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Abstract: This paper presents a new theoretical approach to the study of robotics manipulators
dynamics. It is based on the well-known geometric approach to system dynamics, according to which
some axiomatic definitions of geometric structures concerning invariant subspaces are used. In such
a framework, certain typical problems in robotics are mathematically formalised and analysed in
axiomatic form. The outcomes are sufficiently general that it is possible to discuss the structural
properties of robotic manipulation. A generalized theoretical linear model is used, and a thorough
analysis is made. The noninteracting nature of this model is also proven through a specific theorem.
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1. Introduction

To briefly describe the history of robotics up to the present day is not a superfluous
task. It is curious to first search for the original meaning of the word. Some philologists
propose that the term “robot” came from the Latin root of the word “robor-roboris”, one
of the meanings of which is “force”. In any case, the term “robot” was introduced for the
first time in 1921 by the Czech writer Karel Capek in his satirical work entitled “Rossum’s
Universal Robots”; in Czech, “robota” means “work”. Some consider the source to be Indo-
European, so it might be useful, in this endeavor, to track down various corruptions, such
as “labor-laboris”, and hence “work”. Capek’s satirical work emphasizes the difference
between the machine and the human and, in particular, the substantial difference consists
in the fact that robots never get tired.

After World War II, the need to manipulate radioactive material generated the need
to build the first mechanical manipulators that are remotely controlled. They were made
in the laboratories of Argonne and Oack Ridge (USA), and were of the master–slave type,
which are manipulators consisting of a “slave part” driven by the human operator whose
movements were duplicated on the slave part through a series of mechanical linkages.
General Electric, together with General Mills, called these teleoperators. However, the
teleoperators were certainly not the only expression of robotics in the years following World
War II; the CNC-machines (Computerized Numerical Control machines), initially used for
the lamination of some parts of the aircraft, joined these. In fact, the numerical control
machines had a considerable weight in history of robotics. Their great merit was to fully
replace the human operator in the teleoperators. In 1954, for the first time, George Devol
replaced in teleoperators the human operator with a programmable controller similar to
that present in the numerical control machines, giving rise to the first real robot: “real” to
emphasize the fact that a machine during the execution of tasks does not depend in any
way on a human. Devol’s patent rights were bought by Eledemberg Joseph, a student at
Columbia University, who in 1956 built Unimation. This company in 1961 installed in the
plants of General Motors the first robot that, because of its programmability, was able to
perform a wide range of operations, multiplying the flexibility of the chain of assembly.
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Mechanically, the robot was with an open kinematic chain consisting of many degrees of
freedom and consequently its control was not an easy task. To improve the pilotability of
the robots and strengthen their capacity, in 1962, Ernst inserted the first force sensors in the
structure of the mechanical robots.

The sensing robots went on in different forms: Tomovic and Bono developed a pressure
sensor for taking robotics; McCarthy developed a vision system binary, etc. The entire
activity research concretized in the first manipulator industrial computer control of the
Cincinnati Milacron, baptized “The Tomorrow Tool T3 (1973). In addition, in the 1970s, the
Unimation begins to produce the PUMA (Programmable Universal Machine for Assembly),
which represents one of the cornerstones in the history of robotics.

During the 1980s, the research, aimed at improving performance of industrial robots,
was developed and the first techniques to control the position and the stiffness of robots
in feedback. In the past few years, the trend has been to build very versatile devices. An
example useful for all is the Robotworld of Automatix structured into several modules, each
with four degrees of freedom, which can be connected to different tools for the execution of
various operations.

The potential applications of the research in the field of robotic manipulation have
been and still are the reasons driving the research. For example, think of the possibilities of
their use in operating in environments hostile to man (or applications in space exploration
in central nuclear, removal of toxic waste), or the robotization of work notoriously difficult
and/or dangerous to humans, or, finally, medical applications (robotic protheses, using
robotic surgery).

Technological development has not only increased the use of robots in industrial
fields, but has also made it possible for them to actually use different applications, such
as medical implants instruments for non-invasive surgery. These applications require
high-precision performance and often also a high execution speed. In general, therefore,
studies highlighting the extent to which the potentialities and prospects of such devices
can be improved are required. Robotic manipulation systems are of a great importance
due to their flexibility for application in any industrial sector. Their flexibility is a result
of the multifunctionality of robotic hands, which allows for their application to industrial
processes in many fields and for the possibility of interactions and cooperation with other
robotic structures. This is connected with the fact that manipulation skills are, together
with speech, probably the most important features that distinguish humans from animals.
A certain evolutionary biology believes that a certain part of human supremacy over
other primates is also due to the prensility of our upper limbs that allowed the immediate
application of ideas in what is usually called actions, a process otherwise definitely more
complicated. In other words, one might wonder what would be without prensility of the
upper limbs. This seems to be unimaginable, to have a reality different from what we have
today. Due to this consideration, this can seem elementary, and leads us to think about
how important it is that a machine performs a certain function, or better, a certain action.
In this sense, to be able to affect the environment, a manipulator needs more versatile
hands. As a result of technological development, the application of robotics is on the rise in
many industrial sectors, and even in the medical field (e.g., micro-manipulation of internal
tissues or laparoscopy). Due to the high mechanical efficiency and the vast possibilities of
application of robots, in the past years the manipulation was followed with great interest in
both academic and industrial world, refs. ([1–9]). For these advanced applications, robotic
devices with high performances in terms of precision and speed are required. In order to
achieve high performances, a general strategy in robotics is represented by the decoupling
control technique.

