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Abstract: In this work, we study the global existence of solutions reaction-diffusion systems with
control of mass on multiple domains. Some of these domains overlap, and as a result, an unknown
defined on one subdomain can impact another unknown defined on a different domain that intersects
with the first. The question addressed is related to the long standing question of global existence for
reaction-diffusion systems with quasi-positive reaction vector fields that dissipate mass, in the setting
of a single bounded spatial domain. The results extend recent work of the authors and others for
systems on a single domain with L∞ diffusion and quasi-positive reaction vector fields that dissipate
mass, in the setting of multiple domains.

Keywords: reaction-diffusion systems; a priori bounds; global existence; mass dissipation;
uniform-in-time bounds; intermediate sum condition; pedator-prey; infectious disease

1. Problem Setting
1.1. Introduction

This work is concerned with the question of global well-posedness for reaction-
diffusion systems that are defined on a sequence of spatially bounded non-coincident
spatial domains Ω1, . . . , ΩN ⊂ Rn. The systems allow for discontinuity in the coefficients
of the differential operators and in the components of the reaction vector fields, as well as
interaction of species on overlapping subdomains. The vector field is required to satisfy a
quasi-positivity condition to preserve nonnegativity, and also satisfy properties that help
preserve total mass/concentration. Our concern is the establishment of a priori bounds
and global existence of sup norm bounded weak solutions of these systems.

There has been a wealth of information for systems of this type with smooth coefficients
on the differential operators and locally Lipschitz reaction vector fields in the case that
N = 1 (i.e., the setting of only one domain). The majority of this work grew from a remark
by R.H. Martin over 40 years ago [1], when he noted that the solution to the system of
initial value problems given by

ut = −uv2, t > 0,
vt = uv2, t > 0,

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0,

is componentwise nonnegative, and exists for all t ≥ 0. He asked whether the same is true
when spatial diffusion is added to the processes. In this setting, a bounded open subset
Ω ⊂ Rn with smooth boundary is introduced, and the functions u and v above react and
diffuse on Ω, subject to homogeneous Neumann boundary conditions and nonnegative
initial data. The resulting system becomes
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ut = d1∆u− uv2, x ∈ Ω, t > 0,
vt = d2∆v + uv2, x ∈ Ω, t > 0,

∂
∂η u = ∂

∂η v = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω.

Here, d1, d2 > 0 and u0, v0 ∈ C(Ω,R+), where R+ = [0, ∞). One of the interesting
features of this system is that the solutions satisfy∫

Ω
(u(x, t) + v(x, t))dx =

∫
Ω
(u0(x) + v0(x))dx (1)

for all t > 0. That is, total mass is conserved. A full history of this problem can be
found in [2], along with a partial discussion of similar questions in the setting of systems
with m ≥ 2 unknowns having the fundamental properties of the system above. Here,
f : Rm

+ → Rm is locally Lipschitz and the system{
ut = f (u), t > 0,

u(0) = u0 ∈ Rm
+,

(2)

preserves nonnegativity and gives rise to global solutions that are bounded for all t ≥ 0. It
is well known that nonnegativity is preserved (regardless of initial data) if and only if

fi(u) ≥ 0 whenever u ∈ Rm
+ with ui = 0, for all i = 1, . . . , m. (3)

A simple additional property that guarantees global bounded solutions to (2) and is
satisfied by the simple two component system above is given by

m

∑
i=1

fi(u) ≤ 0 for all u ∈ Rm
+. (4)

When diffusion and homogeneous Neumann boundary conditions are added to (2),
the system becomes

ui t = di∆u + fi(u), x ∈ Ω, t > 0, i = 1, . . . , m,
∂

∂η ui = 0, x ∈ ∂Ω, t > 0, i = 1, . . . , m,
ui(x, 0) = u0i(x) ≥ 0, x ∈ Ω, i = 1, . . . , m.

(5)

Here, di > 0 for all i = 1, . . . , m and u0i ∈ C(Ω,R+). Similar to above, it is a simple
matter to show solutions are componentwise nonnegative, so long as they exist, but global
existence is a very difficult question, even though similar to (1), we have

∫
Ω

m

∑
i=1

ui(x, t)dx ≤
∫

Ω

m

∑
i=1

u0i(x)dx (6)

for all t ≥ 0, so long as the solution exists. It turns out that growth conditions must be
imposed on the vector field f to guarantee global existence. Otherwise, finite time blow-up
can occur in (5). Recent work on this problem can be found in [3–9]. In particular, the work
in [6] proves that (3), (4) and a requirement that the reaction vector field is at most quadratic,
implies global existence and uniform sup norm bounds, independent of space dimension.
We note that these results are very dependent on the spatial differential operators di∆ being
constant multiples of each other, and it is an open question whether they are true when this
is not the case. In some sense, these results are best possible, since [7] shows that if ε > 0
then there exists a space dimension n, a domain Ω ⊂ Rn with smooth boundary, and a
vector field f that satisfies (3), (4), and grows at the rate (∑m

i=1 ui)
2+ε, such that the solution

to (5) blows up in the sup norm in finite time. Finally, we note that there is a wealth of
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additional work in the setting when there are N = 1 domains related to traveling waves
and interactions of species, and we note [10,11].

Global existence results related to (3) and (4) in the case of differential operators with
discontinuous coefficients and discontinuous reaction vector fields have recently appeared
in [12]. There have also been a few results that extend the results on single domains to
results coupled across multiple domains, and we list [13,14]. The work at hand differs
from [13,14] by virtue of the fact that the diffusion and the reaction vector fields can be
more complex, and of course, it differs from the work referred to above from the standpoint
that the reaction-diffusion systems are set on N > 1 bounded domains in Rn, where
diffusion takes place for a particular component on one domain, but can react with multiple
components whose domains of diffusion intersect with this domain. The present work is
an extension of work in [12] for single domains with L∞ diffusion.

