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Abstract: This paper deals with the mathematical modelling of the red palm weevil (RPW), Rhyn-
chophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), in date palms using chemical control
by utilizing injection and sex pheromone traps. A deterministic and stochastic model for RPW is
proposed and analyzed. The existence of a positive global solution for the stochastic RPW model
is investigated, and the conditions for the extinction of RPWs from the stochastic system are ob-
tained. The adequate criteria for the presence of a unique ergodic stationary distribution for the RPW
system are established by creating suitable Lyapunov functions. The impact of chemical injection
and pheromone traps on RPW is demonstrated. The importance of environmental noise on RPW is
highlighted and simulated using the Milstein method.
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1. Introduction

The red palm weevil (RPW) is considered one of the most dangerous insects to date
palms. Recently, RPW expanded its distribution within palm varieties and outbreaks to
be a major invasive agricultural pest in date palm cultivars, which helped in becoming
a key date-palm pest within a short time [1]. RPW as an invasive species is defined by
its ability to invade, colonize and adapt to new agricultural areas worldwide [2]. The
global movement of commercial goods helped spread the species of RPW, which was
previously confined to areas of its initial discovery in India [3,4]. The insect is voracious
in feeding, especially in the larval stage, which requires at least 60–90 days to complete
its development and transfer to a pupal stage. RPW is a soft tissue insect that feeds on
the inner tissue of palm trunk [5–8]. Consequently, larvae feeding leads to severe damage,
resulting in destroying the inner palm trunk and finally complete palm death. Reducing
RPW feeding, damage and distribution is not possible to by following one control method,
but an integrated control program must be developed to reduce RPW activity and limit its
damage. The integrated management program for RPW should include different control
techniques such as mechanical, chemical, biological control and other possible methods
that can be relied upon to control the numbers of the RPW in the affected areas. When
RPW damage is detected on the trunk at one or more points, the chemical injection method
can be followed, and it is considered one of the most successful methods of treatment and
is a more effective method than spraying pesticides [9–11]. According to [12], early and
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intermediate infestation can be treated by injecting insecticides into the trunk. When the
trunk is locally injected, the chemical pesticide spreads within the stem under the influence
of diffusion and gravity, which leads to the killing of both the larval and pupal stages. Sex
aggregated pheromone traps are used to control the level of RPW in farms by attracting
both males and females, which affects the pest populations and kills them because the traps
contain insecticides that kill what is being caught, thus reducing the number of RPW [3,13].
The researchers showed that using pheromone traps for the RPW are one of the most
effective ways to monitor and reduce the numbers of this harmful insect in the Arab Gulf
countries [14]. Mathematical models can help understand and explain the spread of this
pest and the methods and factors that control it. This paper aims to develop and analyze a
mathematical model of RPW with sex pheromone traps and chemical injection. The paper
is organized as follows: The RPW mathematical model is described in Section 2, and the
conditions for stability of the RPW model are obtained. In Section 3, the stochastic RPW
model is performed, and the existence of a positive global solution for the stochastic RPW
model is investigated, as well as the sufficient conditions for population extinction from
the stochastic system. Sufficient criteria for the existence of a unique ergodic stationary
distribution for the RPW system are established. The numerical simulations described in
Section 4 are used to verify the theoretical results. The discussion and conclusion are found
in Section 5.

2. Mathematical Model

• In this model, the total date palm tree population is divided into two classes: suscepti-
ble date palm tree denoted by P1(t) and infected date palm denoted by P2(t). In the
absence of RPW, the date palm tree grows logistically with an intrinsic growth rate r
and carrying capacity k. The natural death rate of the susceptible and infected date
palm tree is µ1.

• Assume that the date palm tree is susceptible to infection according to simple mass
kinematics with β as the RPW transmission coefficient. Experimental studies on palm
pests indicated that the functional response pattern of the predator is consistent with
the Holling II functional response [15,16]. As a result, we assume that RPW larvae
L(t) harvest palm trees with Holing type-II functional response. The predation rate of
RPW larvae on a date palm tree is c, and constant a is the half-saturation constant. The
larvae population decreases by α rate due to the transformation from the larva stage
to the adult stage. The transition rate of RPW larvae to adults females F(t) is given by
ν, whereas a complementing fraction (1− ν) will emerge as males M(t). We assume
that larvae L(t) decreases at the θ rate due to the injection of chemical compounds.
The natural death of larvae is assumed to be µ2, while the natural death for adult RPW
is µ.

• To indicate the trap’s effect, one can consider the approach proposed by Barclay [17].
We assume the pheromone trap attracted additional η females. As a result, the RPW
males attracted to pheromone traps according to γηM

F+η , where γ represents the effective
rate of pheromone traps on mortality of RPW males. Recently, this approach was
used by [18–21] to investigate the dynamics of the mirid population under mating
disruption and trapping.

The following system describes the model of RPW with sex pheromone traps and
chemical injection.
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dP1

dt
= rP1(1−

P1

k
)− βP1P2 − µ1P1

dP2

dt
= βP1P2 −

cP2L
a + P2

− µ1P2

dL
dt

=
cP2L

a + P2
− (µ2 + α + θ)L

dF
dt

= ναL− µF

dM
dt

= (1− ν)αL− µ M− γηM
F + η

.