1.1. Coupling and Decoupling

The decoupling of coupled systems is one of the most interesting problems in system
theory and control. The decoupling control strategies allow us to simplify the control
itself and also the identification procedure of the parameters of the robot. The couplings
which are contained in the mathematical description of the robot model through the motor
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inertia, the mass inertia, the stiffness and the damping matrix within the joints should be
decoupled by the control. These couplings lead to an eighth-order multivariable system for
each joint. The decoupling within joints is achieved by a novel MIMO state controller motor
positions and output torques and their derivatives as states. In general, in order to design
the controller of robots taking into account the coupling, the system is broken down into
two decoupled subsystems using modal decoupling and subsequently considered as two
separate single-variable systems (SISO). Thus, the parameters of the SISO state controller
can be determined for the respective subsystem and two independent controllers are to be
designed [10]. A globally asymptotic stability for the entire system can be achieved with the
MIMO state controller. The controller significantly expands the approaches from [11], both
theoretically and practically. The decoupling control represents one of the most interesting
controller structures that have been implemented on robots. Multivariable systems, in
which several output variables can be dependent on several input variables at the same
time, are characterized by the mutual coupling of inputs and outputs. It is therefore the task
of the control design for multivariable systems to minimize the influence of the coupling so
that, in the ideal case, each output variable is only influenced by a corresponding virtual
manipulated variable and thus the controlled system achieves the desired smooth dynamic
behavior, ref. [12]. When designing a controller for a linear multivariable system, there are
basically two options:

• central controller design
• decentralized controller design.

The modal method for the controller design is used to decouple the system from the
controller. While central controller design is based on the overall system, decentralized
controller design uses several decoupled, lower-order subsystems instead of the high-
order, coupled system. In the following, the two methods are presented and analyzed
one after the other. In a centralized decoupled control design, the state controller can be
designed through the complete modal synthesis, whereby the closed overall system is
decoupled. In the context of a decentralized decoupled control design, if a multivariable
system is decoupled, the synthesis problem is reduced to the case of single control. For
this, the system is first transformed into a modal form in which it can be divided into
several small, decoupled subsystems. The decoupling control finds application, not only in
manipulation systems, but also in other systems. One example is represented by the mobile
robots. For instance, in [13], an explicit model predictive control (MPC), in combination
with sliding mode control in the context of a decoupling controller, is proposed. The
decoupling control is particularly important for MPC in order to reduce the computational
load. In addition, recent MPC contribution takes into account the problem of computational
load in the field of tracking of different trajectories mark progress in optimal design for
model predictive control based on a new improved intelligent technique and it is named
the modified multitracker optimization algorithm, such as, for instance, in [14]. This
modification improves the exploration behavior to prevent it from becoming trapped in
a local optimum. The proposed method is applied on the robotic manipulator to track
trajectories. In addition, more recently, in [15], an optimized algorithm in MPC context
for autonomous vehicle is proposed. More in general, the decoupling proposed in this
contribution can be integrated in with the methods proposed in [16], as well as in [17,18],
in which the D-decomposition method is used in order to compute optimized controller
gains that provide fine performance in different engineering applications.

1.2. Main Contribution of the Paper

The present paper presents a new approach to the study of robotics manipulators
dynamics based on the well-known geometric control approach to system dynamics. Using
this framework several typical problems in robotics are mathematically formalised and
analysed. The outcomes are sufficiently general that it is possible to discuss the struc-
tural properties of robotic manipulation, which are obtained using a geometric approach.
The geometric approach was pioneered in the 1970s, in [19–22]. The approach used for
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the derivation of these properties is decidedly new in this kind of literature that refers
especially to [23–26]. The novelty consists in using the geometric approach (theory of
invariants subspaces) analysis and then the derivation of the properties as listed above
for the synthesis of control systems that guarantee and then allow to exploit these prop-
erties in any operating condition. The seminal references for this approach were [20,27].
The problem of the noninteracting force motion model is here investigated, a generalised
linear model is used, and a careful analysis is performed. Contributions to the topic of
manipulation using the geometric approach further progressed through the use of linear
algebra. Recent contributions, such as in [28–30] have led to progress in the analysis and
synthesis of geometric controllers for application to electro-mechanical systems. In [31–33],
a geometric approach guarantees robustness and many practical advantages in possible
real applications; see [34]. In particular, the geometric approach can be focused on the dis-
turbance decoupling problem [35], an issue that has attracted many scientists. Furthermore,
in [36–38], interesting and interpretable results are proposed. For a broad overview of the
manipulation control problem, the reader is referred to [26] and the references therein. The
present paper aims at analysing the structural properties of noninteraction with respect
to rigid-body object motions and reachable contact forces along with possible mechanism
redundancy. More recently, refs. [39–41] underline the importance of a noninteraction in
the control strategy to simplify the structure of the controller. In the same way, ref. [42–44]
point out the importance of the position/force control in robotic manipulation.

The present study is conducted using geometric techniques. Some axiomatic def-
initions of geometric structures concerning invariant subspaces are used as a possible
framework in order to derive some structural properties in the considered system. This
paper follows the contributions published in [31,35] and, more recently, in [32,34,45]. These
studies on geometric control represent an interesting line of research in which problems
such as decoupling, noninteraction and disturbance rejection are taken into account in the
context of mechanical systems.

1.3. Structure of this Contribution

The present paper is structured as follows. In Section 2, the linearized dynamical
model is derived. Section 3 is dedicated to the reachable internal contact forces and
a fundamental theorem is demonstrated. In Section 4, the noninteraction property is
presented. In Section 5, a possible reinterpretation of the theoretical results is proposed
and a case study with its simulations is shown. The paper closes with a conclusion and
an appendix in which the proof of the theorem that states the structural property of
noninteraction is proposed.

