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Wang, J. The Existence of Weak

Solutions for the Vorticity Equation

Related to the Stratosphere in a

Rotating Spherical Coordinate

System. Axioms 2022, 11, 347.

https://doi.org/10.3390/

axioms11070347

Academic Editor: Delfim F. M. Torres

Received: 15 June 2022

Accepted: 16 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

The Existence of Weak Solutions for the Vorticity Equation
Related to the Stratosphere in a Rotating Spherical
Coordinate System
Wenlin Zhang 1,2, Michal Fečkan 3,4 and Jinrong Wang 2,*
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Abstract: In this paper, based on the Euler equation and mass conservation equation in spherical
coordinates, the ratio of the stratospheric average width to the planetary radius and the ratio of the
vertical velocity to the horizontal velocity are selected as parameters under appropriate boundary
conditions. We establish the approximate system using these two small parameters. In addition, we
consider the time dependence of the system and establish the governing equations describing the
atmospheric flow. By introducing a flow function to code the system, a nonlinear vorticity equation
describing the planetary flow in the stratosphere is obtained. The governing equations describing
the atmospheric flow are transformed into a second-order homogeneous linear ordinary differential
equation and a Legendre’s differential equation by applying the method of separating variables based
on the concepts of spherical harmonic functions and weak solutions. The Gronwall inequality and the
Cauchy–Schwartz inequality are applied to priori estimates for the vorticity equation describing the
stratospheric planetary flow under the appropriate initial and boundary conditions. The existence
and non-uniqueness of weak solutions to the vorticity equation are obtained by using the functional
analysis technique.

Keywords: stratosphere; vorticity; stream function; weak solution

MSC: 35Q35

1. Introduction

With the high complexity caused by factors such as the rotation of the Earth and heat
input, the observed air flows in the atmosphere can be regarded as a description of large-
scale motions (see [1]). For large-scale atmospheric flows, consideration of the full nature
of the geometry of the Earth’s curved space is essential (see [2]). In order to transcend the
limitations of the plane geometry of the f -plane approximation, the classical approach is to
invoke the weak contribution of the curvature by using the β-plane approximation (see [3]).
However, in contrast to the f -plane approximation, the β-plane approximation does not
represent a consistent approximation of the geophysical flow governing equations in the
mid-latitude and polar regions (see [4]). Therefore, it is necessary to establish the governing
equation of the fluid in the spherical coordinate system.

Constantin and Johnson gave the motion control equation and the mass conservation
equation in the rotating spherical coordinate system. The thin-layer asymptotic approxima-
tion was established based on the ratio of the ocean average depth to the Earth’s radius
(see [5]). Martin established the exact solution of the governing equations of geophysical
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fluid dynamics involving discontinuous stratification in spherical coordinates (see [6,7]).
The general problem of the ocean on a rotating sphere was studied. The exact solution
of incompressible (constant density) inviscid fluid with velocity distribution below and
along the surface was established. This can be regarded as a model of the Antarctic Cir-
cumpolar Current (see [8]). The spherical coordinate governing the equations of inviscid
incompressible fluid fixed at a point on the rotating Earth and the free surface and rigid
bottom boundary conditions were introduced. The exact solution of the system was given,
which described a steady flow that moves only in the azimuth direction (see [9]). Using the
fixed point method, Chu established the existence of strictly monotone bounded solutions
for a given continuous vorticity. These results were related to the behavior of ocean flows
in arctic gyres (see [10]). Wang et al. proposed a non-local formula for simulating the
Antarctic Circumpolar Current without considering the vertical motion, which coded the
horizontal flow components by introducing flow functions. Using the topological degree,
zero exponent theory and fixed point technique, the existence of positive solutions for
nonlinear vorticity, nonlocal boundary value problems was proven (see [11]). Haziot used
the Mercator projection to map the circulation model from the sphere to the plane and
obtained the boundary value problem of semilinear elliptic partial differential equations.
For the constant and linear ocean vorticity, he studied the existence, regularity and unique-
ness of solutions to this elliptic problem. The physical correlation of these results was also
investigated (see [12]). Using spherical coordinates, Martin and Quirchmayr derived a new
exact solution to the governing equations of geophysical fluid dynamics for an inviscid and
incompressible fluid with a general density distribution and a forced term. Their explicit
solution represents a steady purely azimuthal stratified flow with a free surface (see [13,14]).
In addition, Constantin and Johnson showed that a consistent shallow-water approximation
of the incompressible Navier–Stokes equation written in a spherical, rotating coordinate
system produces, at the leading order in a suitable limiting process, a general linear theory
for wind-induced ocean currents which reaches beyond the limitations of the classical
Ekman spiral (see [15,16]).

In this paper, we consider the spherical coordinates from the Euler equation and
mass conservation equation, combined with the appropriate boundary conditions, and
choose the ratio of the average width of the stratosphere and planetary radius and the ratio
between the vertical velocity and horizontal velocity as parameters. We utilize the two
small parameters to establish the approximate system. Furthermore, we consider adding
time dependence into the system and establish the governing equations to describe the
atmospheric flow. A nonlinear vorticity equation describing stratospheric planetary flow is
obtained by introducing a flow function to code the system. Based on the idea of spherical
harmonic function and the concept of a weak solution, the existence and non-uniqueness
of a weak solution to the vorticity equation are obtained under suitable boundaries.