(1)

The RPW model (1) has four equilibrium points. The trivial equilibrium point E0 =
(0, 0, 0, 0, 0) is stable if r < µ1. The free RPW equilibrium point E1 = ( k

r (r− µ1), 0, 0, 0, 0)
exists if r > µ1 and E1 stable if R0 < 1, where R0 = krβ

µ1(kβ+r) . The equilibrium point

E2 = (P12, P22, 0, 0, 0), where P12 = µ1
β and P22 = krβ−kβµ1−rµ1

kβ2 . E2 exists if R0 > 1. The

first three eigenvalues of J(E2) are λ1 = −µ, λ2 = −µ− γ and λ3 = cP22
a+P22

− Ψ, where

Ψ = (µ2 + α + θ). The other two eigenvalues are given by λ2 + rµ1
kβ λ + µ1r

(
1− 1

R0

)
= 0,

and the roots have negative real parts. As a result, E2 is stable if 1 < R0 < 1 + akβ2Ψ
µ1(kβ+r) . The

coexistence equilibrium point E3 = (P13, P23, L3, F3, M3), where

P13 =
kρ

r

[
1− aβΨ

ρ(c−Ψ)

]
, P23 =

aΨ
c−Ψ

, L3 =
a(βP13 − µ1)

c−Ψ
, F3 =

ναa(βP13 − µ1)

µ(c−Ψ)
,

M3 =
(1− ν)αL3(F3 + η)

µ(F3 + η) + νη
.

E3 exists if Ψ < ρc
aβ+ρ and βP13 > µ1

a , where ρ = r − µ1. The stability of the RPW
system around E3 is now investigated. The Jacobian matrix of the RPW model (1) around
E3 is given as follows.

J(E3) = 
− rP13

k −βP13 0 0 0
βP23

cL3P23
(a+P23)2 − cP23

a+y 0 0

0 acL3
(a+P23)2 0 0 0

0 0 αε −µ 0
0 0 α(1− ε) ηγM3

(η+F3)2 −µ− ηγ
η+F3

.

The first two eigenvalues of J(E3) are λ1 = −µ, and λ2 = −µ − ηγ
η+F3

. The other

three eigenvalues are determined by λ3 + c1λ2 + c2λ + c3 = 0, where c1 = rP13
k −

cL3P23
(a+P23)2 ,

c2 = P23

(
ac2L3

(a+P23)3 + P13

(
β2 − cL3r

k(a+P23)2

))
and c3 = arc2L3P13P23

k(a+P23)3 . The coexistence equilibrium
point E3 = (P13, P23, L3, F3, M3) is stable if c1 > 0, c2 > 0 and c1c2 > c3.

3. Dynamics of the Stochastic Model

Stochastic effects can be significant in the case of RPW because the environmental
conditions of its transmission are subject to randomness. The deterministic RPW (1) ignores
the possible importance of a stochastic environment. In [22], a deterministic and stochastic
prey–predator model for three predators and a single prey was proposed and analyzed.
In this paper, we study a stochastic eco-epidemiological model for one of the agricultural
pests. The RPW model (1) will be extended to include the stochastic effects as follows:
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dP1 =

(
rP1(1−

P1

k
)− βP1P2 − µ1P1

)
dt + σ1P1 dW1,

dP2 =

(
βP1P2 −

cP2L
a + P2

− µ1P2

)
dt + σ2P2 dW2,

dL =

(
cP2L

a + P2
− (µ2 + α + θ)L

)
dt + σ3L dW3,

dF = (ναL− µF)dt + σ4F dW4,

dM =

(
(1− ν)αL− µ M− γηM

F + η

)
dt + σ5M dW5.

(2)

where W = {W1, W2, W3, W4, W5, t ≥ 0} represents the five-dimensional standard Brow-
nian motions with Wi(0) = 0, and σ2

i (i = 1, 2, 3, 4, 5) is the intensities of the white noise
defined in a complete probability space (Ω,Ft≥0,P) with a filtration Ft≥0 satisfying the
usual conditions. In the next theorem, we will prove the existence and uniqueness of a
global positive solution of the system (2). This approach has recently been used in many
papers for the analysis of stochastic predator–prey systems [23–27], stochastic epidemic
models [28–34] and stochastic eco-epidemiological models [35].

Theorem 1. For any given initial value (P1(0), P2(0), L(0), F(0), M(0)) ∈ R5
+, there exists a

unique solution (P1(t), P2(t), L(t), F(t), M(t)) of system (2) for t ≥ 0 and the global positive
solution remains in R5

+ with probability one.

Proof. Firstly, one can consider the local solution (P1(t), P2(t), L(t), F(t), M(t)) of sys-
tem (2) for t ∈ [0, τe), where τe is the explosion time [36], by conducting the transformation
of variables.

X1(t) = ln P1(t), X2(t) = ln P2(t), X3(t) = ln L(t), X4(t) = ln F(t), X5 = ln M(t).

Using the Itô formula, one can change system (2) as follows.

d X1(t) =

[
r(1− eZ1

k
)− βeZ2 − µ1 −

σ2
1

2

]
dt + σ1 dW1,

d X2(t) =

[
βeZ1 − c eZ3

a + eZ2
− µ1 −

σ2
2

2

]
dt + σ2 dW2,

d X3(t) =

[
c eZ2

a + eZ2
− (µ2 + α + θ)−

σ2
3

2

]
dt + σ3 dW3,

d X4(t) =

[
ναeZ3

eZ4
− µ−

σ2
4

2

]
dt + σ4 dW4,

d X5(t) =

[
(1− ν)α

eZ3

eZ5
− µ− γη

eZ4 + η
−

σ2
5

2

]
dt + σ5 dW5.

