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Abstract: This paper introduces the implicative derivations and gives some of their characterizations
on MTL-algebras. Furthermore, we provide some representation of MTL-algebras by implicative
derivations and obtain some representation of Boolean algebra via the algebra of all implicative
derivations. Finally, we explore the relationship between implicative derivation and other operators
on MTL-algebras and show that there exists a bijection between the sets of multiplier and implicative
derivations on IMTL-algebras. The results of this paper can provide the common properties of
implicative derivations in the t-norm-based fuzzy logical algebras.
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1. Introduction

In order to capture the logic of t-norm-based fuzzy logics and their residual [1],
Esteva et al. introduced the t-norm-based fuzzy logic MTL [2], and the resulting class of
algebras called MTL-algebras. They have interesting algebraic properties and cover all
the mathematical structures that appear in a t-norm-based fuzzy logic framework, such
as, MV-algebras, BL-algebras, Gödel algebras, IMTL-algebras and R0-algebras. Therefore,
MTL-algebras are important algebraic structures in which the community of fuzzy logicians
have become interested [1–5].

The notion of derivations is instrumental in studying properties and structure in fuzzy
logical algebraic structures. In 1957, Posner [6] studied kinds of derivations in a prime ring
and some of their basic algebraic properties. Afterward, Jun, Borzooei and Zhan et al. [7–9]
produced some characterizations of p-semisimple BCI-algebras via derivations with re-
spect to BCI-algebras with derivation. In 2008, Xin, Çeven et al. [10–12] characterized
modular lattices and distributive lattices by isotone derivations with respect to lattices
with derivations. Furthermore, Alshehri, Ghorbain, Yazarli, et al. [13–15] derived the
derivations on MV-algebras and gave some conditions under which an additive derivation
is isotone, in fact, for a linearly ordered MV-algebra. In 2013, Lee et al. [16,17] introduced
and studied derivations and f -derivations on lattice implication algebras and discussed
the relations between derivations and filters. In 2016, He et al. [18] investigated the kinds
of derivations in residuated lattices, and characterized Heyting algebras with respect to
the above derivations. In 2017, Hua [19] studied derivations in R0-algebras, which are
equivalent to NM-algebras, and discussed the relation between filters and the fixed point
set of these derivations. The paper is motivated by the following considerations:

(1) It is well-known that derivations have been studied on MV-algebras, BL-algebras
IMTL-algebras and residuated lattices and so on. Although they are essentially
different logical algebras they are all particular types of MTL-algebras. Thus, it is
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meaningful for us to establish the derivation theory of MTL-algebras for studying the
common properties of derivations in t-norm-based fuzzy logical algebras.

(2) The previous research regarding derivations on logical algebras is multiplicative
derivation, which is a map that satisfies

d(x� y) = (d(x)� y)d (x� d(y)).

There are few studies, however, regarding derivations defined by→ and any other
operations on residuated structures so far. Therefore, it is interesting to study these
derivations on logical algebras.

(3) It has always been known that Galois connections play a central role in studying
logical algebras, and the relation between derivations and Galois connections is an
important research topic to study. However, there are few research works regarding
the relation between derivations and Galois connections on logical algebras so far.
Thus, it is necessary for us to study the relation between derivations and Galois
connections on logical algebras. Given these considerations, we propose a new type
of derivation on MTL-algebras. Indeed,

(1) The notion of implicative derivations, which are defined by the operations ↪→ and d,
is introduced on MTL-algebras, and some characterizations of them are given. (see
Definition 3, Theorem 1).

(2) Every implicative derivation is principle on IMTL-algebras (see Theorem 2, Remark 2).
(3) Every Boolean algebra represents the sets of all implicative derivations on Boolean

algebras (see Theorem 6).
(4) There is an isotone Galois connection between the sets of multipliers and implicative

derivations on IMTL-algebras (see Theorem 7).
(5) There is a bijection between the sets of multiplier and implicative derivations on

IMTL-algebras (see Theorem 8).

In Section 2, we review some basic nations and definitions of MTL-algebras. In Section 3,
we introduce implicative derivations on MTL-algebras and provide some of their charac-
terizations. In Section 4, we give some representations of MTL-algebras by implicative
derivations. In Section 5, we discuss the relationships between implicative derivations with
other operators on MTL-algebras.

2. Preliminaries

First, some basic notions of MTL-algebras and their related algebraic results are presented.