2. Stratospheric Planetary Flows Equation

In this section, we introduce the rotating sphere coordinate system (β, α, r̄), with
β ∈ [0, 2π] and α ∈ [−π

2 , π
2 ] representing the longitude and latitude angles, respectively,

and r̄ representing the distance from the primordial center to the center of the planet.
(eβ, eα, er̄) represent the unit vectors of (β, α, r̄) in the three directions, respectively, and
the corresponding velocity components are (ū, v̄, w̄), where eβ points from west to east, eα

points from south to north, and er̄ points out from the origin.
In the stratosphere, atmospheric currents can be considered inviscid (see [17]). Under

the influence of the Coriolis force, the Euler equation can be determined by the following
components (see [18]):
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∂ū
∂t̄

+
ū

r̄ cos α

∂ū
∂β

+
v̄
r̄

∂ū
∂α

+ w̄
∂ū
∂r̄

+
ūw̄− ūv̄ tan α

r̄
− 2Ω̄(v̄ sin α− w̄ cos α) = − 1

ρ̄r̄ cos α

∂ p̄
∂β

,

∂v̄
∂t̄

+
ū

r̄ cos α

∂v̄
∂β

+
v̄
r̄

∂v̄
∂α

+ w̄
∂v̄
∂r̄

+
v̄w̄ + ū2 tan α

r̄
+ 2Ω̄ū sin α + Ω̄2r̄ sin α cos α = − 1

ρ̄r̄
∂ p̄
∂α

, (1)

∂w̄
∂t̄

+
ū

r̄ cos α

∂w̄
∂β

+
v̄
r̄

∂w̄
∂α

+ w̄
∂w̄
∂r̄
− ū2 + v̄2

r̄
− 2Ω̄ū cos α− Ω̄2r̄ cos2 α = −1

ρ̄

∂ p̄
∂r̄
− ḡ,

where p̄ and ρ̄ represent the atmospheric pressure and density, respectively, Ω̄ is the
constant rotation rate of the planet, and ḡ stands for the acceleration of gravity.

The mass conservation equation in spherical coordinates can be expressed as

∂ρ̄

∂t̄
+

ū
r̄ cos α

∂ρ̄

∂β
+

v̄
r̄

∂ρ̄

∂α
+ w̄

∂ρ̄

∂r̄
+ ρ̄

[
1

r̄ cos α

(
∂ū
∂β

+
∂

∂α
(v̄ cos α)

)
+

1
r̄2

∂

∂r̄
(r̄2w̄)

]
= 0. (2)

The inverse of the Rossby number is expressed as shown below:

µ =
Ω̄R̄
Ū

,

where R̄ is the radius of the planet and Ū is the horizontal velocity scale.
The shallowness parameter κ and the ratio $ between the vertical scale W̄ and hori-

zontal velocity scale Ū can be given as follows:

κ =
H̄
R̄

and $ =
W̄
Ū

,

Here, H̄ is the mean width of the stratosphere. Based on the persistent large-scale
circulation model of the stratosphere, we can give corresponding reference values for
different dimensional scales (see [19–21]). The reference values are shown in Table 1.

We now transform the original variables to receive the dimensionless version of all the
variables as follows:

(ū, v̄, w̄) = (Ūu, Ūv, W̄w), t̄ =
R̄
Ū

t, r̄ = R̄ + H̄z, ρ̄ = ρ̃ρ, p̄ = ρ̃Ū2 p.

Therefore, the dimensionless Euler Equation (1) is transformed into

∂u
∂t

+
u

(1 + κz) cos α

∂u
∂β

+
v

1 + κz
∂u
∂α

+
$

κ
w

∂u
∂z

+
$uw− uv tan α

1 + κz

− 2µ(v sin α− $w cos α) = − 1
ρ(1 + κz) cos α

∂p
∂β

,

∂v
∂t

+
u

(1 + κz) cos α

∂v
∂β

+
v

1 + κz
∂v
∂α

+
$

κ
w

∂v
∂z

+
$vw + u2 tan α

1 + κz
(3)

+ 2µu sin α + µ2(1 + κz) sin α cos α = − 1
ρ(1 + κz)

∂p
∂α

,

κ$

(
∂w
∂t

+
u

(1 + κz) cos α

∂w
∂β

+
v

1 + κz
∂w
∂α

+
$

κ
w

∂v
∂z

)
− κ

u2 + v2

1 + κz

− 2µκu cos α− κµ2(1 + κz)2 cos2 α = −1
ρ

∂p
∂z
− g,
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where g = ḡH̄
Ū2 , and the dimensionless mass conservation Equation (2) can be rewritten as

∂ρ

∂t
+

u
(1 + κz) cos α

∂ρ

∂β
+

v
1 + κz

∂ρ

∂α
+

$

κ
w

∂ρ

∂z
+ ρ

(
1

(1 + κz) cos α

∂u
∂β

+
1

(1 + κz) cos α

∂

∂α
(v cos α) +

$

κ

1
(1 + κz)2

∂

∂z
(
(1 + κz)2w

))
= 0.