(3)

The coefficients of system (3) satisfy the local Lipschitz conditions; consequently, there
exists a unique local solution

(P1(t), P2(t), L(t), F(t), M(t)) = (eX1(t), eX2(t), eX3(t), eX4(t), eX5(t))

on [0, τe). To ensure that this solution is global, one needs to prove that τe = ∞ a.s. Let
s0 > 0 be sufficiently large for every coordinate in the interval [ 1

s0
, s0]. For each integer

s > s0, we define the stopping time.

τs = inf
{

t ∈ [0, τe) : min{P1, P2, L, F, M} 6∈ (
1
s

, s) or max{P1, P2, L, F, M} 6∈ (
1
s

, s)
}

.
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One can note that τs is increasing as s → ∞. Assume τ∞ = lims→∞ τs, then τ∞ ≤ τe.
In the next step, one needs to verify that τ∞ = ∞. If this is not true, then there exists a
constant T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T) ≥ ε. As a result, there exists an integer
s1 ≥ s0 such that P(τs ≤ T) ≥ ε, s ≥ s1. Define the following C2 positive definite function
V1(P1, P2, L, F, M) as

V1 = (P1 + 1− lnP1) + (P2 + 1− lnP2) + (L + 1− lnL) + (F + 1− lnF) + (M + 1− lnM).

Using Itô’s formula, one obtains

dV1 =

[
(P1 − 1)

(
r(1− P1

k
)− βP2 − µ1

)
+ (P2 − 1)

(
βP1 −

cL
a + P2

− µ1

)
+ (L− 1)

(
cP2

a + P2
−Ψ

)
+(1− 1

F
)(ναL− µF) + (1− 1

M
)

(
(1− ν)αL− µM− γηM

F + η

)
+

1
2

5

∑
i=1

σ2
i

]
dt + σ1(P1 − 1)dW1

+σ2(P2 − 1)dW2 + σ3(L− 1)dW3 + σ4(F− 1)dW4 + σ5(M− 1)dW5

≤
[
(r +

1
k
)P1 + βP2 + cL + (Ψ + µ1 + 2µ + ν) +

1
2

5

∑
i=1

σ2
i

]
dt + σ1(P1 − 1)dW1

+σ2(P2 − 1)dW2 + σ3(L− 1)dW3 + σ4(F− 1)dW4 + σ5(M− 1)dW5.

Using inequality x ≤ 2(x + 1− lnx), for any x > 0, one obtains

dV1 ≤
[
(Ψ + µ1 + 2µ + ν) +

1
2

5

∑
i=1

σ2
i + 2(r +

1
k
)(P1 + 1− lnP1) + 2β(P2 + 1− lnP2) + 2c(L + 1− lnL)

]
dt

+σ1(P1 − 1)dW1 + σ2(P2 − 1)dW2 + σ3(L− 1)dW3 + σ4(F− 1)dW4 + σ5(M− 1)dW5,

which means that

dV1 ≤K(1 + V1)dt + σ1(P1 − 1)dW1 + σ2(P2 − 1)dW2 + σ3(L− 1)dW3 + σ4(F− 1)dW4 + σ5(M− 1)dW5,

where K1 = (Ψ+µ1 + 2µ+ ν)+ 1
2 ∑5

i=1 σ2
i , K2 = max

{
2(r + 1

k ), 2β, 2c
}

and K = max{K1, K2}.
Taking the expectation of the above inequality, one obtain the following.

EV1(P1(t1 ∧ τs), P2(t1 ∧ τs), L(t1 ∧ τs), F(t1 ∧ τs), M(t1 ∧ τs))

≤ V1(P1(0), P2(0), L(0), F(0), M(0)) + KE
∫ t1∧τs

0
(1 + V1) dt

≤V1(P1(0), P2(0), L(0), F(0), M(0)) + KT + K
∫ t1∧τs

0
EV1 dt.

Following [35,37], applying Grownwall’s inequality, one obtains

EV1(P1(t1 ∧ τs), P2(t1 ∧ τs), L(t1 ∧ τs), F(t1 ∧ τs), M(t1 ∧ τs))

≤[V1((P1(0), P2(0), L(0), F(0), M(0))) + KT]eKT = K3.

The remainder of the proof is similar to [37,38] and is therefore omitted. The proof is
now complete.

The above theorem shows that the stochastic RPW system (2) has a positive global
solution remaining in R5

+ with a probability of one. In the following, we will establish the
boundedness property of the RPW model (2).
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Lemma 1. Let W(t) = P1(t) + P2(t) + L(t) + F(t) + M(t), then for any positive initial value,
the following inequality holds:

lim
t→∞

sup E[W(t)] ≤ rk
4ξ

a.s,

where ξ = min{µ1, µ2, µ}.

Proof. According to the stochastic RPW system (2), we have the following.

dW(t) ≤
[

rP1(1−
P1

k
)− ξ W(t)

]
dt + σ1P1dW1 + σ2P2dW2 + σ3LdW3 + σ4FdW4 + σ5MdW5

≤
[

rk
4
− ξ W(t)

]
dt + σ1P1dW1 + σ2P2dW2 + σ3LdW3 + σ4FdW4 + σ5MdW5.

Integrating from 0 to t yields

W(t) ≤W(0) +
∫ t

0

(
rk
4
− ξ W(s)

)
ds +

∫ t

0
[σ1P1dW1 + σ2P2dW2 + σ3LdW3 + σ4FdW4 + σ5MdW5]ds.

According to strong law of large numbers, one obtains

E[W(t)] ≤W(0) +
∫ t

0
E
(

rk
4
− ξ W(s)

)
ds.

Consequently,
dE[W(t)]

dt
+ ξE[W(t)] ≤ rk

4
Thus, one obtains

lim
t→∞

sup E[W(t)] ≤ rk
4ξ

.