Recall from above that our focus is on reaction-diffusion systems defined on a sequence
of spatially bounded non-coincident spatial subdomains Ω1, . . . , ΩN ⊂ Rn, where N > 1
represents the number of domains, and n ≥ 1 represents the spatial dimension. Problems
of this type can arise in the modelling of biological systems, and have been studied as
mathematical models. For example, one such system which is analyzed in [13] models
the interaction of two hosts and a vector population, where a disease is transmitted in a
criss-cross fashion from one host through a vector to another host. It is assumed that the
disease is benign for one host and lethal to the other.

In order to provide a more complete example of what we have in mind we provide
three examples. Two of these examples are given below, and revisited in Section 4, and
the third example is introduced and discussed in Section 4. The first example concerns
the cross species spatial transmission of an infectious disease, and the second example
concerns a hypothetical interaction of three species living on two overlapping domains.
In the first case, we consider an infectious disease that can be transmitted across multiple
species and multiple habitats. These are a major concern for animal husbandry, wildlife
management, and human health [15]. A species occupying a given habit may contract the
disease from a second species occupying an overlapping habit and via dispersion transmit
the disease to a third species whose habitat also overlaps the habitat of the first species. In
the second setting, species A, B and C interact through a reaction of the form A + B↔ C
on overlapping domains Ω1 and Ω2. Species A lives on Ω1, while species B and C live
on Ω2.

1.2. Two Illustrative Examples

Consider a spatially distributed population. The dispersion of the population is
modeled by Fickian diffusion. In this model, there are three populations confined to
separate habitats Ω1, Ω2 and Ω3, such that Ω1 ∩Ω2 6= ∅, Ω2 ∩Ω3 6= ∅ and Ω1 ∩Ω3 = ∅
(see Figure 1). The possibility of physically separated habitats for the vulnerable and
resistant hosts are allowed, each of which intersects with the domain of the vector.

Suppose k1, k2, k3 and k4 are nonnegative functions, λ1, λ2 and λ3 are positive con-
stants. Furthermore, the supports of k1 and k2 are contained in the intersection of Ω1 and
Ω2, respectively, and the supports of k3 and k4 are contained in the intersection of Ω2 and
Ω3, respectively. Finally, for each i = 1, 2, . . . 6, di is a positive bounded function that is
bounded away from 0, and for each j = 1, 2, 3, λj is a positive constant.

(
φt = ∇ · (d1∇φ)− k1(x)φβ + λ1ψ
ψt = ∇ · (d2∇ψ) + k1(x)φβ− λ1ψ

for x ∈ Ω1, t > 0
)

host 1

(
αt = ∇ · (d3∇α)− k2(x)αψ− k3(x)αv + λ2β
βt = ∇ · (d4∇β) + k2(x)αψ + k3(x)αv− λ2β

for x ∈ Ω2, t > 0
)

vector

(
vt = ∇ · (d5∇v)− k4(x)vβ

wt = ∇ · (d6∇w) + k4(x)vβ− λ3w
for x ∈ Ω3, t > 0

)
host 2

(7)
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Figure 1. Domains Ω1, Ω2 and Ω3.

We impose homogeneous Neumann boundary conditions on each domain Ω1, Ω2,
and Ω3. 

∂φ/∂η = ∂ψ/∂η = 0 for x ∈ ∂Ω1, t > 0,
∂α/∂η = ∂β/∂η = 0 for x ∈ ∂Ω2, t > 0,
∂v/∂η = ∂w/∂η = 0 for x ∈ ∂Ω3, t > 0,

(8)

Finally, we specify continuous nonnegative initial data.
φ(0, x) = φ0(x), ψ(0, x) = ψ0(x) for x ∈ Ω1
α(0, x) = α0(x), β(0, x) = β0(x) for x ∈ Ω2
v(0, x) = v0(x), w(0, x) = w0(x) for x ∈ Ω3

(9)

Here, the host with the disease is of benign effect, and is given by the first set of
equations, φ representing the susceptible and ψ representing the infectives. The incidence
function is given by mass action kinetics and assumes a bilinear form. Because this disease
is considered benign, we consider a constant recovery rate λ1 > 0 with no mortality. The
third set of equations with incidence term k4vβ describes the circulation of the disease
through the second host. In this case, the disease can be fatal and there is no recovery
term. The susceptible vector and infective vector populations are represented by α and β,
respectively. The vector population can become infected via contact with infected members
of the first and third populations. Consequently, the incidence term is written by a term of
the form k2αψ+ k3αv. We assume a constant rate of recovery λ2 > 0 with no mortality. Such
a model could describe the invasion of a fatal disease into a host population v occupying
habitat Ω3. The process would be initiated by the induction of this infection into another
population φ occupying a habitat Ω1 physically separated from Ω3. The infection would
not be fatal but would be sustainable in the second host population. The disease would
be transmitted to the first via the action of a dispersing vector. It should be clear that such
considerations could arise in livestock or wildlife management. For example transmission
of brain worm infection from white tail deer to elk occurs via the action of vectors. The
disease is benign in the deer population but fatal to the elk population [16].

It can be shown that the system above preserves the nonnegativity of the initial data.
In addition, on Ω1 the vector field(

−k1(x)φβ + λ1ψ
+k1(x)φβ− λ1ψ

)
(10)

has a first component that is bounded above by a linear expression, and the components
that clearly sum to zero. Similarly, on Ω2 the vector field(

−k2(x)αψ− k3(x)αv + λ2β
k2(x)αψ + k3(x)αv− λ2β

)
(11)
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has a first component that is bounded above by a linear expression, and also sums to zero.
The same mechanism can be seen on Ω3 since the function(

−k4(x)vβ
k4(x)vβ− λ3w

)
(12)

has a first component that is bounded above by a linear expression, and a sum that is less
than or equal to zero. We will apply our results to system (7)–(9), and a slightly more
complex extension, in Section 5.