Definition 1 ([5]). An algebra (M,�, ↪→,e,d, 0, 1) is said to be a residuated lattice if

(1) (M,e,d, 0, 1) is a bounded lattice,
(2) (M,�, 1) is a commutative monoid,
(3) u� v ≤ w iff u ≤ v ↪→ w, for any u, v, w ∈ L.

ByM we mean that the universe of a residuated lattice (M,�, ↪→,e,d, 0, 1). OnM,
we define

u ≤ viffu ↪→ v = 1.

Then ≤ is a binary partial order onM and for u ∈ M, 0 ≤ u ≤ 1.
A residuated latticeM is an MTL-algebra if it satisfies the prelinearlity equation:

(PRE) (u ↪→ v)d (v ↪→ u) = 1.

An MTL-algebraM is a Gödel algebra if it satisfies

(IDE) u� u = u.

We denote the set {u|u� u = u} ofM by I(M).
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An MTL-algebraM is an IMTL-algebra if it satisfies the double negation property:

(DNP) ¬¬u = u.

In every IMTL-algebra, we define further operations as follows:

u� v = ¬(¬u�¬v),

and also check
u� v = ¬(¬u�¬v), u ↪→ v = ¬u� v.

An IMTL-algebraM is called an R0-algebra if it satisfies:

(WNM)(u� v ↪→ 0)d (ue v ↪→ u� v) = 1.

Proposition 1 ([2]). The following hold in any MTL-algebraM, for all u, v, w ∈ M,
(1) if u ≤ v, then v ↪→ w ≤ u ↪→ w, w ↪→ u ≤ w ↪→ v and u�w ≤ v�w,
(2) u ↪→ (ue v) = u ↪→ v,
(3) (u ↪→ v)�w ≤ (u�w) ↪→ (v�w),
(4) u ≤ v ↪→ u,
(5) u ↪→ (vew) ≤ (u ↪→ v)e (u ↪→ w),
(6) u� (uew) = (u� v)e (u�w),
(7) u ↪→ v ≤ (udw) ↪→ (vdw),
(8) u ↪→ v = (ud v) ↪→ v,
(9) u� (vdw) = (u� v)d (u�w),
(10) u ↪→ (vew) = (u ↪→ v)e (u ↪→ w),
(11) ud v = ((u ↪→ v) ↪→ v)e (v ↪→ u) ↪→ u),
(12) u ↪→ (vdw) = (u ↪→ v)d (u ↪→ w),
(13) (M,e,d) is a distributive lattice,
(14) if u ∈ I(M) and v, w ∈ M, then
(i) u� v = ue v,
(ii) u ↪→ (v ↪→ w) = (u ↪→ v) ↪→ (u ↪→ w).

Definition 2 ([20]). Given sets E ,F and two order-preserving maps f : E −→ F and g : F −→
E , the pair ( f , g) establishes a Galois connection between E and F if f g ≥ idF and g f ≤ idE .

3. Implicative Derivations of MTL-Algebras

Then, we introduce derivations in MTL-algebras and give some of their characterizations.

Definition 3. Let M be an MTL-algebra. A mapping g : L −→ L is called an implicative
derivation on L if

g(u ↪→ v) = (g(u) ↪→ v)d (u ↪→ g(v)),

for any u, v ∈ M.

Denoting G(M) to be the set of implicative derivations ofM.
Some examples of implicative derivations on MTL-algebras are presented.

Example 1. LetM be an MTL-algebra. Define a mapping 1g :M→M by

1g(u) = 1

for all u ∈ M. Then 1g ∈ G(M). Moreover, defining g1 :M→M by

g1(u) = u

for all u ∈ M. Then g1 ∈ G(M).
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Example 2. LetM = {0, u, v, w, 1} be a chain. Defining operations � and ↪→ are

� 0 u v w 1
0 0 0 0 0 0
u 0 u 0 u u
v 0 0 v v v
w 0 u v w w
1 0 u v w 1

↪→ 0 u v w 1
0 1 1 1 1 1
u v 1 1 1 1
v u u 1 1 1
w 0 u v 1 1
1 0 u v w 1

Then (M,�, ↪→,e,d, 0, 1) is an MTL-algebra. Now, we define g :M→M as follows:

g(x) =


0, x = 0,
u, x = u,
v, x = v,
1, x = w, 1.

Then g ∈ G(M).

Example 3. LetMn be a standard n-valued R0-algebra for some n ≥ 2.

g(x) =

{
1

n−1 , u = 0
n−2
n−1 ↪→ x, u 6= 0

,

Then g ∈ G(M).