The above theorem tells us the solution of RPW system (2) is uniformly bounded
in mean, and as a result, the deterministic RPW system (1) is uniformly bounded. The
conditions for RPW extinction will be established using the following theorem.

Theorem 2. If r < σ2
1
2 + µ1, then the populations will be extinct with a probability of one for any

positive initial conditions.

Proof. Applying Itô’s formula to the first equation of stochastic RPW system (2), one
obtains

d(lnP1) =

[
r(1− P1

k
)− βP2 − µ1 −

σ2
1

2

]
dt + σ1 dW1,

and integrating both sides of the above equation from 0 to t leads to

lnP1(t) ≤ lnP1(0) + (r− µ1 −
σ2

1
2
) t− r

k

∫ t

0
P1(s)ds− β

∫ t

0
P2(s)ds + σ1 W1.

It follows that

lim
t→∞

sup
lnP1(t)

t
≤ r− µ1 −

σ2
1

2
< 0 a.s.

which implies that
lim
t→∞

P1(t) = 0.
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Applying Itô’s formula to the second equation of stochastic RPW system (2), one
obtains

d(lnP2(t)) =

[
βP1 −

cL
a + P2

− µ1 −
σ2

2
2

]
dt + σ2 dW2.

Consequently,

lnP2(t) ≤ lnP2(0) + β
∫ t

0
P1(s)ds−

∫ t

0

cL
a + P2

ds− (µ1 +
σ2

1
2
) t + σ1 W1,

Taking the superior limit, one obtains

lim
t→∞

sup
lnP2(t)

t
≤ −(µ1 +

σ2
2

2
) < 0 a.s.

Thus, limt→∞ P2(t) = 0. The other classes of the RPW system (2) also proceed to
extinction a.s. Thus,

lim
t→∞

L(t) = 0, lim
t→∞

F(t) = 0, lim
t→∞

M(t) = 0.

In the following theorem, we will establish the asymptotic stability of the RPW
system (2).

Theorem 3. If K1 =
σ2

1
2 + r− µ1 < 0, K2 =

σ2
2
2 − µ1 < 0, K3 =

σ2
3
2 − ψ < 0, K4 =

σ2
4
2 − µ < 0,

K5 =
σ2

5
2 − (µ + ν) < 0 and να3(1 − ν)2 + 8K3K4K5 < 2ν2α2, then the trivial solution of

the RPW system (2) is stochastically asymptotically stable in probability for any positive initial
conditions.

Proof. Firstly, one can consider the following linearized RPW system.

dP1 = (r− µ1)P1 dt + σ1P1 dW1,

dP2 = −µ1P2dt + σ2P2 dW2,

dL = −ψLdt + σ3L dW3,

dF = (ναL− µF)dt + σ4F dW4,

dM = [(1− ν)αL− (µ + γ) M]dt + σ5M dW5.

(4)

Consider the following Lyapunov function.

V2 =
1
2

[
P2

1 (t) + P2
2 (t) + L2(t) + F2(t) + M2(t)

]
.

Applying Itô’s formula to the linearized stochastic RPW system (4), one computes

LV2 =

[
σ2

1
2

+ r− µ1

]
P2

1 +

[
σ2

2
2
− µ1

]
P2

2 +

[
σ2

3
2
−Ψ

]
L2 +

[
σ2

4
2
− µ

]
F2 +

[
σ2

5
2
− (µ + γ)

]
M2 + ναLF + (1− ν)αLM.

LV2 can be written in the form LV2 = 1
2 xTQx, where x = (P1, P2, L, F, M) and

Q =


2K1 0 0 0 0

0 K2 0 0 0
0 0 K3 να (1− ν)α
0 0 να K4 0
0 0 (1− ν)α 0 K5

.
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Matrix Q will be negatively definite if K1 =
σ2

1
2 + r− µ1 < 0, K2 =

σ2
2
2 − µ1 < 0, K3 =

σ2
3
2 +−ψ < 0, K4 =

σ2
4
2 − µ < 0, K5 =

σ2
5
2 − (µ+γ) < 0 and να3(1− ν)2 + 8K3K4K5 < 2ν2α2.

According to Theorem 2.4 [36], if there exists a positive-definite decreasing unbounded
function V2 such that LV2 is negative-definite, then the trivial solution of the linearized
stochastic RPW system (4) is stochastically stable in the large. As indicated by Arnold [39]
(Theorem 11.6.1), if the trivial solution of the linear stochastic RPW system (4) is stochas-
tically asymptotically stable, then the trivial solution of the non-linear stochastic RPW
system (2) is stochastically asymptotically stable.

In the following, based on the method of Khasminskii [40], we establish the conditions
for the existence of an ergodic stationary distribution of the positive solutions to the RPW
model (2). The positive equilibrium E3 for system (1) is locally asymptotically stable, but
there is non positive equilibrium point for RPW system (2). According to [41,42], one can
investigate the stationary distribution for the RPW system (2) instead of asymptotically
stable equilibria. Before providing the main theorem, we first state the following Lemma

Lemma 2 ([40]). The Markov process X(t) has a unique ergodic stationary distribution π(.) if
there exists a bounded closed domain U ⊂ Rd with regular boundary Γ possessing the following
properties:

C1 : There is a positive number M such that ∑d
i,j=1 aij(x)ηiηj ≥ M|η2|, x ∈ U, η ∈ Rd;

C2 : There exists a non-negative C2 function V such that LV is negative on Rd\U.

Theorem 4. Assume β > µ1, then for any positive initial value, system (2) has a unique ergodic
stationary distribution π(.).