Table 1. Reference values of parameters corresponding to some planets.

Planet H̄ R̄ ḡ Ω̄ W̄ Ū µ κ $

Earth 40 km 6371 km 9.8 m/s2 7.27× 10−5 rad/s 10−3 m/s 50 m/s 9 6× 10−3 2× 10−5

Saturn 200 km 58,232 km 10.4 m/s2 1.62× 10−4 rad/s 10−2 m/s 150 m/s 63 3× 10−3 6× 10−5

Uranus 150 km 25,362 km 8.8 m/s2 1.04× 10−4 rad/s 10−5 m/s 150 m/s 18 6× 10−3 6× 10−8

Jupiter 270 km 69,911 km 24.8 m/s2 1.76× 10−4 rad/s 10−2 m/s 150 m/s 82 4× 10−3 6× 10−5

Neptune 200 km 24,622 km 11.1 m/s2 1.08× 10−4 rad/s 10−3 m/s 200 m/s 13 8× 10−3 5× 10−6

According to the main characteristics of the physical correlation state of the thin
shell stratosphere (see [19]), let the shallowness parameter κ → 0. Then, the governing
Equation (3) is reduziertreduced as

∂u
∂t

+
u

cos α

∂u
∂β

+ v
∂u
∂α
− uv tan α− 2µv sin α = − 1

ρ cos α

∂p
∂β

,

∂v
∂t

+
u

cos α

∂v
∂β

+ v
∂v
∂α

+ u2 tan α + 2µu sin α + µ2 sin α cos α = −1
ρ

∂p
∂α

,

0 = −1
ρ

∂p
∂z
− g,

(4)

and

∂u
∂β

+
∂

∂α
(v cos α) = 0. (5)

In Equation (5), the stream function is introduced as follows:

u = −∂Ψ
∂α

and v =
1

cos α

∂Ψ
∂β

. (6)

Substituting Equation (6) into Equation (4) eliminates the pressure term p, and by a
straightforward calculation, the governing equation of the flow pattern of the atmosphere
in the rotating spherical coordinate system can be briefly expressed as

∂∆Ψ
∂t

+
1

cos α

(
∂Ψ
∂β

∂∆Ψ
∂α
− ∂Ψ

∂α

∂∆Ψ
∂β

)
+ 2µ

∂Ψ
∂β

= 0, (7)

where ∆ is called the Laplace–Beltrami operator on the surface of the unit sphere such that

∆ =
1

cos α

∂

∂α

(
cos α

∂

∂α

)
+

1
cos2 α

∂2

∂β2 =
∂2

∂α2 − tan α
∂

∂α
+

1
cos2 α

∂2

∂β2 .

Equation (7) is called the stratospheric planetary flows equation or simply the vorticity
equation in [19]. In [19], the rigidity result of Equation (7) is established, and the Arnold’s
stability criterion is given under the condition that ∆Ψ meets the appropriate conditions.
The stability of the critical stationary solution is studied in the limit case where the stream
function belongs to the sum of the first two eigenspaces of the Laplace–Beltrami operator.
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The local and global bifurcation results for the nonzonal stationary solutions of classical
Rossby–Haurwitz waves are also obtained. However, it is not difficult to notice that there
are no relevant results in the discussion on the existence of weak solutions for general
vorticity equations. In this paper, we try to solve this problem.

It is worth mentioning that if the factor of time in Equation (7) is not taken into account,
the governing Equation (7) can be regarded as a mathematical model of ocean circulation
in which the vertical velocity is relatively weak compared with the horizontal velocity. This
was originally developed by Constantin in [5]. After that, many scholars applied functional
analysis technology and differential equation theory and found a lot of meaningful results
(see [22–33]).

3. Main Results

Consider Equation (7) with the associated initial condition

Ψ(α, β, 0) = Ψ0(α, β), (8)

and boundary conditions

Ψ(−π/2, β, t) and Ψ(π/2, β, t) is bounded ,

Ψ(α, 0, t) = Ψ(α, 2π, t).
(9)

We give the following assumptions:

Assumption 1. Let Ψ0(α, β), ∂Ψ0
∂α , 1

cos α
∂Ψ0
∂β , ∆Ψ0 ∈ L2((−π

2 , π
2 )× (0, 2π)

)
, further, let us

assume that

Ψ0n → Ψ0 strongly in L2
(
(−π

2
,

π

2
)× (0, 2π)

)
as n→ ∞,

∂Ψ0n

∂α
→ ∂Ψ0

∂α
strongly in L2

(
(−π

2
,

π

2
)× (0, 2π)

)
as n→ ∞,

1
cos α

∂Ψ0n

∂β
→ 1

cos α

∂Ψ0

∂β
strongly in L2

(
(−π

2
,

π

2
)× (0, 2π)

)
as n→ ∞,

∆Ψ0n → ∆Ψ0 strongly in L2
(
(−π

2
,

π

2
)× (0, 2π)

)
as n→ ∞,

where Ψ0n, ∂Ψ0n
∂α , 1

cos α
∂Ψ0n

∂β and ∆Ψ0n are respectively approximate functions of Ψ0, ∂Ψ0
∂α , 1

cos α
∂Ψ0
∂β

and ∆Ψ0 in L2((−π
2 , π

2 )× (0, 2π)
)
.