The second example is easier to state. Here, species A, B and C interact through a
reaction of the form A + B↔ C on overlapping domains Ω1 and Ω2. Species A occupies
Ω1, while species B and C occupy Ω2. If we define k(x) = χΩ1∩Ω2(x) (the characteristic
function on Ω1 ∩Ω2), and use u1(t, x), u2(t, x) and u3(t, x) to denote the concentration
densities of A, B and C, then a possible model is given by

u1t = ∇(d1∇u1) + k(x)(bu3 − au1u2) x ∈ Ω1, t > 0
u2t = ∇(d2∇u2) + k(x)(bu3 − au1u2) x ∈ Ω2, t > 0
u3t = ∇(d3∇u3) + k(x)(au1u2 − bu3) x ∈ Ω2, t > 0

∂
∂η u = 0 x ∈ ∂Ω1, t > 0

∂
∂η v = ∂

∂η w = 0 x ∈ ∂Ω2, t > 0
u1 = u01 x ∈ Ω1, t = 0

u2 = u02 , u3 = u03 x ∈ Ω2, t = 0.

(13)

Here, di are positive bounded functions on Ω1 that are bounded away from 0, a, b > 0
and u01 , u02 and u03 are nonnegative and bounded. This system has a long history in the
setting where Ω1 = Ω2, and has appeared in many publications. One of the first was [17],
and a multitude of others following. Some of these are cited in [2].

In the setting when Ω1 6= Ω2, we will see in Section 4 that u1, u2 and u3 are nonnegative.
In addition, the reaction vector field

f (x, u) =

 k(x)(bu3 − au1u2)
k(x)(bu3 − au1u2)
k(x)(au1u2 − bu3)


satisfies

f1(x, u) + f2(x, u) + 2 f3(x, u) = 0.

This guarantees

‖u1(t, ·)‖1,Ω1 + ‖u2(t, ·)‖1,Ω2 + 2‖u3(t, ·)‖1,Ω2 ≤ ‖u01‖1,Ω1 + ‖u02‖1,Ω2 + 2‖u03‖1,Ω2

for all t > 0.
In addition, the component f1 is the only component associated with a species living

on all of Ω1, and it is clearly bounded above by bu3 when ui ≥ 0. The two components f2
and f3 corresponding to components associated with species living on all of Ω2 satisfy

f2(x, u) ≤ bu3 for x ∈ Ω1 ∩Ω2, ui ≥ 0,
f2(x, u) + f3(x, u) = 0 for x ∈ Ω1 ∩Ω2, ui ≥ 0.

We will see in Section 4 that this structure is sufficient to guaranteed the system (13)
has a unique weak global solution which is sup norm bounded.

1.3. Notation and Assumptions

This work focusses on the analysis of reaction-diffusion systems with species on
multiple domains. To this end, let N, n ≥ 1 be integers, and suppose Ω1, . . . , ΩN ⊂ Rn

are bounded domains with smooth boundaries Mi := ∂Ωi for i = 1, . . . , N such that each
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Ωi lies locally on one side of Mi. We define Ω = ∪N
i=1Ωi. Each domain Ωk represents

a habitat which houses nk species of a population having a total of m species. Some of
the habitats may overlap, and some may be completely contained in other habitats. We
assume there is a mapping σ : {1, 2, . . . , m} → {1, 2, . . . , N} which defines species k
to be uniquely associated with a habitat Ωσ(k). Notationally, this results in each species
being associated with an appropriate habitat by partitioning the set {1, 2, . . . , m} into N
disjoint sets, O1, O2, . . . , ON , where i ∈ Oj can be interpreted as meaning the ith species is
associated with Ωj. Finally, we denote the population density of species k on Ωσ(k) at time
t ≥ 0 by uk(t, ·).

We model the interactions of the species u = (uk)
m
k=1 across all habitats via a reaction-

diffusion system given by
∂
∂t uk = ∇(dk(t, x)∇uk) + fk(t, x, u) t > 0, x ∈ Ωσ(k) k = 1, ...m

∂
∂ησ(k)

uk = 0 t > 0, x ∈ Mσ(k) k = 1, ...m

uk(0, ·) = u0k (·) t = 0, x ∈ Ωσ(k) k = 1, ...m
(14)

Here, u(t, x) = (uk(t, x))m
k=1 is an unknown vector valued function.

Assumption 1. We assume the structure of the species and habitats described above, and for each
k = 1, . . . , m, u0k ∈ L∞(Ωσ(k),R+), dk ∈ L∞((0, T), Ωσ(k)) for each T > 0, and there exists
α > 0 so that α ≤ dk(t, x) for all t > 0 and x ∈ Ωσ(k). In addition, for each j = 1, . . . , N,
ηj denotes the outward unit normal vector to Ωj at a point on Mj. For each k = 1, . . . , m
we define the m × m diagonal matrix Yk(x) for x ∈ Ωσ(k) so that the (i, i) entry given by the
characteristic function χΩσ(i)∩Ωσ(k)

(x), and let F : R+ ×Ω×Rm
+ → Rm where F = (Fk), and

for each k = 1, . . . , m, the function Fk ∈ L∞((0, T)×Ωσ(k) ×U) for bounded subsets U ⊂ Rm
+

and T > 0, and Fk(t, x, u) is locally Lipschitz in u, uniformly on (0, T)×Ωσ(k) for each T > 0.
Finally, we define f = ( fk) where f : R+ ×Ω×Rm

+ → Rm such that

fk(t, x, u) =
{

Fk(t, x, Yk(x)u), x ∈ Ωσ(k)
0, otherwise

We remark that for k ∈ {1, . . . , }, the function fk has the same qualities as Fk, except that for a given
j ∈ {1, . . . , m}, fk(t, x, u) only depends on component j of u if x ∈ Ωσ(k) ∩Ωσ(j). The extension
of fk(t, x, u) as 0 outside Ωσ(k) is only done for convenience in development of L1 estimates below.

We remark that the homogeneous Neumann boundary conditions listed in (14) can be
replaced with nonhomogeneous boundary conditions. It is also possible to use some ideas
from [12] to include nondiagonal diffusion, nonlinear diffusion and semilinear boundary
conditions. It is also possible to use other simple boundary conditions, including homoge-
neous Dirichlet boundary conditions. In all cases, it is possible to include convective terms
provided L1 apriori estimates can be obtained. The interested reader is referred to [12] for
additional remarks in the setting of N = 1, which can be extended with modification to the
current setting.