Proof. In order to prove Theorem 4, one needs only to validate conditions C1 and C2 of
Lemma 2. The first step is to validate conditions C1 of Lemma 2. The diffusion matrix A1
of the system (2) is given by

A1 =


σ2

1 P2
1 0 0 0 0

0 σ2
2 P2

2 0 0 0
0 0 σ2

3 L2 0 0
0 0 0 σ2

4 F2 0
0 0 0 0 σ2

5 M2

.

Following [37,43,44], choose M1 = min
{

σ2
1 P2

1 , σ2
2 P2

2 , σ2
3 L2, σ2

4 F2, σ2
5 M2}; then, there is

a positive number M1 such that

5

∑
i,j=1

aij(P1, P2, L, F, M)ηiηj = σ2
1 P2

1 η2
1 + σ2

2 P2
2 η2

2 + σ2
3 L2η2

3 + σ2
4 F2η2

4 + σ2
5 M2η2

5 ≥ M1|η2|,

for all (P1, P2, L, F, M) ∈ U, η = (η1, η2, η3, η4, η5) ∈ R5. This implies condition that C1
in Lemma 2 is satisfied. The second step is to prove that there exists a non-negative C2

function V3 such that LV3 < 0 as follows. Define the following function.

V3 = (P1 − 1 + lnP1) + (P2 − 1 + lnP2) + (L− 1 + lnL) + (F− 1 + lnF) + (M− 1 + lnM).

Applying Itô formula leads to the following:
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LV3 =
(P1 − 1)

P1

(
rP1(1−

P1

k
)− βP1P2 − µ1P1

)
+

(P2 − 1)
P2

(
βP1P2 −

cP2L
a + P2

− µ1P2

)
+

(L− 1)
L

(
cP2L

a + P2
−ΨL

)
+

(F− 1)
F

(ναL− µF) +
(M− 1)

M

(
(1− ν)αL− µ M− γηM

I + η

)
+

1
2

5

∑
i=1

σ2
i

≤−
rP2

1
k

+
[
r +

r
k
− µ1 − β

]
P1 + (β− µ1)P2 + θ + µ2 + 2µ1 + 2µ + ν +

1
2

5

∑
i=1

σ2
i − r

≤(β− µ1)P2 −
[

r
2k

(
r +

r
k
− µ1 − β

)2
+ r− (θ + µ2 + 2µ1 + 2µ + ν +

1
2

5

∑
i=1

σ2
i )

]
≤(β− µ1)P2 − h1,

where h1 =
[

r
2k
(
r + r

k − µ1 − β
)2

+ r− (θ + µ2 + 2µ1 + 2µ + ν + 1
2 ∑5

i=1 σ2
i )
]
.

Define U1 =
{
(P1, P2, L, F, M) ∈ R5

+ : P2 > h1
}

; then, LV3 is negative on Rd\U1, which
implies that condition C2 in Lemma 2 is satisfied. As a result, the RPW system (2) is ergodic
and has a stationary distribution. This completes the proof.

4. Numerical Simulations

The RPW model is simulated in this section to demonstrate some of the previously
obtained analytical results. The following parameters will be used to simulate the in-
teractions between palm trees and different stages of the RPW r = 5; k = 3; β = 0.6;
µ1 = 0.1; µ2 = 0.002; α = 0.5; a = 3; θ = 0.03; µ = 0.001; γ = 0.2; η = 0.2; ν = 0.6; c = 1.4.
To understand the effect of the chemical injection coefficient θ on the dynamic behavior of
the RPW (1), one can increase the θ value and keep the rest of the parameters as above. Fig-
ure 1 indicates the occurrence of transcritical bifurcation at θ∗ = 0.5 and supercritical Hoph
bifurcation at θ∗∗ = 0.1285, as shown in Figure 2. When θ > θ∗, the density of larvae will
become extinct; consequently, the other classes of RPW will be extinct. Figure 3 indicates
that the population density of RPW males decreases with an increase in sex pheromone
trap parameter η. One can conclude that pheromone trap parameters η can limit the spread
of RPWs. The effect of intrinsic date palm growth rate r can be shown by drawing the
bifurcation diagram regarding r as a bifurcation parameter. From Figures 4 and 5, it can be
seen that two transcritical bifurcation values localized at r∗ = 0.1 and r∗∗ = 1.275. When
r < 0.1, the trivial equilibrium point is locally asymptotically stable. For 0.1 < r < 1.275,
the equilibrium point E2 = (0.166667, 1.57407r− 0.166667, 0, 0, 0) is locally stable. It can be
seen that supercritical Hopf bifurcation value localized at r = 4.19817 as shown in Figure 5.
When r > 4.19817, the RPW model (2) proceeds through limit cycle oscillation and for
r < 4.19817, E3 is locally stable as indicated in Figure 4 and coincides with Figure 5.