2. Dynamic Model

For the dynamic model, q ∈ Rq denotes the vector of manipulator joint positions, τ ∈ Rq

denotes the vector of joint actuator torques, u ∈ Rd denotes the vector locally describing
the position and the orientation of a frame attached to the object, and w ∈ Rd denotes the
vector of forces and torques resulting from external forces acting directly on the object. In
the literature, w usually refers to the disturbance vector. The force/torque interaction ti at
the i-th contact is taken into account by using a lumped-parameter (Ki, Bi) model of visco
elastic phenomena. According to this model, the contact force vector ti is as follows:

ti = Ki(hci −o ci)+Bi(h ċi −o ċi), (1)

where vectors hci and oci describe the postures of two contact frames, the first on the
manipulator and the second on the object, where the i-th contact spring and damper are
anchored. Matrices Ki and Bi are symmetric and positive definite and the dimensions
of vectors involved in Equation (1) depend on the particular model used to describe the
contact interaction [46]. The Jacobian J and grasp matrix G of the manipulation system,
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see [25,47], are defined by the linear maps relating the velocities of vectors hc and oc with
the joint and object velocities q̇ and u̇, respectively:

h ċ = Jq̇,
o ċ = GTu̇.

(2)

Note that JTt and Gt dually represent the effects of contact forces t on the manipulation
and object dynamics whose full nonlinear models are, respectively:

Mhq̈ +Qh = −JTt + τ,

Moü +Qo = Gt +w.
(3)

Here, Mh and Mo are inertia symmetric and positive definite matrices, while Qh and Qo are
terms including velocity-dependent and gravity forces of the manipulator and the object,
respectively. To proceed with the analysis of the linearised model of the full manipulation
system, consider a reference equilibrium configuration

q = qo, u = uo, q̇ = u̇ = 0,
τ = τo, w = wo t = to,

such that
τo = JTto and wo = −Gto.

The linear approximation of the manipulation system in the neighbourhood of this
equilibrium is given by

ẋ = Ax +Bτδτ +Bwδw, (4)

where the state and input vectors are defined as the departures from the reference equilib-
rium configuration as follows:

x = [δqT , δuT , δq̇T , δu̇T]
T
= [(q − qo)T (u − uo)T q̇T u̇T]

T
,

δτ = τ − JTto,

δw = w +Gto.

(5)

The dynamic, input and disturbance matrices are

A = [ 0 I
Lk Lb

], Bτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Bw =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

M−1
o

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

To simplify the notation, we will henceforth omit the symbol δ. According to [47], by
neglecting gravity, assuming a locally isotropic model of visco–elastic phenomena (where
the stiffness matrix K is proportional to the damping matrix B), and assuming that the
local variations of the Jacobian and grasp matrices are small, blocks Lk and Lb in A can be
simply obtained as

Lk = −M−1Pk, Lb = −M−1Pb, (7)

where
M = diag(Mh, Mo),

Pk = [ JT

−G
]K[ J −GT ],

Pb = [ JT

−G
]B[ J −GT ].
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Concerning the contact forces, we then obtain

t′ = t − to = K(Jδq −GTδu)+B(Jδq̇ −GTδu̇), (8)

and in terms of matrices, we have
t′ = Ctx,

where the output matrix of the contact force is as follows:

Ct = [ KJ −KGT BJ −BGT ]. (9)

The properties of grasping defined as follows have a relevant influence on the dynamic
behaviour of the manipulation system, refs. [25,47]. These properties are based on the
existence of the null spaces of the Jacobian and grasp matrices J and G and of their transpose
matrices.

Definition 1. A grasp (or manipulation system) is considered defective if ker(JT) ≠ 0.

Definition 2. A grasp is considered indeterminate if ker(GT) ≠ 0.

If a grasp is indeterminate, there exist motions of the objects under which no variations of
contact forces occur. In other words, indeterminacy implies that the object is not firmly grasped.

Definition 3. A manipulation system is considered graspable if ker(G) ≠ 0.

If a system is graspable, it is possible to exert contact forces with zero resultant forces
on the object. Usually in the literature, the forces belonging to the null space of G are
referred to as internal forces. Finally, the well-known notion of manipulator redundancy is
formalised as follows.

Definition 4. A grasp is considered redundant if ker(J) ≠ 0.

Proposition 1. If a system is not indeterminate, i.e., ker(GT) = 0, then the minimal A-invariant
subspace containing im(Bτ), minI(A, Bτ), is externally stable.

From now on, we will assume that the considered system is not indeterminate
ker(GT) = 0. Concerning the coordinate movements of the object, the following proposition [47]
show that the subspace JΓT

qc = GTΓT
uc. of rigid-body motions is reachable.

Proposition 2. The rigid kinematics are described by the base matrix Γ whose columns form a basis for

ker[ J GT ] = im(Γ), (10)

where Γ = [ΓT
qc ΓT

uc].

Proposition 3. Let the subspace of rigid-body motions be defined as the column space of Tc, where

Tc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
Γuc 0
0 Γqc
0 Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Accordingly, the following holds:

im(Tc) ⊆ minI(A, Bτ).
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3. Reachable Internal Contact Forces

Contact forces t are exerted on an object by the manipulation system in order to maintain
the grasp, reject disturbance wrenches w and control the object motion. Therefore, the control
of contact forces is a fundamental part of the manipulation control problem, as the better the
control of forces, the finer the manipulation. In [47], the reachable subspace of contact forces as
an outputs of the dynamic system given in Equation (4) was studied. The following theorem
provides an explicit formula for the subspace of reachable internal forces.

Theorem 1. Under the hypothesis stating that K is proportional to B,

Rti,τ = im((I −KGT(GKGT)−1G) Ct) = im((I −KGT(GKGT)−1G) KJ).