We are primarily interested in systems which guarantee that solutions to (14) are
componentwise nonnegative, and total population is bounded for finite time. That is,
uk(t, x) ≥ 0 for each k = 1, . . . , m, and there exists C ∈ C(R+,R+) such that

m

∑
k=1

∫
Ωσ(k)

uk(t, x)dx ≤ C(t) (15)

for each t ≥ 0. As noted earlier, there has been a wealth of work on systems of the form (14)
when the number of domains is N = 1. The results we present in this work extend some of
the work from the setting of N = 1 domain to N > 1 domains.
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We start by imposing reasonable conditions on the vector field f to guarantee the
nonnegativity of solutions. To this end, we assume

fk(t, x, u) ≥ 0 when t ≥ 0, x ∈ Ωσ(k), u ∈ Rm
+ and uk = 0, for k = 1, . . . , m. (16)

Here, Rm
+ is the set of componentwise nonnegative vectors in Rm. In the setting of

N = 1, condition (16) is typically referred to as a quasi-positivity condition. It is not difficult
to prove that solutions to (14) are componentwise nonnegative regardless of the choice of
bounded, componentwise nonnegative initial data if and only if (16) holds. More general
information related to nonnegativity of solutions in the case of N = 1 appears in [18].

There are many conditions that can result in bounded total population. The one we
assume is related to a well known dissipativity condition in the setting N = 1 that has been
used in many of the references listed above (and we especially note [2]). The analogous
assumption in this setting requires that there exist bk > 0 for each k = 1, . . . , m, K2 ≥ 0 and
K1 ∈ R so that

m

∑
k=1

bk fk(t, x, u) ≤ K1

m

∑
j=1

χΩσ(j)
(x)uj + K2 for t ≥ 0, x ∈ Ω and u ∈ Rm

+, (17)

where χS is the characteristic function on the set S. It is possible for the constants K1 and
K2 in (17) can be replaced by functions depending on t and x, and we leave the details to
the interested reader. We will see below that this assumption guarantees the estimate given
in (15).

It is well known in the N = 1 setting that assumptions (16) and (17) are not sufficient to
guarantee the existence of global solutions to (14) that are sup norm bounded on (0, T)×Ω
for all T > 0 (cf [7,19]). In fact, when N = 1, if ε > 0, then in the setting when m = 2 there
exist constant diffusion d1, d2 > 0, n ≥ 1, C > 0, bounded nonnegative initial data, and f
satisfying (16) and (17) with | fk(t, x, u)| ≤ C(u1 + u2 + 1)2+ε, such that the solutions to (14)
blow up in the sup norm in finite time [7]. As a result, we need at least one additional
assumption to avoid sup norm blow up in this setting.

Recently, in the setting of N = 1, work in [12] proved solutions to (14) cannot blow up
in the sup norm provided there exist l, C > 0 so that

fk(t, x, u) ≤ C

(
m

∑
k=1

uk + 1

)l

for t > 0, x ∈ Ω, u ∈ Rm
+

and there exists an m×m lower triangular matrix A with positive diagonal entries, and a
number 1 ≤ r < 1 + 2

n so that

A f (t, x, u) ≤ C~1

(
m

∑
k=1

uk + 1

)r

for t > 0, x ∈ Ω, u ∈ Rm
+.

We note that while there is considerable restriction on r in (19), there is no restriction on
the size of l in (18). In the setting of N ≥ 1, it is tempting to simply rewrite the assumptions
above, but the analysis does not lend itself to the full generalization of the second one.
Instead, we amend the first assumption above to fit our setting, and use more care with
the second assumption. To this end, for each k = 1, . . . , m, we assume there exist C, l > 0
(without restriction on size) so that

fk(t, x, u) ≤ C

(
m

∑
k=1

χΩσ(k)(x)uk + 1

)l

for t > 0, x ∈ Ωσ(k), u ∈ Rm
+, (18)
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and for each j = 1, . . . , N there is an nj × nj lower triangular matrix Aj with positive
entries on the diagonal, and C, R > 0 with 1 ≤ r < 1 + 2

n so that

Aj fOj(t, x, u) ≤ C~1

(
m

∑
k=1

χΩσ(k)(x)uk + 1

)r

for t > 0, x ∈ Ωj, u ∈ Rm
+. (19)

Here, fOj denotes the vector whose entries are fk components of f such that Ωσ(k) = Ωj.
Note that the right hand side of (19) includes all components of u whose habitats intersect
with Ωj.

Note that when components of the vector field are polynomial in nature, the value
of r in (19) is more restrictive than the inequality indicates. This is because a polynomial
bounded above by another polynomial that has a positive integer degree < M, tells us the
actual bound is of degree M− 1. So, when n ≥ 2, the upper bound for r above effectively
restricts us to r = 1, while in the setting of n = 1, r can be 2. This does not mean that
the reaction terms can only be linear in nature. In deed, we can see in (7) that there are
quadratic reaction terms, but it is apparent that (19) is satisfied with r = 1.

The condition in (19) has a long history in the setting of N = 1, and was originally
termed an intermediate sum condition. As pointed out in [12], this condition implies a much
more general condition that actually leads to the result given in that work, but (19) is far
easier to recognize in systems, and it occurs naturally as a trade off of higher order terms
related to different components.

In this work, we extend the results in [12] by using (16)– (19) to prove that solutions
to (14) cannot blow up in the sup norm in finite time. Section 2 contains some notation,
definitions, and the statements of our main results. The proofs are given in Sections 3 and 4,
and some examples are stated in Section 5. Finally, we pose an open question in Secton 4.

2. Statements of Main Results

Because of the L∞ nature of the diffusion terms, and the possible abrupt changes in
a component fk(t, x, u) due to dependence on a component uj for which σ(k) 6= σ(j) and
Ωσ(k) ∩Ωσ(j) 6= ∅, solutions to (14) cannot be expected to be classical solutions. As a result,
we rely upon the notion of a weak solution.