We define the norm as follows:

‖ψ‖2 =
∫ 2π

0

∫ π
2

− π
2

ψ2 cos αdαdβ for ψ ∈ L2
(
(0, 2π)× (−π

2
,

π

2
)
)

.

Now, we turn our consideration to the following boundary value problem:
∆Ψ + λΨ = 0,
Ψ(α, 0, t) = Ψ(α, 2π, t),
Ψ(−π/2, β, t) and Ψ(π/2, β, t) is bounded.

(10)

By applying the separation of variables technique, we set

Ψ = Θ(α) ·Φ(β), (11)

By substituting Equation (11) into Equation (10), we have

cos2 α
Θ′′

Θ
− sin α cos α

Θ′

Θ
+ λ cos2 α = −Φ′′

Φ
= m2, (12)
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where m is a non-negative integer. Equation (12) can be divided into the following two
differential equations:

Φ′′ + m2Φ = 0, (13)

and

Θ′′ − sin α

cos α
Θ′ +

(
λ− m2

cos2 α
Θ
)
= 0. (14)

Equation (13) is a second-order homogeneous linear differential equation with constant
coefficients, and the general solution of Equation (13) can be expressed as

Φ = Cm cos mβ + C̃m sin mβ.

Let x = sin α, α ∈ (−π
2 , π

2 ), and Θ(α) = y(x). Then, Equation (14) can be equivalently
converted to

(1− x2)y′′(x)− 2xy′(x) +
(

λ− m2

1− x2

)
y(x) = 0, (15)

Equation (15) is Legendre’s differential equation if m = 0, and its solution can be
expressed as

Pl(sin α) =
1
π

∫ π
2

− π
2

(sin α + i cos α cos α̂)ldα̂

=
1
2l

L

∑
ι=0

(−1)ι (2l − 2ι)!
ι!(l − ι)!(l − 2ι)!

(sin α)l−2ι,

where l is a non-negative integer, λ = l(l + 1) is the proper value, and

L =

{ l
2 , l is even,
l−1

2 , l is odd.

Let Pm
l (sin α) be the adjoint function of the Legendre polynomial Pl(sin α). Then,

we have

Pm
l (sin α) =

(l + 1)(l + 2) · · · (l + m)

π

∫ π
2

− π
2

(sin α + i cos α cos α̂)l sin mα̂dα̂.

By simple calculation, we can find

Pl(sin α)|α=− π
2
= (−1)l , Pl(sin α)|α= π

2
= 1,

Pm
l (sin α)|α=− π

2
= 0, Pm

l (sin α)|α= π
2
= 0.

Let the approximate solution of Equation (7) with the initial condition in Equation (8)
and boundary conditions in Equation (9) be

Ψn(α, β, t) =
n

∑
l=0

l

∑
m=0

(
Cn

lm(t) cos mβ + C̃n
lm(t) sin mβ

)
Pm

l (sin α), (16)
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By taking the partial derivative, we have

∂Ψn

∂β
=

n

∑
l=1

l

∑
m=1

[
m
(
−Cn

lm(t) sin mβ + C̃n
lm(t) cos mβ

)]
Pm

l (sin α),

∆Ψn = −
n

∑
l=1

(l(l + 1))
l

∑
m=0

(
Cn

lm(t) cos mβ + C̃n
lm(t) sin mβ

)
Pm

l (sin α),

∂∆Ψn

∂β
= −

n

∑
l=1

(l(l + 1))
l

∑
m=0

[
m
(
−Cn

lm(t) sin mβ + C̃n
lm(t) cos mβ

)]
Pm

l (sin α).

Suppose that the approximate solution Ψn(α, β, t) satisfies the following two equations:

1
Πlm

∫ 2π

0

∫ π
2

− π
2

[
∂∆Ψn

∂t
+

1
cos α

(
∂Ψn

∂β

∂∆Ψn

∂α
− ∂Ψn

∂α

∂∆Ψn

∂β

)
+

2µ
∂Ψn

∂β

]
cos mβPm

l (sin α) cos αdαdβ = 0, (17)

and

1
Πlm

∫ 2π

0

∫ π
2

− π
2

[
∂∆Ψn

∂t
+

1
cos α

(
∂Ψn

∂β

∂∆Ψn

∂α
− ∂Ψn

∂α

∂∆Ψn

∂β

)
+

2µ
∂Ψn

∂β

]
sin mβPm

l (sin α) cos αdαdβ = 0, (18)

where

Πlm =
∫ 2π

0

∫ π
2

− π
2

(Pm
l (sin α))2 cos α sin2 mβdαdβ

=
2πδm(l + m)!

(2l + 1)(l −m)!

and

δm =

{
2, m = 0,
1, m 6= 0.