Then, the output matrix is defined as follows:

eti = Etix; with Eti = (I −KGT(GKGT)−1G)Ct = [ Qk 0 Qβ 0 ], (12)

where
Qk = (I −KGT(GKGT)−1G)KJ. (13)

and
Qβ = (I −BGT(GBGT)−1G)BJ. (14)

It should be remarked that im(Qk) = im(Qβ) under the hypothesis im(K) = im(B).

4. Noninteraction as a Structural Property

The present section aims to analyse noninteraction as a control property for a general
grasping mechanism with respect to the rigid-body object motions and the reachable
contact forces together with the possible mechanism redundancy. The geometric approach
is used for this analysis. It should be remarked that the earliest geometric approaches
to noninteracting control where proposed by Basile and Marro [19,20] and to Wonham
and Morse [21,22,27]. The results of this section address the force/motion noninteracting
control of general manipulation mechanisms and are based on necessary and sufficient
conditions for the existence of the noninteraction control law given in [19,20]. We now
proceed to analyse noninteraction as a structural property of general manipulation systems
by formalizing the notion of force/motion noninteraction.

Definition 5. A control law for the dynamic system in Equation (4) is noninteracting with respect
to the regulated outputs euc, eti and eqr if there exists a partition τuc, τti and τqr of the input vector
τ such that for an initial condition of zero, each input τ(⋅) (with all the other inputs, also being
zero) only affects the corresponding output e(⋅).

The Fundamental Theorem

The following theorem shows that the noninteraction of the regulated outputs euc, eti
and eqr for the dynamic system in Equation (4), is an intrinsic structural property of general
manipulation systems. Assume that following hypothesis:

H1. The manipulation mechanism is not indeterminate that is, ker(GT) = 0.

Then, the following theorem holds.

Theorem 2 (Noninteraction). Consider the linearized manipulation system given in Equation (4).
Under Hypothesis H1, there exists a noninteracting control law decoupling the following outputs:

(a) the rigid–body object motions euc,
(b) the reachable internal forces eti,
(c) the mechanism redundancy eqr.
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Proof. Under hypothesis H1, the couple (A, Bτ) is stabilisable (Proposition 1). Moreover,
under H1 for the linearized system in Equation (4), it is a simple matter to verify that the
system is detectable based on the informative output y = (qT , tT)T . Then, there exists an
observer–based controller noninteracting with respect to the regulated outputs euc, eti and
eqr. Recall that following:

euc = Eucx = [ 0 ΓP
uc 0 0 ]x; (15)

eti = Etix = [ Qk 0 Qβ 0 ]x; (16)

eqr = Eqrx = [ ΓP
r Mh 0 0 0 ]x. (17)

Based on the theorem in [20], emerges that the outputs euc, eti and eqr are noninteracting if
and only if

EucRKuc = im(Euc),

EtiRKti = im(Eti),

EqrRKqr = im(Eqr),
(18)

where
Kuc = ker(Eti)∩ ker(Eqr),

Kti = ker(Euc)∩ ker(Eqr),

Kqr = ker(Eti)∩ ker(Euc).

(19)

Here,RK
(⋅)

denotes the K(⋅)-constrained controllability subspace, which is the subspace of
all the points reachable through trajectories leaving the origin and belonging to K(⋅). We go
on to prove the equalities in Equation (18). To simplify the proof, we replace the intersection
subspaces in Equation (19) with suitable subspaces whose constrained controllability sets
suffice for our purposes. The demonstration is provided in Appendixes A and B. ◻

5. Case Study

Considering theorem in [34] which states that for the linearized manipulation system
under the hypothesis ker(GT) = {0}, it is possible to find a stabilizing state–feedback control
law, τ = Fx + τ∗ and an input partition τ∗ = Utiuti +Uucuuc which realize a noninteracting
control of the reachable internal forces ti and rigid–body object motions uc as follows:

(Eti, A +BτF, BτUti),

(Euc, A +BτF, BτUuc),
(20)

it holds:
Rti = minI(A +BτF, BτUti) ⊆ ker(Euc),

EtiRti = im(Eti),
(21)

Ruc = minI(A +BτF, BτUuc) ⊆ ker(Eti),

EucRuc = im(Euc).
(22)

The partition matrices Uuc and Uti are such that the following conditions are satisfied:

im(BτUuc) = im(Bτ)∩Ruc,
im(BτUti) = im(Bτ)∩Rti,

(23)

and matrix F satisfies the following conditions:

(A +BτF)Ruc ⊆Ruc,
(A +BτF)Rti ⊆Rti.

(24)

The decoupling controller is that sketched in Figure 1.
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Uti

Uuc

State
Dynamics

F

Eti

Euc

uti

uuc

ti

Uc

System

Figure 1. Force/motion decoupling controller.

In this section numerical results are reported for the simple defective gripper pictorially
described in Figure 2.

c1

c2

Joint q1

Joint q2

Joint q3

B

Y

X

circular trajectory of the center
of mass of the object

Figure 2. Planar 3–DoF’s Cartesian manipulator. It exhibits a defective (ker(JT) = 0) grasp.

It is a planar 3–DoF’s Cartesian manipulator and has been chosen in order to show the
effectiveness of previous results for industrial grippers. In the base frame B, the contact
centroids, see [48], are c1 = (2, 2), c2 = (2, 3) and object center of mass is cb = (2, 2.5) while
the transpose of the Jacobian and the grasp matrix assume the following values

JT =
⎡⎢⎢⎢⎢⎣

0 1 0 0
1 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
; G =

⎡⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1

0.5 0 −0.5 0

⎤⎥⎥⎥⎥⎦
.