Definition 1. A vector u = (u1, . . . , um) is called a weak solution to (14) on (0, T) iff for each
i = 1, . . . , m,

ui ∈ C([0, T]; L2(Ωσ(i))) ∩ L2(0, T; H1(Ωσ(i))), Fi(t, ·, u) ∈ L2(Ωσ(i)),

with ui(·, 0) = u0i (·), and for any test function ϕ ∈ L2(0, T; H1(Ωσ(i))) with
∂t ϕ ∈ L2(0, T; H−1(Ωσ(i))), one has

∫
Ωσ(i)

ui(t, x)ϕ(t, x)dx
∣∣∣∣t=T

t=0
−
∫ T

0

∫
Ωσ(i)

ui∂t ϕdxdt +
∫ T

0

∫
Ωσ(i)

di(t, x)∇ui · ∇ϕdxdt

=
∫ T

0

∫
Ωσ(i)

fi(t, x, u)ϕdxdt.

A weak solution to (14) is a global solution provided it is a weak solution for each T > 0.

Our main result is stated below.

Theorem 1. Assume (Assumption 1), (16)–(19), and that

1 ≤ r < 1 +
2
n

. (20)
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Then there exists a unique, componentwise nonnegative, global sup norm bounded weak
solution to (14), i.e., ui ∈ L∞

loc(0, ∞; L∞(Ωσ(i))) for all i = 1, . . . , m. Moreover, if K1 < 0 or
K1 = K2 = 0 in (17), then the solution is bounded uniformly in time. That is,

ess supt≥0‖ui(t, ·)‖∞,Ωσ(i)
< +∞, ∀i = 1, . . . , m. (21)

Remark 1. The assumption (17) in Theorem 1 is only used to obtain bounds for ui(t, ·) in
L∞

loc(0, ∞; L1(Ωσ(i))) for each i = 1, . . . , m, and the assumption that K1 < 0 or K1 = K2 = 0
in (17) results in bounds for ‖ui(t, ·)‖1,Ωσ(i)

that are independent of t. If these bounds can be
obtained by any other means, then Theorem 1 remains true without the assumption of (17). In
addition, if there exists a ≥ 1 so that bounds for ui(t, ·) in L∞

loc(0, ∞; La(Ωσ(i))) can be obtained
for each i = 1, . . . , m, then the upper bound for r in Theorem 1 can be relaxed to

1 ≤ r < 1 +
2a
n

.

Finally, if bounds for ‖ui(t, ·)‖a,Ωσ(i)
can be obtained that are independent of t, for each

i = 1, . . . , m, then the uniform sup norm bound in Theorem 1 can be obtained. Modifications of the
proof given in Section 3 can be employed in accordance with the ideas in [12].

We remark that in the case of space dimension n = 1, we have 2 < 1 + 2/n = 3, and
as a result, if the components of the reaction vector field f are bounded above by a second
degree polynomial, then (19) is automatically satisfied. Consequently, we have the simple
result below.

Corollary 1. Assume n = 1, and (Assumption 1), (16)–(18) with l = 2. Then there exists
a unique, componentwise nonnegative, global sup norm bounded weak solution to (14), i.e.,
ui ∈ L∞

loc((0, ∞), L∞(Ωσ(i))) for all i = 1, . . . , m. Moreover, if K1 < 0 or K1 = K2 = 0
in (17), then the solution is bounded uniformly in time. That is,

ess supt≥0‖ui(t, ·)‖∞,Ωσ(i)
< +∞, ∀i = 1, . . . , m. (22)

We prove Theorem 1 in Section 3 by modifying the arguments in [12]. That is, for
each ε > 0, we introduce a system that approximates (14) and has a unique componen-
twise nonnegative solution uε that is sup-norm bounded. These approximate systems
are constructed in a manner that results in (16)–(19) being satisfied in the same manner
as (14). This allows us to utilize the structure guaranteed by (19) to employ a modification
of the energy functional approach in [12] to obtain Lp(Ωσ(k)) estimates for uε

k(t, ·) for each
k = 1, . . . , m, 1 < p < ∞ and t > 0 that are independent of ε. Then, (18) is used, along
with results that can be found in either [20] or [21] to obtain sup norm estimates for uε that
are independent of ε > 0. Finally, we pass to the limit as ε→ 0 to obtain convergence to a
componentwise nonnegative weak solution to (14), and uniqueness follows from the local
Lipschitz assumption on f in (Assumption 1).

3. Proof of Theorem 1

We begin by constructing approximate systems to (14) similar to the setting where
N = 1 in [12]. To this end, for 0 < ε < 1, consider the system

∂
∂t uε

k = ∇
(
dk(t, x)∇uε

k
)
+ f ε

k (t, x, uε
+) t > 0, x ∈ Ωσ(k) k = 1, ...m

∂
∂ησ(k)

uε
k = 0 t > 0, x ∈ Mσ(k) k = 1, ...m

uε
k(0, ·) = u0k (·) t = 0, x ∈ Ωσ(k) k = 1, ...m

(23)

where
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f ε
k (t, x, uε

+) := fk(t, x, uε
+)

(
1 + ε

m

∑
j=1
| f j(t, x, uε

+)|
)−1

,

and for z ∈ Rm, the vector z+ = ((zk)+) where we define a+ =

{
a if a ≥ 0
0 if a < 0

for a ∈ R.

We remark that the structure of (23) is similar to (14), and as a result, we can apply our
notion of weak solution to (23). A slight modification of the arguments in [12] allows us to
prove that if T > 0, then there exists a unique weak solution to (23) on (0, T). Moreover,
the construction of the truncated system (23) allows us to take advantage of the structure
of the vector field f that is assumed in Theorem 1. We can easily see that the vector field
f ε = ( f ε

k ) satisfies (16)–(19) in the same manner as f , regardless of the choice of ε > 0.
It is a simple matter to prove uε is componentwise nonnegative. For a given

i = 1, . . . , m, we choose ϕ = uε
i,−, where uε

i,− = (−uε
i )+. We manipulate the definition of

weak solution to show that for all 0 < t < T,

−1
2

∫
Ωσ(i)

|uε
i,−(t, x)|2dx− α

∫ t

0

∫
Ωσ(i)

|∇uε
i,−(s, x)|2dxds =

∫ t

0

∫
Ωσ(i)

uε
i,− f ε

i (s, x, uε
+(s, x))dxds.