Example 4. LetM = [0, 1] and we define ⊗,⇒ onM are

u� v = min{u, v}, u ↪→ v =

{
1, u ≤ v,
v, otherwise

.

Then (M, min, max,�, ↪→, 0, 1) is an MTL-algebra. Now, we define g :M→M as follows:

g(u) =

{
u, u ≤ 0.5,
1, u ≥ 0.5

,

then g ∈ G(M).

Example 5. LetM be an MTL-algebra and a ∈ M. Then ga(u) = a ↪→ u for any u ∈ M is an
implication derivation onM.

Proposition 2. Let g ∈ G(M). Then, for any u, v ∈ M,
(1) g(1) = 1,
(2) u ≤ g(u),
(3) g(u)e g(v) ≤ g(u ↪→ v),
(4) g(u) ↪→ v ≤ u ↪→ g(v),
(5) g(u ↪→ v) = u ↪→ g(v),
(6) g(u ↪→ v) ≥ g(u) ↪→ g(v).

Proof. (1)–(3) are easily verified, we only show (4)–(6).
(4) It follows from (2) and Proposition 1(1).
(5) From (4), we have

g(u ↪→ v) = (g(u) ↪→ v) ∪ (u ↪→ g(v))

= u ↪→ g(v),

for any u, v ∈ M.
(6) It can be observed directly from (2) and Proposition 1(1).
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Theorem 1. Let g :M→M be a map on an MTL-algebraM. Then the following are equivalent:
(1) g ∈ D(M),
(2) g(u ↪→ v) = u ↪→ g(v) for any u, v ∈ M.

Proof. (1)⇒ (2) Obviously from Proposition 2(5).
(2)⇒ (1) From (2), we have

g(1) = g(0 ↪→ u) = 0 ↪→ g(u) = 1,

and hence
1 = g(u ↪→ u) = u ↪→ g(u),

which implies u ≤ g(u). Then by Proposition 1(1),

g(u ↪→ v) = u ↪→ g(v)

= (g(u) ↪→ v)d (u ↪→ g(v)),

for any u, v ∈ M.

Remark 1. The map gp :M→M, as defined by

gp(u) = p ↪→ u

for any u ∈ M, gp ∈ G(M), which is said to be the principle implicative derivation. Indeed,

gp(u ↪→ v) = p ↪→ (u ↪→ v)

= u ↪→ (p ↪→ v)

= u ↪→ gp(v),

for any u, v ∈ M.

By Remark 1, whether any implicative derivation g can be represented as the form
of gp.

Indeed, this assertion is not true for MTL-algebra.

Example 6. LetM = {0, u, v, 1} be a chain. Defining operations � and ↪→ are

⊗ 0 u v 1
0 0 0 0 0
u 0 u u u
v 0 u v v
1 0 u v 1

⇒ 0 u v 1
0 1 1 1 1
u 0 1 1 1
v 0 u 1 1
1 0 u v 1

Then (M, min, max,�, ↪→, 0, 1) is an MTL-algebra. Defining g :M→M as follows:

g(x) =


u, x = 0
v, x = v
1, x = u, 1

,

and g ∈ G(M). But

g0(0) = 1 6= u, gu(0) = gv(0) = g1(0) = 0 6= u.

So g is not representative of gp, for any p ∈ M.

However, some positive answers are given under certain conditions.
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Theorem 2. Let g be an implicative derivation on an IMTL-algebra M. Then the following
are equivalent:,

(1) g ∈ D(M),
(2) g(u) = ¬g(0) ↪→ u.

Proof. (1) For any u ∈ M, by Theorem 1, we have

g(u) = g(¬¬u)

= g(¬u ↪→ 0)

= ¬u ↪→ g(0)

= u� g(0)

= g(0)� u

= ¬g(0) ↪→ u,

for any u ∈ M.
(2) Taking p = ¬g(0) in Remark 1.

Remark 2. (1) Theorem 2 shows that g is determined by the element ¬g(0) on IMTL-algebras. If
we take p = ¬g(0), then every implicative derivation on IMTL-algebras is principle.

(2) Every implicative derivation on IMTL-algebra is isotone. If u ≤ v, then

g(u) = ¬g(0) ↪→ u ≤ ¬g(0) ↪→ v = g(v).

4. Characterizations of MTL-Algebras Based on Implicative Derivations

Here we study the algebraic structure of the set of implicative derivations and give
some representations of MTL-algebras via them.