To provide some numerical findings to the stochastic RPW system (2), we use the
Milstein method mentioned in [45]. The stochastic RPW system (2) reduces to the following
discrete system:

P1(j+1) = P1j + h
(

rP1j(1−
P1j

k
)− βP1jP2j − µP1j

)
+ σ1P1j

√
hε1j +

σ2
1

2
P1j

[
ε2

1j − 1
]

h

P2(j+1) = P2j + h

(
βP1jP2j −

cP2jLj

a + P2j
− µ1P2j

)
+ σ2P2j

√
hε2j +

σ2
2

2
P2j

[
ε2

2j − 1
]

h

L(j+1) = Lj + h

(
cP2jLj

a + P2j
−ΨLj

)
+ σ3Lj

√
hε3j +

σ2
3

2
Lj

[
ε2

3j − 1
]

h

F(j+1) = Fj + h
(
ναLj − µFj

)
+ σ4Fj

√
hε4j +

σ2
4

2
Fj

[
ε2

4j − 1
]

h

M(j+1) = Mj + h

(
(1− ν)αLj − µMj −

γηMj

Fj + η

)
+ σ5Mj

√
hε5j +

σ2
5

2
Mj

[
ε2

5j − 1
]

h,

(5)
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where εij, (i, j = 1, 2, 3, 4, 5) are independent random Gaussian variables N(0, 1), and h is
a positive time increment. For the given parameters, one can note that the conditions of
Theorems 2 and 3 are verified and the populations will be extinct with probability one

if r <
σ2

1
2 + µ1 as indicated in Figure 6, when r = 0.8. The time series for the stochastic

system (2) and its histograms of probability density function are shown in Figure 7. The
conditions of Theorem 3 hold and system (2) has a unique stationary distribution and it
has ergodic properties. If one gradually increases the intensities of fluctuation σi and keeps
the remaining parameters unchanged, the RPW female oscillates around coexistence point
E3, as shown in Figure 8.

Figure 1. Bifurcation diagram of RPW system (1) with respect to θ.
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Figure 2. The RPW system (1) with θ = 0.1 and θ = 0.2.
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Figure 3. The RPW system (1) with different values of η.
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Figure 4. Bifurcation diagram of RPW system (1) with respect to r.
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Figure 5. The RPW system (1) with r = 0.05, 1, 2.5, 5.
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Figure 6. The stochastic RPW system (2) with σi = 0.1.

Figure 7. The stochastic system (2) and its histograms of probability density function.
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Figure 8. The stochastic RPW system (2) with σi = 0 and σi = 0.02.

5. Discussion and Conclusions

In this paper, a deterministic and stochastic model for RPW has been proposed and
analyzed. For the deterministic model, the stability of the solution has been studied. The
chemical injection parameter θ plays an essential role in controlling the RPW insect, because
by increasing the rate of injection, the insect is killed in the larval stage, and as a result,
the adult stages of the insect do not appear. The θ∗ parameter is biologically important,
as by knowing the parameters of the insect infestation of palm farms, it is possible to
determine the critical injection rate that leads to the disappearance of the palm weevil
from the farms. Moreover, from the numerical results, one can find that the population
density of RPW males decreases with increasing sex pheromone trap parameters η. The
numerical simulation for RPW indicates that white noise has a significant impact on the
dynamical behavior of the RPW system. The conditions for the extinction of RPW insects
from the stochastic model have been obtained. The adequate criteria for the presence of
a unique ergodic stationary distribution for the RPW system have been established by
creating suitable Lyapunov functions. The importance of environmental noise in RPW has
been simulated using the Milstein method. If one inserts the intensities of fluctuation σi = 0
and the chemical injection parameter θ = 0, the results of the stochastic model in this paper
coincide with the results of the deterministic model considered by [18]. Moreover, it is
interesting to study controlling RPW in date palms using sterile insect technique and the
effects of other factors, such as time delays and impulsive perturbations. We leave these
cases for future work.

Author Contributions: Formal analysis, M.E.-S.; Funding acquisition, A.A.-N.; Methodology, M.E.-S.;
Project administration, A.A.-N.; Supervision, N.F.A.-B.; Validation, M.E.-S., A.A.-N. and N.F.A.-B.;
Writing—original draft, M.E.-S. All authors have read and agreed to the published version of
the manuscript.



Axioms 2022, 11, 334 15 of 16

Funding: The authors gratefully acknowledge Qassim University, represented by the Deanship of
Scientific Research, on the financial support under the number (cosao-bs-2019-2-2-I-5469) during the
academic year 1440 AH/2019 AD.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated or analyzed during the current study.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Abdel-Baky, N.F.; Hamed, K.E.; Al-Otaibi, N.D.; Aldeghairi, M.A. Bioassay of Some Indigenous Entomopathogens for Controlling

Rhynchophorus ferrugineus, Olivier in Saudi Arabia. Pak. J. Biol. Sci. 2021, 24, 944–952. [CrossRef]
2. Wang, G.; Hou, Y.; Zhang, X.; Zhang, J.; Li, J.; Chen, Z. Strong population genetic structure of an invasive species, Rhynchophorus

ferrugineus (Olivier), in southern China. Ecol. Evol. 2017, 7, 10770–10781. [CrossRef] [PubMed]
3. Abd El-Wahab, A.; Abd El-Fattah, A.; El-Shafei, W.; El Helaly, A. Efficacy of aggregation nano gel pheromone traps on the

catchability of Rhynchophorus ferrugineus (Olivier) in Egypt. Braz. J. Biol. 2020, 81, 452–460. [CrossRef] [PubMed]
4. Faleiro, J.; Abdallah, A.B.; El-Bellaj, M.; Al-Ajlan, A.; Oihabi, A. Threat of the red palm weevil, Rhynchophorus ferrugineus (Olivier)

to date palm plantations in North Africa. Arab. J. Plant Prot. 2012, 30, 274–280.
5. Nangai, V.L.; Martin, B. Interpreting the acoustic characteristics of RPW towards its detection-A review. In Proceedings of the

IOP Conference Series: Materials Science and Engineering, Narsimha Reddy Engineering College, Hyderabad, India, 3–4 July
2017; Volume 225, p. 012178.