Note that (16) implies the right hand side above is nonnegative. As a result,∫
Ωσ(i)

|uε
i,−(t, x)|2dx = 0

for all 0 < t < T. This implies ui,− = 0 on Ωσ(i) for all i = 1, . . . , m, and consequently,
uε = uε

+, implying uε is componentwise nonnegative.
Now we apply (17) to obtain L1 a priori estimates for uε independent of 0 < ε < 1. We

begin by choosing the function ϕ = 1 in the weak formulation for (23). This gives

d
dt

∫
Ωσ(k)

uε
k(t, x)dx =

∫
Ωσ(k)

f ε
k (t, x, uε(t, x))dx.

As a result,

d
dt

m

∑
k=1

∫
Ωσ(k)

bkuε
k(t, x)dx =

m

∑
k=1

∫
Ωσ(k)

bk f ε
k (t, x, u)dx =

m

∑
k=1

∫
Ω

bk f ε
k (t, x, u)dx,

where the coefficients bk are associated with (17). As a result, (17) implies

d
dt

m

∑
k=1

∫
Ωσ(k)

uε
k(t, x)dx ≤ K1

m

∑
k=1

∫
Ωσ(k)

uε
k(t, x)dx + K2. (24)

Consequently, if K1 6= 0, Gronwall’s inequality implies

m

∑
k=1
‖uε

k(t, ·)‖1,Ωσ(k)
≤
(

K2

K1
+

m

∑
k=1

∫
Ωσ(k)

u0k (x)dx

)
exp(K1t)− K2

K1
, (25)

and if K1 = 0, Gronwall’s inequality implies

m

∑
k=1
‖uε

k(t, ·)‖1,Ωσ(k)
≤

m

∑
k=1

∫
Ωσ(k)

u0k (x)dx + K2t. (26)

In either case, we have bounds for ‖uε
k(t, ·)‖1,Ωσ(k)

which are independent of ε for
k = 1, . . . , m, and the bounds are independent of t > 0 if either K1, K2 = 0 or K1 < 0.

Now, we use (19) to bootstrap the bounds for ‖uε
k(t, ·)‖1,Ωσ(k)

to ‖uε
k(t, ·)‖p,Ωσ(k)

bounds
for each 1 < p < ∞. To this end, we build energy functionals in a manner similar to that
in [12]. Recall that for each k = 1, . . . , m, we have nk = |Ok|. Fix k ∈ {1, . . . , m} and
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write Znk
+ as the set of all nk-tuples of non-negative integers. Addition and scalar multi-

plication by non-negative integers of elements in Znk
+ is understood in the usual manner.

If β = (β1, . . . , βnk ) ∈ Znk
+ and p ∈ N ∪ {0}, then we define βp = ((β1)

p, . . . , (βnk )
p).

In addition, if α = (α1, . . . , αnk ) ∈ Znk
+ , then we define |α| = ∑nk

i=1 αi. Finally, if z =

(z1, . . . , znk ) ∈ Rnk
+ and α = (α1, . . . , αnk ) ∈ Znk

+ , then we define zα = zα1
1 · . . . · zαnk

nk , where
we interpret 00 to be 1. For simplicity of notation, we momentarily define v = (uε

j)|j∈Ok ,
g(t, x, u) = ( f ε

j (t, x, u))|j∈Ok and D(t, x) = (dj(t, x))|j∈Ok . Note that each of v, g and D
have nk components. For p ∈ N∪ {0}, we build our Lp-energy function of the form

Lk,p[v](t) =
∫

Ωσ(k)

Hp[v](t)dx (27)

where

Hp[v](t) = ∑
β∈Znk

+ ,|β|=p

(
p
β

)
θβ2

v(t)β, (28)

with (
p
β

)
=

p!
β1! · · · βnk !

, (29)

and θ = (θ1, . . . , θnk ) where θ1, . . . , θnk are positive real numbers which will be determined
later. For convenience, hereafter we drop the subscript β ∈ Znk

+ in the sum as it should be
clear. We note that

H0[v](t) = 1 and H1[v](t) = ∑
j∈Ok

θjvj(t).

In addition, for a given p, Hp[v] is a general multivariate polynomial of degree p in v,
and the coefficient defined in (29) is the standard multinomial coefficient. Now, suppose
p ≥ 2 is an integer. Proceeding as in [12], let Lk,p(t) := Lk,p[v](t) be defined in (27). Then

d
dt

Lk,p(t) =
∫

Ωσ(k)
∑

|β|=p−1

(
p
β

)
θβ2

v(t, x)β
nk

∑
i=1

θ
2βi+1
i

∂

∂t
vi(t, x)dx

=
∫

Ωσ(k)
∑

|β|=p−1

(
p
β

)
θβ2

v(t, x)β
nk

∑
i=1

θ
2βi+1
i

×
[
∇ · (Di(t, x)∇vi(t, x)) + gi(t, x, uε(t, x))

]
dx.

From [12],

∫
Ωσ(k)

∑
|β|=p−1

(
p
β

)
θβ2

v(t, x))β
nk

∑
i=1

θ
2βi+1
i ∇ · (Di(t, x)∇vi(t, x))dx = I,

where

I = −
∫

Ωσ(k)
∑

|β|=p−2

(
p
β

)
θβ2

v(t, x)β
nk

∑
i=1

nk

∑
l=1

Ci,r(β)(Dk∇vi(t, x)) · ∇vl(t, x)dx

with

Ci,l(β) =

{
θ

2βi+1
i θ

2βl+1
l , i 6= l,

θ
4βi+4
i , i = l.
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Then, as in [12], we can can show that for θi sufficiently large, there exists αk,p > 0
so that

d
dt

Lk,p(t) + αk,p

nk

∑
i=1

∫
Ωσ(k)

|∇(vi)
p/2(t, x)|2dx

≤
∫

Ωσ(k)
∑

|β|=p−1

(
p
β

)
θβ2

v(t, x)β
nk

∑
i=1

θ
2βi+1
i gi(t, x, uε(t, x))dx. (30)

We now look closely at the expression on the right hand side of (30), and in particular
the term

nk

∑
i=1

θ
2βi+1
i gi(t, x, uε).