By substituting Equation (16) into Equations (17) and (18), the following ordinary
differential equations can be obtained: [−l(l + 1)] dCn

lm
dt + Flm(C

n
ki, C̃n

qj) = 0,

[−l(l + 1)]
dC̃n

lm
dt + F̃lm(C

n
ki, C̃n

qj) = 0.
(19)

Remark 1. Flm and F̃lm are analytic functions of Cn
ki and C̃n

qj (i = 0, 1, · · ·, k; k = 0, 1, · · ·, n; j =

0, 1, · · ·, q; q = 0, 1, · · ·, n). When Cn
ki and C̃n

qj are uniformly bounded for any t ∈ [0, T], Flm and

F̃lm are also bounded, and the Lipschitz conditions are satisfied. According to ordinary differential
equation theory, solutions Cn

lm(t) and C̃n
lm(t) of Equation (19) with respect to t ∈ [0, T] are unique,

which also shows that dCn
lm

dt and dC̃n
lm

dt are uniformly bounded. Therefore, Cn
lm(t) and C̃n

lm(t) are
equicontinuous and uniformly bounded with respect to t ∈ [0, T]. By applying the Arzela–Ascoli
theorem, Cn

lm(·) and C̃n
lm(·) are compact with respect to n.
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Lemma 1. There is a value M0 > 0 such that∥∥∥∥∂Ψn

∂β

∥∥∥∥2
≤ M0‖∆Ψn‖2.

Proof. On the one hand, we have∥∥∥∥∂Ψn

∂β

∥∥∥∥2
=
∫ 2π

0

∫ π
2

− π
2

(
∂Ψn

∂β

)2
cos αdαdβ

=

∣∣∣∣∫ π
2

− π
2

∫ 2π

0

[
∂

∂β

(
Ψn

∂Ψn

∂β

)]
cos αdβdα−

∫ 2π

0

∫ π
2

− π
2

(
Ψn

∂2Ψn

∂β2

)
cos αdαdβ

∣∣∣∣
≤ 1

2

( ∫ 2π

0

∫ π
2

− π
2

(
1

cos α

∂2Ψn

∂β2

)2

cos αdαdβ +
∫ 2π

0

∫ π
2

− π
2

(cos αΨn)
2 cos αdαdβ

)
≤ 1

2

(∥∥∥∥ 1
cos α

∂2Ψn

∂β2

∥∥∥∥2

+
∥∥Ψn

∥∥2
)

.

On the other hand, we have

∥∥∆Ψn
∥∥2

=
∫ 2π

0

∫ π
2

− π
2

(
∆Ψn

)2 cos αdαdβ

=
n

∑
l=0

l

∑
m=0

(l(l + 1))2
((

Cn
lm
)2

+
(
C̃n

lm
)2
)

Πlm

≥ λ2
0

n

∑
l=0

l

∑
m=0

((
Cn

lm
)2

+
(
C̃n

lm
)2
)

Πlm

= λ2
0

∫ 2π

0

∫ π
2

− π
2

Ψ2
n cos αdαdβ

= λ2
0
∥∥Ψn

∥∥2,

where λ0 is the smallest positive proper value. Furthermore, we have∥∥∆Ψn cos α
∥∥2

=
∫ 2π

0

∫ π
2
− π

2

(
cos α∆Ψn

)2 cos αdαdβ

=
∫ 2π

0

∫ π
2
− π

2

[(
∂

∂α

(
cos α ∂Ψn

∂α

))2

+ 1
cos2 α

(
∂2Ψn
∂β2

)2

+ 2
cos α

∂
∂α

(
cos α ∂Ψn

∂α

)
∂2Ψn
∂β2

]
cos αdαdβ

=
∫ 2π

0

∫ π
2
− π

2

[(
∂

∂α

(
cos α ∂Ψn

∂α

))2]
cos αdαdβ

+
∫ 2π

0

∫ π
2
− π

2

[(
1

cos α
∂2Ψn
∂β2

)2]
cos αdαdβ

+2
∫ 2π

0

∫ π
2
− π

2

[(
∂2Ψn
∂α∂β

)2]
cos αdαdβ

=

∥∥∥∥ ∂
∂α

(
cos α ∂Ψn

∂α

)∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂2Ψn
∂β2

∥∥∥∥2

+ 2
∥∥∥∥ ∂2Ψn

∂α∂β

∥∥∥∥2

≤
∥∥∆Ψn

∥∥2.

(20)

Hence, we find∥∥∥∥∂Ψn

∂β

∥∥∥∥2
≤ 1

2

(
‖∆Ψn‖2 + ‖Ψn‖2

)
≤ 1

2

(
‖∆Ψn‖2 +

1
λ2

0
‖∆Ψn‖2

)
≤ M0‖∆Ψn‖2.

This completes the proof.
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By multiplying both ends of Equations (17) and (18) by −l(l + 1)Cn
lm(t) and −l(l +

1)C̃n
lm(t), respectively, and adding them in turn, we have

∫ 2π

0

∫ π
2

− π
2

[
∂∆Ψn

∂t
+

1
cos α

(
∂Ψn

∂β

∂∆Ψn

∂α
− ∂Ψn

∂α

∂∆Ψn

∂β

)
+ 2µ

∂Ψn

∂β

]
∆Ψn cos αdαdβ = 0.