6. Al-Dosary, N.M.; Al-Dobai, S.; Faleiro, J.R. Review on the management of red palm weevil Rhynchophorus ferrugineus Olivier in
date palm Phoenix dactylifera L. Emir. J. Food Agric. 2016, 28, 34–44. [CrossRef]

7. Archer, L.; Crane, J.H.; Albrecht, U. Trunk Injection as a Tool to Deliver Plant Protection Materials—An Overview of Basic
Principles and Practical Considerations. Horticulturae 2022, 8, 552. [CrossRef]

8. El-Shafie, H.A.F.; Faleiro, J.R. Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae): Global invasion, current
management options, challenges and future prospects. In Invasive Species-Introduction Pathways, Economic Impact, and Possible
Management Options; 2020. Available online: https://doi.org/10.5772/intechopen.93391 (accessed on 6 July 2022).

9. Ahmad, I. Integrated Pest Management of Rhynchophorus ferrugineus Olivier: An Efficient Approach to Reduce Infestation in Date
Palm Trees. Pak. J. Zool. 2021, 54, 927. [CrossRef]

10. Chihaoui-Meridja, S.; Harbi, A.; Abbes, K.; Chaabane, H.; La Pergola, A.; Chermiti, B.; Suma, P. Systematicity, persistence and
efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on
Phoenix canariensis. Phytoparasitica 2020, 48, 75–85. [CrossRef]

11. Faleiro, J. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae)
in coconut and date palm during the last one hundred years. Int. J. Trop. Insect Sci. 2006, 26, 135–154.

12. Nurashikin-Khairuddin, W.; Abdul-Hamid, S.N.A.; Mansor, M.S.; Bharudin, I.; Othman, Z.; Jalinas, J. A Review of Ento-
mopathogenic Nematodes as a Biological Control Agent for Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculion-
idae). Insects 2022, 13, 245. [CrossRef]

13. Vacas, S.; Melita, O.; Michaelakis, A.; Milonas, P.; Minuz, R.; Riolo, P.; Abbass, M.K.; Lo Bue, P.; Colazza, S.; Peri, E.; et al. Lures
for red palm weevil trapping systems: Aggregation pheromone and synthetic kairomone. Pest Manag. Sci. 2017, 73, 223–231.
[CrossRef]

14. Soomro, M.H.; Mari, J.M.; Nizamani, I.A.; Gilal, A.A. Impact of trapping density on the performance of aggregation pheromone
against Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Int. J. Entomol Res. 2020, 5, 129–132.

15. Shehab, B.; Ammr, M. The Influence of Prey and Predator Density on THE Predacious Behavior of Chrysoperla Mutata
(Maclachlan) Larvae Feeding on Dubas Nymphs Ommatissus lybicus Deberg. Iraqi J. Sci. 2008, 49, 40–49.

16. Al-Rawy, M.A.; Hamad, B.S.; Abdullatif, A.M. Factors affecting the effectiveness of Chrysoperla mutata (McL.) larvae feeding on
dubas nymphs Ommatissus lybicus DeBerg. J. Educ. Sci. Stud. 2013, 1, 387–398.

17. Barclay, H.J.; Jorge, H. Models for assessing the male annihilation of Bactrocera spp. with methyl eugenol baits. Ann. Entomol. Soc.
Am. 2014, 107, 81–96. [CrossRef]

18. Anguelov, R.; Dufourd, C.; Dumont, Y. Mathematical model for pest–insect control using mating disruption and trapping. Appl.
Math. Model. 2017, 52, 437–457. [CrossRef]

19. Ntahomvukiye, J.P.; Temgoua, A.; Bowong, S. Study of the population dynamics of Busseola fusca, maize pest. Acta Biotheor.
2018, 66, 379–397. [CrossRef]

20. Xiang, S.; Pei, Y.; Liang, X. Analysis and optimization based on a sex pheromone and pesticide pest model with gestation delay.
Int. J. Biomath. 2019, 12, 1950054. [CrossRef]

21. Tapi, M.D.; Bagny-Beilhe, L.; Dumont, Y. Miridae control using sex-pheromone traps Modeling, analysis and simulations.
Nonlinear Anal. Real World Appl. 2020, 54, 103082. [CrossRef]

http://doi.org/10.3923/pjbs.2021.944.952
http://dx.doi.org/10.1002/ece3.3599
http://www.ncbi.nlm.nih.gov/pubmed/29299256
http://dx.doi.org/10.1590/1519-6984.231808
http://www.ncbi.nlm.nih.gov/pubmed/33027341
http://dx.doi.org/10.9755/ejfa.2015-10-897
http://dx.doi.org/10.3390/horticulturae8060552
https://doi.org/10.5772/intechopen.93391
http://dx.doi.org/10.17582/journal.pjz/20210731060757
http://dx.doi.org/10.1007/s12600-019-00776-5
http://dx.doi.org/10.3390/insects13030245
http://dx.doi.org/10.1002/ps.4289
http://dx.doi.org/10.1603/AN13046
http://dx.doi.org/10.1016/j.apm.2017.07.060
http://dx.doi.org/10.1007/s10441-018-9335-x
http://dx.doi.org/10.1142/S1793524519500542
http://dx.doi.org/10.1016/j.nonrwa.2019.103082


Axioms 2022, 11, 334 16 of 16

22. Alnafisah, Y.; El-Shahed, M. Deterministic and Stochastic Prey–Predator Model for Three Predators and a Single Prey. Axioms
2022, 11, 156. [CrossRef]

23. Xu, C.; Ren, G.; Yu, Y. Extinction analysis of stochastic predator–prey system with stage structure and crowley–martin functional
response. Entropy 2019, 21, 252. [CrossRef] [PubMed]