Theorem 3. If M is an MTL-algebra, then (G(M),∩,∪, g1, 1g) is a bounded distributive
lattice, where

(gi ∩ gj)(u) = gi(x)e gj(x),
(gi ∪ gj)(u) = gi(x)d gj(x).

for all gi, gj ∈ G(M), and u ∈ M.

Proof. For any gi, gj ∈ G(M), and u ∈ M, by Proposition 1(10) and (12), we have

(gi ∩ gj)(u ↪→ v) = gi(u ↪→ v)e gj(u ↪→ v)

= (u ↪→ gi(v))e (u ↪→ gj(v))

= u ↪→ (gi(v)e gj(v))

= u ↪→ (gi ∩ gj)(v),

and

(gi ∪ gj)(u ↪→ v) = gi(u ↪→ v)d gj(u ↪→ v)

= (u ↪→ gi(v))d (u ↪→ gj(v))

= u ↪→ (gi(v)d gj(v))

= u ↪→ (gi ∪ gj)(v),

which implies gi ∩ gj, gi ∪ gj ∈ G(M).
Furthermore, for any gi ∈ G(M) and x ∈ M, we have

(gi ∩ 1g)(u) = gi(u)e 1g(u) = gi(u)e 1 = gi(u),
(gi ∪ 1g)(u) = gi(u)d 1g(u) = gi(u)d 1 = g1(u)
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which implies gi ∩ 1g = 1g, gi ∪ 1g = 1g.
Moreover, (G(M),∩,∪, g1, 1g) is a bounded distributive lattice.

Theorem 4. If (M,e,d, ↪→, 0, 1) is a Gödel algebra (or an idempotent MTL-algebra), then
(G(M),∩,∪,⇒, g1, 1g) is also a Gödel algebra, where

(gi ∩ gj)(u) = gi(u)e gj(u),
(gi ∪ gj)(u) = gi(u)d gj(u),

(gi ⇒ gj)(u) = gi(u) ↪→ gj(u).

for all gi, gj ∈ G(M), and u ∈ M.

Proof. By Theorem 3, (G(M),∩,∪, g1, 1g) is a bounded distributive lattice ifM is an MTL-
algebra. Now, we prove that (G(M),∩,∪,⇒, g1, 1g) is a Gödel algebra ifM is a Gödel
algebra. For any gi, gj ∈ G(M) and u ∈ M, by Proposition 1(14)(ii), we have

(gi ⇒ gj)(u⇒ v) = gi(u ↪→ v) ↪→ gj(u ↪→ v)

= (u ↪→ gi(v)) ↪→ (u ↪→ gj(v))

= u ↪→ (gi(v) ↪→ gj(v))

= u ↪→ (gi ⇒ gj)(v),

which implies gi ⇒ gj ∈ G(M).
By Theorems 3 and 4, the operations ∩,∪,⇒ are well defined if M is a Gödel

algebra.

As a result of Theorems 3 and 4, some important findings are obtained.

Theorem 5. If (M,e,d, 0, 1) is a Boolean algebra (or an idempotent IMTL-algebra), then (G(M),
∩, ∪, ?, g1, 1g) is also a Boolean algebra, where

(gi ∩ gj)(u) = gi(u)e gj(u),
(gi ∪ gj)(u) = gi(u)d gj(u),
(gi)

?(u) = gi(u) ↪→ g1(u).

for any gi, gj ∈ G(M), and u ∈ M.

Proof. By Theorem 3 (G(M),∩,∪, g1, 1g) is a bounded distributive lattice ifM is an MTL-
algebra. Moreover, for any gi ∈ G(M), and u ∈ M, we have

(gi ∩ (gi)
?)(u) = gi(u)e (gi(u))?

= gi(u)e (gi(u) ↪→ g1(u))

= gi(u)e g1(u)

= g1(u),

(gi ∪ (gi)
?)(u) = gi(u)d (gi(u) ↪→ g1(u))

= gi(u)d gi(u))? d g1(u)

= 1d g1(u)

= 1

= 1g(u),

that is, gi ∩ (gi)
? = g1 and gi ∪ (gi)

? = 1g.

Theorem 6. Every Boolean algebraM is isomorphic to (G(M),∩,∪, ?, g1, 1g).
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Proof. Define χ :M→ G(M) by

χ(x)(u) = x d u,

for any a, u ∈ M. By Theorem 1, χ is well defined.
(1) If χ(x) = χ(y), then χ(x)(u) = χ(y)(u), and hence x d u = y d u for all u ∈ M.