By using the Cauchy–Schwartz inequality and the properties of the derivatives, we
obtain

1
2

∂

∂t
∥∥∆Ψn

∥∥2
+

1
2

∫ 2π

0

∫ π
2

− π
2

(
∂Ψn

∂β
· ∂(∆Ψ2

n)

∂α
− ∂Ψn

∂α
· ∂(∆Ψ2

n)

∂β

)
dαdβ

≤ µ
∫ 2π

0

∫ π
2

− π
2

[(
∂Ψn

∂β

)2

+ ∆Ψ2
n

]
cos αdαdβ (21)

= µ

(∥∥∥∥∂Ψn

∂β

∥∥∥∥2

+ ‖∆Ψn‖2
)

.

As with Lemma 1 and Equation (21), it is not hard to verify the following:

∂

∂t
∥∥∆Ψn

∥∥2 ≤ M1
∥∥∆Ψn

∥∥2. (22)

By integrating from 0 to t on both sides of Equation (22) and applying the Gronwall
inequality, we obtain

∥∥∆Ψn
∥∥2 ≤

∥∥∆Ψ0n
∥∥2eM1t ≤

(∥∥∆Ψ0n − ∆Ψ0
∥∥2

+
∥∥∆Ψ0

∥∥2
)

eM1t ≤ Ĉ1. (23)

By multiplying both sides of Equations (17) and (18) by Cn
lm(t) and C̃n

lm(t), respectively,
and adding them in turn, we have

∫ 2π

0

∫ π
2

− π
2

[
∂∆Ψn

∂t
+

1
cos α

(
∂Ψn

∂β

∂∆Ψn

∂α
− ∂Ψn

∂α

∂∆Ψn

∂β

)
+ 2µ

∂Ψn

∂β

]
Ψn cos αdαdβ = 0.

Hence, we have∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[
∂

∂t

(
∂

∂α

(
cos α

∂Ψn

∂α

)
+

1
cos α

∂2Ψn

∂β2

)]
Ψn cos αdαdβ

+
1
2

∫ 2π

0

∫ π
2

− π
2

(
∂Ψ2

n
∂β
· ∂∆Ψn

∂α
− ∂Ψ2

n
∂α
· ∂∆Ψn

∂β

)
dαdβ

∣∣∣∣ (24)

≤ µ
∫ 2π

0

∫ π
2

− π
2

[(
∂Ψn

∂β

)2

+ Ψ2
n

]
cos αdαdβ,

By applying the integration by parts formula, we have

∂

∂t

(∥∥∥∥∂Ψn

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψn

∂β

∥∥∥∥2)
≤ 2µ

(∥∥Ψn
∥∥2

+

∥∥∥∥∂Ψn

∂β

∥∥∥∥2)
≤ 2µ

(
1

λ2
0
‖∆Ψn‖2 +

∥∥∥∥∂Ψn

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψn

∂β

∥∥∥∥2)
(25)

≤ M2 + 2µ

(∥∥∥∥∂Ψn

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψn

∂β

∥∥∥∥2)
.
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When integrating from 0 to t at both sides of Equation (25) and applying the Gronwall
inequality again, there exists a Ĉ2 > 0 such that∥∥∥∥∂Ψn

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψn

∂β

∥∥∥∥2

≤
[

M2T +

∥∥∥∥∂Ψ0

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψ0

∂β

∥∥∥∥2

+

∥∥∥∥∂Ψ0n

∂α
− ∂Ψ0

∂α

∥∥∥∥2

+

∥∥∥∥ 1
cos α

∂Ψ0n

∂β
− 1

cos α

∂Ψ0

∂β

∥∥∥∥2]
e2µt ≤ Ĉ2.

Theorem 1. Assume that (H) holds. Then, Equation (7) with the initial condition in Equation (8)
and the boundary condition in Equation (9) has at least a weak solution.

Proof. It is easy to verify that {∆Ψn},
{

∂Ψn
∂α

}
, and

{
1

cos α
∂Ψn
∂β

}
are uniformly weakly com-

pact with respect to t ∈ [0, T] in L2((0, 2π)× (−π
2 , π

2 )
)
.

We are now going to show that
{

cos α ∂Ψn
∂α

}
is strongly compact with respect to t ∈

[0, T] in L2((0, 2π)× (−π
2 , π

2 )
)
. In fact, it is easy to know from the above statement that{

cos α ∂Ψn
∂α

}
is uniformly bounded with respect to t ∈ [0, T].