Note that from (19), the definition of the gi(t, x, uε) and Lemma 2.4 in [12], there exist
componentwise increasing functions hi : Rnk−i → R+ for i = 1, . . . , nk − 1 so that if
γnk > 0 and γi ≥ hi(γi+1, . . . , γnk ) for i = 1, . . . , nk − 1 then there exists Kγ > 0 so that

nk

∑
i=1

γigi(t, x, uε) ≤ Kγ

(
1 +

m

∑
i=1

(uε
i )

r

)
for all (t, x, uε) ∈ R+ ×Ωσ(k) ×Rm

+.

As a result, we can choose θ so that its components are sufficiently large that the
previous positive definiteness condition is satisfied, and

θi ≥ hi(θ
2p−1
i+1 , . . . , θ

2p−1
nk ) for i = 1, . . . , nk − 1.

Then there exists Kθ̃ so that for all β ∈ Znk
+ with |β| = p− 1, we have

nk

∑
i=1

θ
2βi+1
i gi(t, x, uε(t, x)) ≤ Kθ̃

(
1 +

m

∑
i=1

(uε
i (t, x))r

)
for all (t, x) ∈ R+ ×Ωσ(k).

It follows from this and (30) that there exists Cp > 0 so that

d
dt

Lk,p(t) + αk,p

nk

∑
i=1

∫
Ωσ(k)

|∇(vi)
p/2(t, x)|2dx ≤ Cp

m

∑
j=1

∫
Ωσ(j)

(
uε

j(t, x)p−1+r + 1
)

dx. (31)

Now, define

Lp(t) =
m

∑
k=1

Lk,p(t) and αp = min
k=1, ..., m

αk,p > 0.

Then from (31) and the definition of v for each k = 1, . . . , m,

d
dt

Lp(t) + αp

m

∑
j=1

∫
Ωσ(j)

|∇(uε
j)

p/2(t, x)|2dx ≤ mCp

m

∑
j=1

∫
Ωσ(j)

(
uε

j(t, x)p−1+r + 1
)

dx. (32)

Then continuing as in the proof of Theorem 1.1 in [12], there exist Cp ∈ C(R+,R+)
and δ > 0 such that

d
dt

Lp(t) + δLp(t) ≤ Cp(t) for all t > 0. (33)

Furthermore, ‖Cp‖∞,R+
< ∞ if ‖uk(t, ·)‖1,Ωσ(k)

is bounded independent of t for
k = 1, . . . , m. Clearly, (33) allows us to prove there exists C̃p ∈ C(R+,R+) such that

Lp(t) ≤ C̃p(t), ∀t > 0,
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with ‖C̃p‖∞,R+
< ∞ if ‖uk(t, ·)‖1,Ωσ(k)

is bounded independent of t for k = 1, . . . , m. In
turn, this allows us to obtain a function Kp ∈ C(R+,R+) so that

‖uε
k(t, ·)‖p,Ωσ(k)

≤ Kp(t) ∀t > 0, k = 1, . . . , m,

with ‖Kp‖∞,R+
< ∞ if ‖uk(t, ·)‖1,Ωσ(k)

is bounded independent of t for k = 1, . . . , m.
Finally, we obtain sup norm bounds for uε by using (18) in the same manner as in

Proposition 2.1 in [12]. Continuing to follow the proof of Theorem 1.1 in [12], we obtain
convergence to a solution to (14), and the remainder of the proof of Theorem 1.

4. Examples

In this section, we apply our results to three different example problems given by the
system in (7)–(9) and (13), and a model on one dimensional domains that takes illustrates
the usefulness of Corollary 1. As we will see, the one dimensional model is a natural
follow-up to (13).

4.1. Analysis of a Disease Model

To illustrate how Theorem 1 applies to (7)–(9), we define

u = (u1, u2, u3, u4, u5, u6) = (φ, ψ, α, β, v, w),

u = (u01 , u02 , u03 , u04 , u05 , u06) = (φ0, ψ0, α0, β0, v0, w0)

and

f (t, x, u) =



−k1(x)u1u4 + λ1u2χΩ1(x)
k1(x)u1u4 − λ1u2χΩ1(x)

−k2(x)u3u2 − k3(x)u3u5 + λ2u4χΩ2(x)
k2(x)u3u2 + k3(x)u3u5 − λ2u4χΩ2(x)

−k4(x)u5u4
k4(x)u5u4 − λ3u6χΩ3(x)


for x ∈ Ω = ∪3

i=1Ωi and u ∈ R6
+. Clearly, f satisfies (16) and (18). In addition, (17) is

satisfied with K1 = K2 = 0 since

6

∑
i=1

fi(x, u) ≤ 0 for x ∈ Ω and u ∈ R6
+.

In addition, O1 = {1, 2}, O2 = {3, 4} and O(3) = {5, 6}, so

fO1(x, u) =
(
−k1(x)u1u4 + λ1u2χΩ1(x)
k1(x)u1u4 − λ1u2χΩ1(x)

)
,

fO2(x, u) =
(
−k2(x)u3u2 − k3(x)u3u5 + λ2u4χΩ2(x)
k2(x)u3u2 + k3(x)u3u5 − λ2u4χΩ2(x)

)
and

fO3(x, u) =
(

−k4(x)u5u4
k4(x)u5u4 − λ3u6χΩ3(x)

)
for x ∈ Ω and u ∈ R6

+. So, choosing Ai =

(
1 0
1 1

)
for i = 1, 2, 3 results in (19) being

satisfied. Therefore, Theorem 1 implies (7)–(9) has a unique global weak solution, and there
exits C > 0 so that ‖ui(t, ·)‖∞,Ωσ(i)

≤ C for all i = 1, . . . , 6 and t > 0.
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Remark 2. If we apply the weak formulation in Definition 1 to u5 and u6 with the test function
ϕ = 1, and sum the results, then clearly∫ ∞

0

∫
Ω3

u6(t, x)dxdt < ∞.