The inertia matrices of the object and manipulator along with stiffness and damping
matrices at the contacts are assumed to be normalized to the identity matrix. The controlled
outputs are (a) the projection ti of the contact forces along the 1–dimensional subspace
of reachable contact force im([0 1 0 − 1]T) and (b) the projection of the rigid–body motion

in the 2–dimensional subspace of object motions im
⎡⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎦
which, since u = [δx δy δθ]T ,

corresponds to translations of the object.
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General Procedure

The objective of the control is twofold. First, force and motion control must be de-
coupled, then the perfect tracking of desired trajectories tid and ucd can be achieved. The
decoupling controller is pictorially described in Figure 1 and has been synthesized, accord-
ing to Section 4, Equations (20), (23) and (24). State–feedback matrix F and input partition
matrix U = [ Uti Uuc ] are obtained respectively according to the following procedure:

• Item 1: Considering Equation (21), the reachable subspace of the internal contact force is
calculated:

Rti = (ET
tiEti)−1ET

ti im(Eti). (25)

• Item 2: OnceRti is obtained, partition Uti using (23), is obtained as follows:

im(Uti) = (BT
τ Bτ)−1BT

τ im(Bτ)∩Rti. (26)

• Item 3: Considering Equation (21), matrix Fti is calculated such that the following con-
dition
is satisfied:

Rti = minI(A +BτFti, BτUti) ⊆ ker(Euc). (27)

• Item 4: Considering Equation (22), the reachable subspace of the internal coordinated
movements is calculated as follows:

Ruc = (ET
ucEuc)−1ET

ucim(Euc). (28)

• Item 5: OnceRuc is obtained, partition Uuc using (23), is obtained as follows:

im(Uuc) = (BT
τ Bτ)−1BT

τ im(Bτ)∩Ruc. (29)

• Item 6: Considering Equation (22), matrix Fuc is calculated such that the following con-
dition
is satisfied:

Ruc = minI(Ati +BτFuc, BτUuc) ⊆ ker(Eti). (30)

• Item 7 : The final state–feedback noninteracting matrix is the following:

F = Fti + Fuc. (31)

End

Matrix Fti realizes the invariance of the internal contact forces. In this context, it is pos-
sible to squeeze the object without moving it. Using matrix Fti the following noninteracting
transition matrix is obtained:

Ati = A +BτFti. (32)

In the same way, matrix Ati, defined in Equation (32), together with matrix Fuc realize the
invariance of the subspace of the object motions. In this context, it is possible to move the
object without squeezing it. Thanks to matrix Fuc the following transition matrix which
realizes the noninteracting control system is obtained:

Adec = Ati +BτFuc. (33)

To go more in depth, Equation (31) is obtained from Ati = A +BτFti and Adec = Ati +BτFuc.
A combination of these two relations yields:

Adec = A +Bτ(Fti + Fuc), (34)
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and Equation (31) comes from Equation (34). Considering numerical data, the following
matrices are obtained:

F =
⎡⎢⎢⎢⎢⎣

−7 6.5 −6 −1 −41 0 −7.5 −0.02 −5.5 −3 −22 0
10 −120 10 −72 5 0 0.29 −16 0.29 7.2 −6.2 0
−6.1 6.5 −7.1 −0.97 −41 0 −5.5 −0.021 −7.5 −3.1 −22 0

⎤⎥⎥⎥⎥⎦
,

Uti =
⎡⎢⎢⎢⎢⎢⎣

−0.707
0

0.707

⎤⎥⎥⎥⎥⎥⎦
, Uuc =

⎡⎢⎢⎢⎢⎢⎣

0 −0.707
1 0
0 −0.707

⎤⎥⎥⎥⎥⎥⎦
.

Considering an angular velocity of 0.1 rad/s and uo of coordinates (2.5, 1) as possible
starting point, see Figure 2, the control task consists of maintaining the contact force to
the constant value of to = [0; 1; 0;−1]T . The joint forces τ∗ = Utiuti + Uucuuc represents
the control law which guarantees the perfect tracking of desired object motions with the
desired internal force ti, see Figure 3. The required circular trajectory of the center of mass
of the object is represented in Figure 2.
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Figure 3. Internal force ti perfectly tracks the constant internal force while the object center of mass
perfectly tracks the unit circle as depicted in Figure 2.

It is worthwhile to remark that for a simple industrial gripper, under the reasonable
hypothesis that the angular dynamics of the object can be disregarded, linearized dynamics
represents the complete description of manipulation system dynamics.

6. Conclusions and Future Work

This paper considered the problem of noninteracting control in a linearized general
manipulation systems. The geometric approach was used throughout the paper. The main
results demonstrate that, in general, there always exists an observer-based control law that
is noninteracting with respect to the aforementioned outputs. Note that the generality
of our approach allows for the consideration of this force/motion noninteraction as a
structural property of general manipulation systems. A possible future work can include
the analysis of the robustness of the proposed theorem including also a robust design of
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the controller. Moreover, also a possible noninteraction realized using a feedback from
the measured output and its corresponding robust control design should be taken into
consideration.

Funding: This research received no external funding.

Data Availability Statement: The data used to support this research article are available upon request
to the author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

q ∈ Rq vector of manipulator joint positions
τ ∈ Rq vector of joint actuator torques

u ∈ Rd vector locally describing the position and the orientation of a frame attached
to the object

w ∈ Rd vector of forces and torques resultant from external forces acting directly on
the object

ti force/torque interaction ti at the i-th contact
(Ki, Bi) lumped parameters of visco-elastic phenomena
x(t) position of the armature
hci vector describing the posture of the contact frame on the manipulator
oci vector describing the posture of the contact frame on the object
J Jacobian matrix of the manipulator
G grasp matrix of the manipulator
Mh and Mo inertia symmetric and positive definite matrices