Let us show that
{

cos α ∂Ψn
∂α

}
is equicontinuous in L2((0, 2π)× (−π

2 , π
2 )
)
. In fact, by

using the mean value theorem and combining Equations (20) and (23), we obtain∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

(
cos(α + ∆α)

∂Ψn

∂α
(α + ∆α, β + ∆β, t)− cos α

∂Ψn

∂α
(α, β, t)

)2

cos αdαdβ

∣∣∣∣
=

∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[(
∂

∂α

(
cos(α + ξ1∆α)

∂Ψn

∂α
(α + ξ1∆α, β + ∆β, t)

))
· ∆α

+

(
cos α

∂2Ψn

∂α∂β
(α, β + ξ2∆β, t)

)
· ∆β

]2

cos αdαdβ

∣∣∣∣
≤ 2

(∥∥∥∥ ∂

∂α

(
cos α

∂Ψn

∂α

)∥∥∥∥2

· (∆α)2 +

∥∥∥∥ cos α
∂2Ψn

∂α∂β

∥∥∥∥2

· (∆β)2
)

≤ 2‖∆Ψn‖2
(
(∆α)2 + (∆β)2

)
≤ 2Ĉ1

(
(∆α)2 + (∆β)2

)
,

where 0 < ξ1 < ξ2 < 1, which shows that
{

cos α ∂Ψn
∂α

}
is strongly compact in L2(

(0, 2π)× (−π
2 , π

2 )
)
. Analogously,

{
∂Ψn
∂β

}
is strongly compact in L2((0, 2π)× (−π

2 , π
2 )
)
.

Assume that

Ψn ⇀ Ψ weakly in L2
(
(0, 2π)× (−π

2
,

π

2
)
)

as n→ ∞, (26)

Then, we have

∂Ψn

∂α
⇀

∂Ψ
∂α

weakly in L2
(
(0, 2π)× (−π

2
,

π

2
)
)

as n→ ∞,

1
cos α

∂Ψn

∂β
⇀

1
cos α

∂Ψ
∂β

weakly in L2
(
(0, 2π)× (−π

2
,

π

2
)
)

as n→ ∞,

∆Ψn ⇀ ∆Ψ weakly in L2
(
(0, 2π)× (−π

2
,

π

2
)
)

as n→ ∞.
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When setting ∂Ψn
∂α ⇀ ζ1(α, β, t), 1

cos α
∂Ψn
∂β ⇀ ζ2(α, β, t), and ∆Ψn ⇀ ζ3(α, β, t), for

∀ ξ(α, β, t) ∈ C1((− π
2 , π

2
)
× (0, 2π)× [0, T]

)
, by the definition of the generalized deriva-

tive and Equation (26), we have

∫ 2π

0

∫ π
2

− π
2

ζ1 · ξ · cos αdαdβ

= lim
n→∞

∫ 2π

0

∫ π
2

− π
2

∂Ψn

∂α
· ξ · cos αdαdβ

= − lim
n→∞

∫ 2π

0

∫ π
2

− π
2

Ψn
∂

∂α

(
ξ cos α

)
dαdβ

= −
∫ 2π

0

∫ π
2

− π
2

Ψ
∂

∂α

(
ξ cos α

)
dαdβ

=
∫ 2π

0

∫ π
2

− π
2

∂Ψ
∂α
· ξ · cos αdαdβ

which implies that ∂Ψ
∂α = ζ1(α, β, t). Similarly, we can verify that 1

cos α
∂Ψ
∂β = ζ2(α, β, t).

On the other hand, we have∫ 2π

0

∫ π
2

− π
2

ζ3 · ξ · cos αdαdβ = lim
n→∞

∫ 2π

0

∫ π
2

− π
2

∆Ψn · ξ · cos αdαdβ

= lim
n→∞

∫ 2π

0

∫ π
2

− π
2

[
1

cos α

∂

∂α

(
cos α

∂Ψn

∂α

)
+

1
cos2 α

∂2Ψn

∂β2

]
ξ cos αdαdβ

= − lim
n→∞

∫ 2π

0

∫ π
2

− π
2

[
cos α

∂Ψn

∂α

∂ξ

∂α
+

1
sin α

∂Ψn

∂β

∂ξ

∂β

]
dαdβ

= −
∫ 2π

0

∫ π
2

− π
2

[
cos α

∂Ψ
∂α

∂ξ

∂α
+

1
sin α

∂Ψ
∂β

∂ξ

∂β

]
dαdβ

=
∫ 2π

0

∫ π
2

− π
2

∆Ψ · ξ · cos αdαdβ,

which shows that ∆Ψ = ζ3.
We prove that the following conclusion is true:

lim
n→∞

∫ 2π

0

∫ π
2

− π
2

[
1

cos α

(
∂Ψn

∂β

∂ξ̃

∂α
∆Ψn −

∂Ψn

∂α

∂ξ̃

∂β
∆Ψn

)]
cos αdαdβ

=
∫ 2π

0

∫ π
2

− π
2

[
1

cos α

(
∂Ψ
∂β

∂ξ̃

∂α
∆Ψ− ∂Ψ

∂α

∂ξ̃

∂β
∆Ψ
)]

cos αdαdβ

where ξ̃(α, β, t) = cos2 α ξ(α, β, t), ξ(α, β, t) ∈ C1((− π
2 , π

2
)
× (0, 2π)× [0, T]

)
.