It is possible to use this and further analysis to prove ‖u6(t, ·)‖∞,Ω3 → 0 as t→ ∞. We leave
the details and further asymptotic analysis to the interested reader.

4.2. Analysis of a System Arising from a Single Step Reversible Reaction

As we pointed out following the statement of (13), we have

f (x, u) =

 k(x)(bu3 − au1u2)
k(x)(bu3 − au1u2)
k(x)(au1u2 − bu3)


for all x ∈ Ω and u ∈ R3

+. We can easily see that (16) and (18) are satisfied. In addition, (17)
is satisfied with K1 = K2 = 0 because

f1(x, u) + f2(x, u) + 2 f3(x, u) = 0

for all x ∈ Ω and u ∈ R3
+. In addition, O1 = {1} and O2 = {2, 3}, and

fO1(x, u) = k(x)(bu3 − au1u2) and fO2(x, u) =
(

k(x)(bu3 − au1u2)
k(x)(au1u2 − bu3)

)
.

Clearly, if A1 = 1 and A2 =

(
1 0
1 1

)
, then (19) is satisfied with r = 1. Therefore,

Theorem 1 implies (13) has a unique global weak solution, and there exits C > 0 so that
‖ui(t, ·)‖∞,Ωσ(i)

≤ C for all i = 1, 2, 3 and t > 0.

4.3. A Model in a One Dimensional Setting

Define Ω1 = (0, 2) and Ω2 = (1, 3), and consider the system given by

u1t = (d1(t, x)∇u1x)x + k(x)(u2
2 − u1u2) x ∈ Ω1, t > 0

u2t = (d2(t, x)∇u2x)x + k(x)(u1u2 − u2
2) x ∈ Ω2, t > 0

u1x = 0 x ∈ {0, 2}, t > 0
u2x = 0 x ∈ {1, 3}, t > 0
u1 = u01 x ∈ Ω1, t = 0
u2 = u02 x ∈ Ω2, t = 0.

(34)

Here, we assume the functions di satisfies (Assumption 1) for i = 1, 2, k(x) is the
characteristic function on Ω1 ∩Ω2 = (1, 2), and u0i ≥ 0 and bounded for i = 1, 2. If we
define

f (x, u) =
(

k(x)(u2
2 − u1u2)

k(x)(u1u2 − u2
2)

)
,

O1 = 1 and O2 = 2, then easily (18) and (16) are satisfied, and (17) is satisfied with
K1 = K2 = 0. Furthermore, (19) is satisfied with r = 2, which is admissible in Theorem 1
since n = 1 implies 2 < 1 + r/1 = 1 + 2/1 = 3. Therefore, Theorem 1 implies (34) has
a unique global weak solution, and there exits C > 0 so that ‖ui(t, ·)‖∞,Ωσ(i)

≤ C for all
i = 1, 2 and t > 0.

5. Further Observations and an Open Question

We point out that that the methods of [12] can be employed as above to extend our
results to general advective diffusive operators on each habitat (or domain). Namely, we
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can obtain unique, globally bounded solutions to when the spatial portion of our differential
operators have the form

Ai(ui) = ∇ · (Di(t, x)∇ui + Bi(t, x)ui)

for each i = 1, . . . , m, where each Di ∈ L∞((0, T)×Ωσ(i),Rn×n) is a symmetric positive
definite matrix for each T > 0, and there exists δ > 0 so that

zT Di(t, x)z ≥ δ|z|2

for all z ∈ Rn. In addition, Bi ∈ L∞((0, T)×Ωσ(i),Rn) for each T > 0. In this case, the
homogeneous Neumann boundary conditions in (14) will be replaced with conditions of
the form

(Di∇ui) + Biui) · η = 0.

It is also possible to obtain results in the setting of quasilinear differential operators. We
encourage the interested reader to see [12], and extend the ideas mentioned in that setting.
Finally, the boundary conditions listed above can be amended to be nonhomogeneous, and
it is also possible to consider homogeneous Dirichlet boundary conditions. The setting of
nonhomogeneous Dirichlet boundary conditions presents some problems when it comes to
obtaining global existence results from the conditions on the vector field f given earlier.

There many open questions associated with the setting of multiple domains, which
arise from the knowledge base associated with the case when N = 1, even in the setting
when the diffusion functions in (14) are positive constants. We give one of these below.
With this in mind, we assume Ω1, Ω2 ∈ Rn satisfying the properties listed in Section 1. In
addition, see Figure 2 in below. For simplicity, assume d1, d2 > 0 and consider the system

ut = d1∆u + f (x, u, v) x ∈ Ω1, t > 0
vt = d2∆v + g(x, u, v) x ∈ Ω2, t > 0

∂
∂η u = 0 x ∈ M1, t > 0
∂

∂η v = 0 x ∈ M2, t > 0
u = u0 x ∈ Ω1, t = 0
v = v0 x ∈ Ω2, t = 0

(35)

Here, u0 and v0 are bounded nonnegative functions, f : Ω1×R2
+ → R2 and g : Ω2×R2

+ →
R2 are locally Lischitz in u and v, uniformly in x, f (x, u, v) = 0 for x ∈ Ω1\Ω2 and
g(x, u, v) = 0 for x ∈ Ω2\Ω1, f (x, 0, v), g(x, u, 0) ≥ 0 for u, v ≥ 0 and x ∈ Ω1 ∩Ω2, and
f (x, u, v) + g(x, u, v) = 0 for x ∈ Ω1 ∩Ω2 and u, v ≥ 0.

Figure 2. Intersecting domains Ω1 and Ω2.
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Open Question: In the setting where Ω1 = Ω2, if f and g are smooth, and both are
bounded in absolute value by a quadratic polynomial in u and v, the results in[6] guarantee
global existence and uniform sup norm bounds for solutions to (35). This is an open
problem in the setting when Ω1 6= Ω1 ∩Ω2 6= ∅.
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