms
may force the theories to loose coordination. We also note that we do not impose the set
theory S to be recursive. For this reason, one may simply consider that S is a complete
extension of ZF. In this case, no addition to the set theory would possibly allow the theories
to recover the interpretability relation.

We argued that it is possible for ZF and PA to part ways along the path of development.
Although disturbing, this may simply account for the meaningfulness of the question about
the reduction between the two theories. We have considered that we should conceive it to
fail (even fatally, as in this case) in order not to take for granted that the reduction works.
Note further that this pays tribute to the idea that by interpreting arithmetic in set theory
we should inform something that was not simply given, i.e., that arithmetic lives in the
realm of set theory. Nonetheless, we should now show the simple (and not a novelty) result
that the number consistent extensions of PA is uncountable. Meanwhile, the number of
interpretations is trivially countable. This means that we are in a situation similar to that
of choosing a random number in the Real line expecting to find a natural number. Our
claim is that, for this reason, the coordination between the systems can work only if the
coordination is assumed from the beginning and as a principle.

Theorem 3. Let A be a consistent recursive extension of PA, then there is a uncountable number of
consistent extensions of A.

Proof. From the incompletness theorem, there is a formula G that is undecidable in PA.
Thus, both PA + G and PA + ¬G are consistent. Notably, this is still true for the addition of
any finite number of new axioms α1, α2, . . . , αn. There is a formula G〈i〉 that is undecidable
in A〈i〉 = PA + {α1, α2, . . . , αn} since A〈i〉 is a recursive extension. Let us then index PA
extensions with binary codes (i.e. sequences of 0’s and 1’s) in the following way:

1. A〈0〉 = PA.
2. If G〈i〉 is the undecidable obtained with Rosser-Gödel technique A〈i〉, then A〈i1〉 is

A〈i〉 + G〈i〉 and A〈i0〉 is A〈i〉 + ¬G〈i〉. (where i1 and i0 are the binary extension of the
code i with the digits 1 and 0)

3. Let FinBin be the set of all finite binary codes, the set Σ = {A〈x〉 | x ∈ FinBin} is a
subset of finite extensions of PA.
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Note that each member of Σ is an extension of PA with the addition of a finite number
of formulas. Now we build infinite extensions of PA from Σ. Let M : FinBin → Σ be the
map between binary codes and extensions in Σ. We say that C : ω → FinBin is a chain
in FinBin when ∀x, y ∈ ω(x ≤ y→ (C(y) extends the code of C(x))). Also, if x ∈ FinBin,
we write

x(n) =

{
n’th digit of x, if there is the n’th digit
0, otherwise

If C is a chain in FinBin, then digC = 〈(C(0))(0), (C(1))(1), . . . , (C(n))(n), . . .〉 is an
infinite binary code associated with the extension ExC obtained by⋃

{C(i) | i ∈ ω}

We define Π as the set

{〈digC, ExC〉 | C is a chain in FinBin}

Note that Π is a function from the set of all binary infinite codes to extensions of PA.
Since infinite binary codes are uncountable, we need only to show that Π is injective and
that the image of Π is composed of consistent extensions of PA.

Suppose that some ExC is not consistent; then there is a finite proof of the inconsistency
of ExC. Hence, there is n ∈ ω such that Exn

C =
⋃{C(i) | i ∈ n} = C(n) is inconsistent. But

this is false, since each C(i + 1) obtained by adding an unprovable formula to C(i) and
C(0) = PA is assumed consistent.

Suppose that Π(digC1) = Π(digC2) and that digC1 6= digC2 . Then there is the least i
such that digC1(i + 1) 6= digC2(i + 1). This means, without loss of generality, that C1(i +
1) = C1(i) + GC1(i), C2(i + 1) = C2(i) + ¬GC2(i) and C1(i) = C2(i). Therefore, Π(digC1)
contains the formulas GC1(i) and ¬GC1(i). This is absurd, as we just showed that the image
of Π is composed of consistent extensions of PA.

We note that the same can be obtained, even if the starting point includes all theorems
of the set theory S under the interpretation. Indeed, we can include the theorems under a
given interpretation at any point without interfering with the result.

Although extensions like A+ are in general not interpretable in S, the process of
generating these theories is internalizable in S. Therefore, we may say that S proves
the consistency statement for all these extensions. This is not enough to claim a proper
foundational relation. The model construction emerging from this type of consistency proof
is simply given by the existence of a model as in the Henkin canonical construction. Thus,
the foundational model one can generate provides little more information than saying that
the theory is consistent (see [27]). Therefore, we should not consider those cases as a path
to avoid the problem discussed in this section.