In fact, by simple calculation, we have∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[
1

cos α

(
∂Ψn

∂β
∆Ψn

(
− 2 cos α sin αξ + cos2 α

∂ξ

∂α

)
− ∂Ψ

∂β
∆Ψ
(
− 2 cos α sin αξ + cos2 α

∂ξ

∂α

)
− ∂Ψn

∂α
∆Ψn

∂ξ

∂β
cos2 α

+
∂Ψ
∂α

∆Ψ
∂ξ

∂β
cos2 α

)]
cos αdαdβ

∣∣∣∣
≤
∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[(
cos α

∂Ψn

∂α
− cos α

∂Ψ
∂α

)
∆Ψn

∂ξ

∂β
cos α

]
dαdβ

∣∣∣∣



Axioms 2022, 11, 347 12 of 14

+

∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[(
cos α

∂Ψ
∂α

(
∆Ψn − ∆Ψ

) ∂ξ

∂β

)
cos α

]
dαdβ

∣∣∣∣
+

∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[((
∂Ψn

∂β
− ∂Ψ

∂β

)
·
(

∂ξ

∂α
cos α− 2ξ sin α

))
∆Ψn cos α

]
dαdβ

∣∣∣∣
+

∣∣∣∣ ∫ 2π

0

∫ π
2

− π
2

[((
∂ξ

∂α
cos α− 2ξ sin α

)
·
(
∆Ψn − ∆Ψ

))∂Ψ
∂β

cos α

]
dαdβ

∣∣∣∣
< ε.

Suppose ξ̃(α, β, t) has the following approximate solution:

ξ̃n(α, β, t) = cos2 α ξn(α, β, t) =
n

∑
l=0

l

∑
m=0

(clm(t) cos mβ + c̃lm(t) sin mβ)Pm
l (sin α),

where

clm(t) =
1

Πlm

∫ 2π

0

∫ π
2

− π
2

(
cos2 α ξ(α, β, t) cos mβPm

l (sin α) cos α
)
dαdβ,

c̃lm(t) =
1

Πlm

∫ 2π

0

∫ π
2

− π
2

(
cos2 α ξ(α, β, t) sin mβPm

l (sin α) cos α
)
dαdβ.

By multiplying Equations (17) and (18) by clm(t) and c̃lm(t), respectively, and then
adding them together and integrating from 0 to t, we have

∫ t

0

∫ 2π

0

∫ π
2

− π
2

[(
∂∆Ψn

∂t
+

1
cos α

(
∂Ψn

∂β

∂∆Ψn

∂α
− ∂Ψn

∂α

∂∆Ψn

∂β

)
+ 2µ

∂Ψn

∂β

)
ξ̃n cos α

]
dαdβdt = 0,

Then, by using the integration by parts formula, we obtain

∫ t
0

∫ 2π
0

∫ π
2
− π

2

[((
− ∆Ψn

) ∂ξ̃n
∂t −

1
cos α

(
∂Ψn
∂β

∂ξ̃n
∂α −

∂Ψn
∂α

∂ξ̃n
∂β

)
∆Ψn

+2µξ̃n
∂Ψn
∂β

)
cos α

]
dαdβdt +

∫ 2π
0

∫ π
2
− π

2
∆Ψ0n(α, β) cos αdαdβ = 0.

(27)

Now let n→ ∞ in Equation (27). Then, the conclusion of Theorem 1 is proven.

Next, we give the following non-uniqueness of weak solutions:

Theorem 2. Suppose Ψ(α, β, t) is a weak solution to Equation (7) with the initial condition in
Equation (8) and the boundary condition in Equation (9). For any function where Ψ̃(t) ∈ C1[0, T]
and Ψ̃(0) = 0 , then Ψ(α, β, t) = Ψ(α, β, t) + Ψ̃(t) is also a weak solution to Equation (7) with
the initial condition of Equation (8) and boundary condition of Equation (9).

Proof. Noting that Ψ is a weak solution to Equation (7), Equation (27) holds. Based on the
assumption of the Theorem 2, we obtain

∫ t

0

∫ 2π

0

∫ π
2

− π
2

[((
− ∆Ψ

)∂ξ̃

∂t
− 1

cos α

(
∂Ψ
∂β

∂ξ̃

∂α
− ∂Ψ

∂α

∂ξ̃

∂β

)
∆Ψ

+ 2µξ̃
∂Ψ
∂β

)
cos α

]
dαdβdt +

∫ 2π

0

∫ π
2

− π
2

∆Ψ0(α, β) cos αdαdβ = 0,

which implies that Theorem 2 is correct.
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4. Conclusions

According to the concept of spherical harmonic function and weak solutions, the
governing equation describing atmospheric flow is transformed into a second-order ho-
mogeneous linear ordinary differential equation and a Legendre’s differential equation by
using the method of separating variables. In this paper, the existence and non-uniqueness
of weak solutions of vorticity equations are obtained by using the Gronwall inequality
and Cauchy–Schwartz inequality under the appropriate initial and boundary conditions.
Compared with the vorticity equation established in [5], our conclusion considers the time
dependence of the system. The authors of [19] studied the stability of the Rossby–Haurwitz
stationary solution but did not provide the existence proof for the solution. In this paper, we
give the existence results of weak solutions, which to a certain extent provides a theoretical
basis for the stability study of [19].
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32. Zhang, W.; Wang, J.; Fečkan, M. Existence and uniqueness results for a second order differential equation for the ocean flow in

arctic gyres. Monatsh. Math. 2020, 193, 177–192. [CrossRef]
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