24. Song, G. Dynamics of a stochastic population model with predation effects in polluted environments. Adv. Differ. Equ. 2021,
2021, 189. [CrossRef]

25. Mu, Y.; Lo, W.C. Stochastic dynamics of populations with refuge in polluted turbidostat. Chaos Solitons Fractals 2021, 147, 110963.
[CrossRef]

26. Wang, Z.; Deng, M.; Liu, M. Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching.
Chaos, Solitons Fractals 2021, 142, 110462. [CrossRef]

27. Salman, S.; Yousef, A.; Elsadany, A. Dynamic behavior and bifurcation analysis of a deterministic and stochastic coupled logistic
map system. Int. J. Dyn. Control 2022, 10, 69–85. [CrossRef]

28. Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A.; Ahmad, B. A stochastic SIRS epidemic model with logistic growth and general nonlinear
incidence rate. Phys. Stat. Mech. Its Appl. 2020, 551, 124152. [CrossRef]

29. Li, Q.; Cong, F.; Liu, T.; Zhou, Y. Stationary distribution of a stochastic HIV model with two infective stages. Phys. Stat. Mech. Its
Appl. 2020, 554, 124686. [CrossRef]

30. Khan, A.; Hussain, G.; Yusuf, A.; Usman, A.H.; Humphries, U.W. A hepatitis stochastic epidemic model with acute and chronic
stages. Adv. Differ. Equ. 2021, 2021, 181. [CrossRef]

31. Wang, X.; Wang, C.; Wang, K. Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for
HIV transmission. Adv. Differ. Equ. 2021, 2021, 1–17. [CrossRef]

32. Wang, X.; Tan, Y.; Cai, Y.; Wang, K.; Wang, W. Dynamics of a stochastic HBV infection model with cell-to-cell transmission and
immune response. Math. Biosci. Eng. 2021, 18, 616–642. [CrossRef]

33. Lan, G.; Yuan, S.; Song, B. The impact of hospital resources and environmental perturbations to the dynamics of SIRS model. J.
Frankl. Inst. 2021, 358, 2405–2433. [CrossRef]

34. Ikram, R.; Khan, A.; Zahri, M.; Saeed, A.; Yavuz, M.; Kumam, P. Extinction and stationary distribution of a stochastic COVID-19
epidemic model with time-delay. Comput. Biol. Med. 2022, 141, 105115. [CrossRef] [PubMed]

35. Wei, C.; Liu, J.; Zhang, S. Analysis of a stochastic eco-epidemiological model with modified Leslie–Gower functional response.
Adv. Differ. Equ. 2018, 2018, 1–17. [CrossRef]

36. Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007.
37. Li, L.; Zhao, W. Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified

Holling-type IV scheme. Math. Biosci. Eng. 2021, 18, 2813–2831. [CrossRef]
38. Li, J.; Shan, M.; Banerjee, M.; Wang, W. Stochastic dynamics of feline immunodeficiency virus within cat populations. J. Frankl.

Inst. 2016, 353, 4191–4212. [CrossRef]
39. Arnold, L. Stochastic Differential Equations; Wiley-Interscience: New York, NY, USA, 1974; p. 243.
40. Khasminskii, R. Stochastic Stability of Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011; Volume 66.
41. Caraballo, T.; Kloeden, P.E. The persistence of synchronization under environmental noise. Proc. R. Soc. A Math. Phys. Eng. Sci.

2005, 461, 2257–2267. [CrossRef]
42. Ji, C.; Jiang, D.; Liu, H.; Yang, Q. Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic

perturbation. Math. Probl. Eng. 2010, 2010, 684926. [CrossRef]
43. Chen, Y.; Zhao, W. Dynamical analysis of a stochastic SIRS epidemic model with saturating contact rate. Math. Biosci. Eng. 2020,

17, 5925–5943. [CrossRef]
44. Huang, Y.; Shi, W.; Wei, C.; Zhang, S. A stochastic predator–prey model with Holling II increasing function in the predator. J. Biol.

Dyn. 2021, 15, 1–18. [CrossRef]
45. Higham, D.J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001,

43, 525–546. [CrossRef]

http://dx.doi.org/10.3390/axioms11040156
http://dx.doi.org/10.3390/e21030252
http://www.ncbi.nlm.nih.gov/pubmed/33266966
http://dx.doi.org/10.1186/s13662-021-03297-w
http://dx.doi.org/10.1016/j.chaos.2021.110963
http://dx.doi.org/10.1016/j.chaos.2020.110462
http://dx.doi.org/10.1007/s40435-021-00795-3
http://dx.doi.org/10.1016/j.physa.2020.124152
http://dx.doi.org/10.1016/j.physa.2020.124686
http://dx.doi.org/10.1186/s13662-021-03335-7
http://dx.doi.org/10.1186/s13662-021-03392-y
http://dx.doi.org/10.3934/mbe.2021034
http://dx.doi.org/10.1016/j.jfranklin.2021.01.015
http://dx.doi.org/10.1016/j.compbiomed.2021.105115
http://www.ncbi.nlm.nih.gov/pubmed/34922174
http://dx.doi.org/10.1186/s13662-018-1540-z
http://dx.doi.org/10.3934/mbe.2021143
http://dx.doi.org/10.1016/j.jfranklin.2016.08.004
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1155/2010/684926
http://dx.doi.org/10.3934/mbe.2020316
http://dx.doi.org/10.1080/17513758.2020.1859146
http://dx.doi.org/10.1137/S0036144500378302

	Introduction
	Mathematical Model
	Dynamics of the Stochastic Model
	Numerical Simulations
	Discussion and Conclusions
	References