Now, if u = x, then x = x d x = x d y, that is, y ≤ x. If u = y, then x d y = yd y = y, and
hence x d y = y, that is, x ≤ y. So x = y, which shows that χ is an injective function.

(2) For any g ∈ G(M), there exists a g(0) ∈ M such that g = χ((g(0))), which
implies that χ is a surjection function. Indeed, by Theorem 1(2), we have g(u) = ¬u ↪→
g(0) = u� g(0) = ud g(0) = χ((g(0)))(u), for any u ∈ M.

(3) For any x, y ∈ M, we have

χ(x e y)(u) = (x e y)d u

= (x d u)e (y ∪ u)

= (χ(x) ∩ χ(y))(u),

χ(x d y)(u) = (x d y)e u

= (x e u)d (ye u)

= (χ(x) ∪ χ(y))(u),

χ(¬x)(u) = ¬x d u

= x ↪→ u

= (x ↪→ u)e (u ↪→ u)

= (x d u) ↪→ u

= (χ(x)(u))?.

which implies that χ is a homomorphism.
Therefore (M,e,d, 0, 1) is isomorphic to (G(M),∩,∪, ?, g1, 1g).

5. Relations between Implicative Derivations and Other Operators on MTL-Algebras

Recall in [21] that a self map f is called a multiplier of a distributive lattice L if

f (ue v) = ue f (v),

for any u, v ∈ M. Applying this notion to MTL-algebras as a self f satisfies

f (u� v) = u� f (v).

DenotingM(M) by the set of all multipliers ofM.

Proposition 3. Let f be a multiplier on an MTL-algebraM. Then, for any u, v ∈ M,
(1) f (0) = 0,
(2) f (u) = u� f (1),
(3) f (u) ≤ u,
(4) if u ≤ v, then f (u) ≤ f (v).

Proof. The proof is easy, and hence omitted.

Now, we discuss the relations betweenM(M) and G(M).
Let ϕ :M(M)→ G(M) be the map

ϕ( f )(u) = ¬( f (¬u))
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for any f ∈ M(M) and x ∈ M, and ψ : G(M)→M(M) be the map such that

ψ(g)(u) = ¬(g(¬u))

for any g ∈ G(M), and u ∈ M.

Theorem 7. LetM be an IMTL-algebra. There exists here an isotone Galois connection between
M(M) and G(M). Namely,

f ≤ ψ(g)iffg ≤ ϕ( f )

for any f ∈ M(M) and g ∈ G(M).

Proof. (1) By Propositions 3(4) and Remark 2(2) that ϕ and ψ are isotone.
(2) If f ≤ ψ(g), that is f (u) ≤ ψ(g)(u) = ¬(g(¬u)), then ¬( f (u)) ≥ g(¬u) for any

u ∈ M. So ϕ( f )(u) = ¬( f (¬u)) ≥ g(u), which implies g ≤ ϕ( f ).
Conversely, if g ≤ ϕ( f ), that is g(u) ≤ ϕ( f )(u) = ¬( f (¬u)) for any u ∈ M, then

f (¬u) ≤ ¬(g(u)). So f (u) ≤ ¬(g(¬u)) = ψ(g)(u) for any u ∈ M, which implies
f ≤ ψ(g).

Theorem 8. LetM be an IMTL-algebra. Then there exists a bijection between G(M) andM(M).
Namely,

(1) if f ∈ M(M), then ϕ( f ) ∈ G(M),
(2) if g ∈ G(M), then ψ(g) ∈ M(M),
(3) ψϕ( f ) = f and ϕψ(g) = g.

Proof. If f is a multiplier onM, then

ϕ( f )(u ↪→ v) = ¬( f¬(u ↪→ v))

= ¬( f (u�¬v))

= ¬(u� f (¬v))

= u ↪→ ϕ( f )(v),

for any u, v ∈ M, by Theorem 1, ϕ( f ) ∈ G(M).
Conversely, if g ∈ G(M), then

ψ(g)(u� v) = ¬(g(¬(u� v)))

= ¬(g(u�¬v))

= ¬(u ↪→ g(¬v))

= u�¬(g(¬v))

= u� ψ(g)(v),

for any u, v ∈ M, which implies that ψ(g) is a multiplier onM.
Moreover, by Proposition 3(2), we have

ψϕ( f )(u) = f (¬( f (¬u)))

= f (1)⊗ (( f (1)) ↪→ u)

= f (1)� u

= f (u)

for any u ∈ M, and so ψϕ( f ) = f . Similarly, ϕψ(g) = g.