Qh and Qo
terms including the velocity-dependent and gravity forces of the
manipulator and object, respectively

x state space
A dynamic matrix
Bτ input matrix
Bw disturbance matrix
Bτ = imBτ image of matrix Bτ (subspace spanned by the columns of matrix Bτ)
y = (qT , tT)T informative output
Ct output contact forces
Tc subspace of rigid body
Ta complementary subspace of rigid body
minI(A,B) =
∑n−1

i=0 AiimB
minimum A-invariant subspace containing im(B) (controllable subspace)

maxV(A,B,C) maximum (A,B) controlled invariant subspace contained in C
minS(A,C,D) minimum (A,C) conditioned invariant subspace containing D
Rti,τ subspace of reachable internal forces

euc, eti and eqr
rigid–body object motions, reachable internal forces and mechanism
redundancy outputs

RK(⋅) :
K(⋅)-constrained
controllability
subspace

subspace of all the points reachable through trajectories leaving the origin
and belonging to K(⋅).

im(Sq) subspace of manipulator movements reachable from movement of the object
im(Su) subspace of object movements reachable from movement of the manipulator

Appendix A

This appendix outlines Theorem 2 in all its formal aspects.
Before proceeding to prove Theorem 2, certain additional notation and results are

required.
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Let us define the subspaces of the state spaces im(Tr), im(Ti), im(Th) and im(Td),
where

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

; Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Γi 0
0 0
0 Γi

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

Th =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0
0 0
0 Γh
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Td =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Γd 0
0 0
0 Γd

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(A1)

Here Γr, Γi, Γh and Γd are the basis matrices for the subspaces previously defined. In partic-
ular, Γr is a basis matrix for ker(J), and im(Γi) = 0 because our system is not indeterminate.
Regarding the other subspaces, the following is established:

Γh = b.m. of im(M−1
h JT)∩maxI(M−1

h JTKJ, ker(GKJ)),

Γd = b.m. of im(M−1
o G)∩maxI(M−1

o GKGT , ker(JTKGT)).
(A2)

Appendix A.1. Demonstration of the Noninteraction Theorem

We begin with the calculation ofRK
(⋅)

and, in particular, with the calculation of the
subspaces included inRK

(⋅)
. In this appendix, ker(Qk) and ker(Qβ) will be calculated. It

may be useful to remark that ker(Qk) = ker(Qβ) under the hypothesis of proportionality
outlined above.

ker(Eti) = ker[ Qk 0 Qβ 0 ] ⊇ im(Lti),

where

Lti =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqr 0 Γqc 0 Γqc 0 Γqc 0 Γqc 0 ..
0 0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc 0 ..
0 Γqr 0 Γqc 0 Γqc 0 Γqc 0 Γqc ..
0 0 0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc ..

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and H = M−1
o GBGT . It can be recalled that B is proportional to K. In the same way

ker(Euc) = ker[ 0 ΓT
uc 0 0 ] ⊇ im(Luc),

where

Luc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqr 0 Γh 0 Sq 0 0 0
0 0 0 0 0 0 ker(ΓT

uc)∩ Su 0
0 Γqr 0 Γh 0 Sq 0 0
0 0 0 0 0 0 0 ker(ΓT

uc)∩ Su

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

with
Sq = minI(M−1

h JTKJ, M−1
h JTKGT) (A4)

and
Su = minI(M−1

o GKGT , M−1
o GKJ). (A5)

Finally, it can be recalled that Γh is a basis matrix of

Im(M−1
h JT)∩maxI(M−1

h JTKJ, ker(GKJ)). (A6)

Regarding the subspace

ker(Eqr) = ker[ ΓP
r Mh 0 0 0 ],
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it is very easy to check
ker(Eqr) ⊇ im(Lqr)

with
im(Lqr) = im[ Th Tc Ta Td ], (A7)

where the matrices Th, Tc, Ta and Td are previously defined. It is useful to note that im(Lqr)
includes all subspaces except for the redundant movements subspace. We here begin the
calculation with the intersection in Equation (19):

im(Luc)∩ im(Lqr) ⊇ im(Bti),

with

Bti =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 Sq 0 0 0
0 0 0 0 ker(ΓT

uc)∩ Su 0
0 Γh 0 Sq 0 0
0 0 0 0 0 ker(ΓT

uc)∩ Su

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

Equation (A8) states a subspace included in the above intersection. In fact, by Equation (A7),
the subspace im(Lqr) includes all subspaces except for the redundant movements. The
following calculation is now given:

im(Lti)∩ im(Lqr) ⊇ im(Buc)

where

Buc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0 Γqc 0 Γqc 0 Γqc 0 ..
Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc 0 ..
0 Γqc 0 Γqc 0 Γqc 0 Γqc ..
0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc ..

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (A9)

This intersection is a result of the definition of Su (because HΓuc ⊆ Su) and of Lemma A5
reported in Appendix B.

Finally,
im(Lti)∩ im(Luc) = im(Bqr),

where

Bqr =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (A10)

which is very easy to verify.
It the following we will formally prove “part a)” of Theorem 2.

Proof. (“Part a)” of Theorem 2)
We now calculate

maxV(A, im(Bτ), im(Buc)).

This calculation it is extremely elementary, and it follows that

maxV(A, im(Bτ), im(Buc)) = im(Buc).

Next, we calculate
minS(A, im(Buc), im(Bτ)).

In general, the following holds, independent of the representative basis: It can be
recalled that the subspaces are independent of every possible basis.



Axioms 2022, 11, 309 15 of 24

Z0 = im(Bτ),

Zk = Zk−1 +A(Zk−1 ∩ im(Buc)),

where

im(Buc) = im(Lti)∩ im(Lqr),

Z1 = (im(Bτ)+A(im(Bτ)∩ im(Buc))),

Z1 =
⎛
⎜⎜⎜
⎝

Bτ +A
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

,

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0

M−1
h JTBJΓqc M−1

h
M−1

o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0
0 M−1

h
M−1

o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We now calculate
Z2 = im(Bτ)+A(Z1 ∩ im(Buc)).