As developed in this section, we should not consider that the addition of new axioms
to the systems is, in principle, coordinated. Instead, the reducibility of arithmetical truth
should be a result of the expressiveness of set theory. However, assuming that the choices
of the two groups Ga and Gs would result in a interpretable arithmetic is similar to expect
that a random choice of a real number to be a natural number (which has probability
zero). It follows that coordination between the groups of mathematicians can only occur
in principle. Hence, the reduction of arithmetic truth to set theory is not attainable unless
assumed and the foundational relation should be based on other grounds.

To further elaborate on this conclusion, let us consider a metaphor. Picture the situation
in which we have the unstable equilibrium of a sphere on a hill with a very small slope. We
would like to say that the appearance of equilibrium represents our intuitions about the
reduction between the theories being correct. Indeed, we have put the sphere in a position
that appears to be an equilibrium. As the slope of the hill is very small, our perception
of equilibrium works really well. However, even if it takes a long time, it will become
evident that the interpretation of PA in ZF is not in equilibrium. We are, nonetheless, in a
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better position if we accept the multiversalist view of set theory. Under this assumption, we
should thus say that there are indeed some universes perfectly coordinated with arithmetic
under the standard interpretation, and there are some universes perfectly coordinated with
arithmetic under other interpretations. However, these universes are only a small portion
among a much larger multitude of possible universes of set theory.

The ideas developed in the present article, especially in Theorem 3, bring attention
to the fact that we are talking about an unstable hill. No matter how the sphere appears
to be at rest, we know that eventually it will gain traction and fall. The project of using
N for grounding arithmetic truth is equivalent to finding the equilibrium peak of the hill.
It seems to be a good project as we focus on the movement of the sphere–but an analysis
of the geography of the hill is already sufficient to conclude this hill to be unstable. We
should not base our foundational investigations on the guarantee that we have the correct
interpretation in a fixed set theory. Instead, we should use the interpretations as it informs
about arithmetic concepts and as it considers bundles of arithmetic formulas in the very
expressive environment of set theory.

Our position is not that the standard interpretation N cannot play a foundational role.
Alternatively, the very possibility of investigating expansions of arithmetic propositions
provided by analyzing N (or other interpretations) is all the ground we need. In place
of using foundational relations to establish ‘arithmetic truth’, we propose using the N
interpretation to understand how bundles of arithmetical propositions relates to each other.
In this case, we use the technical apparatus and the expressiveness of theories like ZF to
analyze arithmetical concepts rather than fixing its truth.

4. Final Remarks

Rather than manipulating models of PA, we considered interpretations of PA in ZF.
Our goal was to accommodate the incomplete picture of the set-theoretical metatheory into
our analysis of the foundations of arithmetic. The standard interpretation expands what we
may consider true in arithmetic: many undecidable formulas in PA become theorems when
examined under the interpretation in ZF. This is a general phenomenon. For every well
founded interpretation of recursive extensions of PA in extensions of ZF, the interpreted
version of arithmetic has more theorems than the original. This shows that studying
arithmetic inside set theory can be significant. As one considers these interpretations,
one explores expansion of arithmetic truth and how the addition of bundles of axioms
plays out.

We continued by introducing the coordination problem. We considered two indepen-
dent communities of mathematicians responsible for deciding over new axioms of ZF and
PA. Using this setting, we studied the possibility of coordinating PA with PA’s interpreta-
tion in ZF. Nonetheless, we showed that it is possible to have extensions of PA that are not
interpretable in a given set theory S. Moreover, we consider a given recursive extension
A of PA and an extension S of ZF. Here, we prove that there are uncountable extensions
of A while countable interpretations of arithmetic in S. This last result implies that the
coordination between the two communities of mathematicians should be coordinated from
the start. However, we argued that this would empty the foundational role of set theory
over arithmetic.

We have, therefore, set a framework to criticize the notion of grounding truth between
theories such as arithmetic and set theory, specially with respect to the idea of fixing an
interpretation between the systems. Indeed, the multiversalist propagates their pluralism
from set theory to arithmetic by relying on the standard interpretation. We reject this
conclusion, arguing that it is the interpretation that should be revised. By allowing the
interpretation of arithmetic into set theory to change, we make compatible the set theoretic
pluralism with the view that there is a single arithmetic structure.

However, this is not to be understood as a general criticism of the idea of using set
theory to investigate foundational matters regarding arithmetic. Instead, we have solely
shown that it may be flawed to assume that a single set theory can really provide grounds
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for arithmetic truth or a definitive description of the universe of numbers. Our suggestion is
therefore to consider a foundational relation that aims primarily at conceptual clarification
of the concepts involved in the studied theory. An expressively rich environment such
as set theory is armed with tools to study arithmetical relations in wider settings than it
would be possible without leaving its deductive apparatus.
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