Borumand Saeid et al. introduced in [22] that a k-modal operator in BL-algebra, which
is a map satisfies the following conditions:

(M1) �u��v ≤ �(u� v),
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(M2) if u ≤ v, then �u ≤ �v,
(M3) 1 ≤ �1.

Proposition 4. If L is an MTL-algebra and a ∈ G(M), then ga is a k-modal operator onM.

Proof. (M2) and (M3) are easily verified. Then, we will show that (M1) also holds. Indeed,
by Proposition 1(14)(ii), we have

ga(u ↪→ v) = a ↪→ (u ↪→ v)

= (a ↪→ u) ↪→ (a ↪→ v)

= ga(u) ↪→ ga(v),

for any u, v ∈ M. Then, by Definition 1(3), we get ga(u)� ga(v) ≤ ga(u� v) for any
u, v ∈ M.

The condition a ∈ G(L) is necessary.

Example 7. Let L = {0, u, v, w, x, y, 1} with lattice order 0 ≤ u ≤ w ≤ 1, 0 ≤ v ≤ x ≤ 1 and
v ≤ w. Defining operations � and ↪→ as follows:

� 0 u v w x y 1
0 0 0 0 0 0 0 0
u 0 u u u u u u
v 0 u v u v u v
w 0 u u u u w w
x 0 u v u v w x
y 0 u u w w x x
1 0 u v w x y 1

↪→ 0 u v w x y 1
0 1 1 1 1 1 1 1
u 0 1 1 1 1 1 1
v 0 y 1 e 1 e 1
w 0 x x 1 1 1 1
x 0 w x y 1 y 1
y 0 v v x x 1 1
1 0 u v w x y 1

Then (M,�, ↪→,e,d, 0, 1) is an MTL-algebra. Defining gd :M→M as follows:

g(x) =



0, x = 0
w, x = u
x, x = v
y, x = w, y
1, x = x, 1

,

Then gd ∈ G(M). However, it is not a k-modal operator onM since

gx(w)� gx(v) = w 
 u = gx(w� v).

The k-modal operator is not the implicative derivation on MTL-algebra.

Example 8. LetM be the MTL-algebra in Example 7. Now, we define � :M→M as follows:

�(x) =


0, x = 0, u, v, w, y
x, x = x
1, x = 1

,

Then � is a k-modal operator onM. However, it is not an implicative derivation onM, since

�(y ↪→ y) = 1 6= 0 = y ↪→ �y.

It is interesting to consider under which conditions, is every implicative derivation a
k-modal operator on an MTL-algebra.
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Proposition 5. LetM be an MTL-algebra and g ∈ G(M) satisfies

(∗) g(u ↪→ v) = g(u) ↪→ g(ue v).

Then the following statements are equivalent:
(1) g(u ↪→ v) = g(u) ↪→ g(v),
(2) if u ≤ v, then g(u) ≤ g(v).

Proof. (1)⇒ (2) If u ≤ v, then it follows from (1) that

1 = g(1) = g(u ↪→ v) = g(u) ↪→ g(v),

which implies g(u) ≤ g(v).
(2)⇒ (1) If g satisfies (2), then by (∗), we have

g(u)� g(u ↪→ v) = g(u)� (g(u) ↪→ g(ue v))

≤ g(ue v)

≤ g(v),

which implies g(u ↪→ v) ≤ g(u) ↪→ g(v). Then by Proposition 2(6), we obtain g(u ↪→ v) =
g(u) ↪→ g(v) for any u, v ∈ M.

Corollary 1. Let M be an IMTL-algebra and g ∈ G(M) satisfies (∗). Then g is a k-modal
operator onM.

Proof. By Remark 2(2), and Propositions 2(1) and 5.

6. Conclusions

The notion of implicative derivations is beneficial for discussing structures and prop-
erties in fuzzy logic algebraic. In order to provide the common properties of implicative
derivations in the t-norm-based logical algebras, we introduce the implicative derivations
on MTL-algebras and obtain some of their characterizations. We also obtain some charac-
terizations of Boolean algebras via implicative derivations and show the relations between
implicative derivations and other operators, for example, multiplier and k-modal opera-
tors, on IMTL-algebras. In the future, we will study some of their algebraic properties of
derivations on algebraic hyperstructures [23,24].
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