Next, the following emerges:

im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
0
0

M−1
o GBJΓqc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⊆ im(Buc),

this shows that the intersection can be separately calculated. In fact, it is not useless to
remember that for the subspaces intersections it is possible to use the distributive property
only if at least one of the subspaces is included in the other subspace.

Now, im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∩ im(Buc) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

because M−1
h has full rank. The other intersec-

tion ∀ a ∃ b, c, d and e can be calculated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
0
0

M−1
o GBJΓqc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
Γuc
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

b +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

c +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
−Γuc

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

d +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
−Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

e.

It is easy to see that c = −e and d = −b. Thus,

Z1 ∩ im(Buc) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0
0 Γqc

M−1
o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now,

Z2 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 Γqc 0
M−1

o GBJΓqc 0 0
0 0 M−1

h
X1 X2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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im(X1) = M−1
o GKJΓqc −M−1

o GBGT(M−1
o GBJΓqc)

and
im(X2) = M−1

o GBJΓqc.

This can be written as

Z2 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Γqc Γqc 0
M−1

o GBJΓqc 0 0
0 0 M−1

h
−H2Γuc HΓuc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This calculation does not need to determine the minimum subspace exactly, and
the resulting subspace is sufficint to test the condition: It is useful to remember that
RBuc = maxV(A, im(Bτ), im(Buc)) ∩minS(A, im(Buc), im(Bτ)) in our case we have that
RBuc ⊇ im(Buc) ∩Z2, and Z2 ⊆ Z∞ at the end im(Buc) = maxV(A, im(Bτ), im(Buc)). It can
then be concluded that if Euc(im(Buc)∩Z2) = im(Euc), it will also be true that Euc(RBuc) =
im(Euc).

RBuc ⊇ maxV(A, im(Bτ), im(Buc))∩Z2.

This calculation is simple:

RBuc ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc −Γqc 0
0 M−1

o GBJΓqc 0
0 0 Γqc

HΓuc −H2Γuc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

To complete the proof, it remains to be verified that

EucRBuc = im(Euc).

This is trivial; in fact,

Euc = Γuc(ΓT
ucΓuc)−1[ 0 ΓT

uc 0 0 ].

The theorem is thus proved, and JΓqc = GTΓuc and ΓT
ucM−1

o GBGTΓuc have full rank. ◻

It the following we will formally prove “part b)” of Theorem 2.

Proof. (“Part b)” of Theorem 2)
We begin by calculating the controlled invariant subspace

maxV(A, im(Bτ), im(Bti))

and the conditioned invariant subspace

minS(A, im(Bti), im(Bτ)).

To calculate the first of the above subspaces, is sufficient to find a subspace im(V)
controlled invariant in (A, Bτ) and included in im(Bti) with the following structure: To
realise this kind of proof it is not necessary to find a controlled invariant subspace. Instead, it
is sufficient to consider a subspace included in im(Bti). This choice is helpfull in designing
the contoller. In fact, this choice is constructive and the resolvent subspace must be
controlled invariant.

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 SqZ 0 M1 0 0 0
0 0 0 Mb M2 0 0 0
0 Γh 0 0 0 SqZ 0 M1
0 0 0 0 0 0 Mb M2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (A11)
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Here, Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩ ker(ΓT
uc). (A12)

The subspace im(V) must be controlled invariant, and it is necessary that:

Aim(V) ⊆ im(V)+ im(Bτ), (A13)

im(V) ⊆ im(Bti). (A14)

Condition (A14) is satisfied if:

im(M1) ⊆ Sq, (A15)

im(M2) ⊆ ker(ΓT
uc), (A16)

im(Mb) ⊆ ker(ΓT
uc). (A17)

Furthermore, condition (A13) it is satisfied if

M−1
o GKJSqZ ⊆ im[ Mb M2 , ] (A18)

−M−1
o GKGTMb ⊆ im[ Mb M2 ], (A19)

M−1
o GKJM1 −M−1

o GKGTM2 ⊆ im[Mb M2 ]. (A20)

In Appendix B, it is demonstrated that if Sq ≠ 0, then it is always possible to resolve the last
three relations:

im[ Mb M2 ] ≠ 0.

We now calculate
minS(A, im(Bti), im(Bτ))

using the following algorithm:

Z0 = im(Bτ),

Zk = Zk−1 +A(Zk−1 ∩ im(Bti)),

where A is defined as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Iq 0
0 0 0 Iu

−M−1
h JTKJ M−1

h JTKGT −M−1
h JTBJ M−1

h JTBGT

M−1
o GKJ −M−1

o GKGT M−1
o GBJ −M−1

o GBGT

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

Bτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, the following holds:

(Z0 ∩ im(Bti)) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

Γh SqZ
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩ ker(ΓT
uc). (A21)
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This involves

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh SqZ 0
0 0 0
0 0 M−1

h
0 M−1

o GBJSqZ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This subspace is not conditioned invariant, but it will be sufficient for our demonstration.
In fact, the dimension of this subspace is sufficient to guarantee the rank condition. Now, it
is easy to show that

RBti ⊇ maxV(A, im(Bτ), im(Bti))∩Z1.

This calculation is simple, and

RBti ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 SqZ 0
0 0 0 0
0 Γh 0 SqZ
0 0 M−1

o GBJSqZ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

It is possible to verify that this subspace is not a self-hidden controlled invariant
subspace in im(Bti) and that it is not controlled invariant, but this is not necessary for
the present proof. It may be useful to recall that RBti = maxV(A, im(Bτ), im(Bti)) ∩
minS(A, im(Bti), im(Bτ)) and that in the present case, we have RBti ⊇ im(V) ∩Z1. Re-
calling that Z1 ⊆ Z∞ by im(V) ⊆ im(Bti), we can conclude that Eti(im(V)∩Z1) = im(Eti),
Eti(RBti) = im(Eti) will also hold. To conclude it will be proved that

EtiRBti = im(Eti). (A22)

It has been shown that the outputs were defined as follows:

eti = Etix,

with

Eti = (I −KGT(GKGT)−1G)Ct = [ Qk 0 Qβ 0 ],
(A23)

where
Q = Qk = Qβ = (I −KGT(GKGT)−1G)KJ. (A24)

We next calculate the null subspace of Q.

Remark A1. The null subspace of Q can be easily calculated. In fact, ker(Q) = ker(J)+V , where
V = {v∣KJv ∈ ker(I −KGT(GKGT)−1G) = im(KGT), v ∉ ker(J)}. By Equation (10) it is easy to
show that V = im(Γqc) and thus that:

ker(Q) = im(Γr)+ im(Γqc). (A25)

◻

The following two Lemmas demonstrate the useful property

EtiRBti = im(Eti), (A26)

which is equivalent to
im(Q[ Γh SqZ ]) = im(Q).

To prove Equation (A26), we show that

ker(Q)∩ im[ Γh SqZ ] = 0, (A27)

rank([ Γh SqZ ]) = rank(Q). (A28)
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Lemma A1.
ker(Q)∩ im[ Γh SqZ ] = 0. (A29)

Proof. If we begin from the previous Remark A1, Equation (A29) can be verified by
determining whether the vectors x, y, v and w exist such that

Γrx + Γqcy = Γhv + SqZw.

In fact, by im(Γqc), im(Γh) and im(Sq) are included in im(Mh
−1JT), while im(Γr) is not,

because it is included in ker(J). In general, given a linear application L, im(LT) + ker(L) = I.
Thus, the above equation can be written in the following form:

Γqcy = Γhv + SqZw.

If this equation holds, then

M−1
o GKJΓqcy = M−1

o GKJΓhv +M−1
o GKJSqZw.

By Equation (10) and Γh ⊆ ker(GKJ) in Equation (A6), we can deduce the following:

M−1
o GKGTΓucy = M−1

o GKJSqZw.

However, this is never verified. Due to the choice of Z M−1
o GKJSqZ ⊆ ker(ΓT

uc), while
it will be easy to show that if M−1

o GKGTΓuc ⊆ ker(Γ
T
uc), then the matrix M−1

o GKGT will be
an orthogonal projector. However, this is not true because it is not in a projector form. It is
useful to recall that given a subspace Lwith a basis matrix is L, ker(LT) = (im(L))⊥ and the
ortogonal proiector is (I − L(LTL)−1LT).

This demonstrates that condition (A29) is proven. ◻

Lemma A2.

rank[ Γh SqZ ] = rank(Γh)+ rank(SqZ)
= q − r − c.

Proof. The first equality is derived from the null intersection between im(Γh) and im(SqZ).
In fact, by condition (A6), im(Γh) is a subspace of maxI(M−1

h JTKJ, ker(GKJ)) orthogonal
to im(M−1

h Sq) in accordance with Equation (A4). The proof of the second equality of the
lemma begins with the following consideretions. First,

maxI(M−1
h JTKJ, ker(GKJ)) = im(M−1

h Sq)⊥,

from which it follows that

im(M−1
h JT) ⊆ maxI(M−1

h JTKJ, ker(GKJ))⊕ im(M−1
h Sq).

Now, by Equation (A4) im(M−1
h Sq) ⊆ im(M−1

h JT) and from the above inclusion and the
definition of Γh in Equation (A6), it follows that

im(M−1
h JT) = M−1

h JT ∩(maxI(M−1
h JTKJ, ker(GKJ))⊕im(M−1

h Sq))

= (M−1
h JT ∩maxI(M−1

h JTKJ, ker(GKJ)))⊕ im(M−1
h Sq)

= im(Γh)⊕ im(M−1
h Sq).

We thus obtain
rank(Γh)+ rank(Sq) = rank(M−1

h JT) = rank(J) = q − r
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and
rank(Γh) = q − r − rank(Sq). (A30)

The rank of SqZ remains to be calculated. Recalling that Sq and Z are basis matrices and
that from Equation (A12) rank(Z) ≤ rank(Sq), it follows that

rank(SqZ) = rank(Z). (A31)

By the introduction of Z in Equation (A12), it follows that

rank(Z) = rank(Sq)− rank(Z⊥). (A32)

Here, rank(Sq) is the number of components of z ∈ Z. The last part of this demonstration
consists of estimating rank(Z⊥), which, by Equation (A12) is

rank(Z⊥) = rank(ST
q JTKGTM−1

o Γuc).

By Equation (A4), it is easy to show that ker(ST
q ) ⊆ ker(GKJ). Thus, ker(ST

q )∩ im(JTKGT) =
0, and

rank(Z⊥) = rank(JTKGTM−1
o Γuc). (A33)

Now, we prove that

rank(Z⊥) = rank(JTKGTM−1
o Γuc) = rank(Γuc) = c. (A34)

If we transpose Equation (A33), the following hold:

rank(Z⊥) = rank(ΓT
ucM−1

o GKJ).

By Equation (10)

rank(Z⊥) = rank(ΓT
ucM−1

o GKGTΓuc) = rank(Γuc),

where the last equality follows because the matrix ΓT
ucM−1

o GKGTΓuc has full rank. Finally,
by Equations (A31), (A32) and (A34), it can be concluded that

rank(SqZ) = rank(Sq)− c.

Comparing this last result with Equation (A30)

rank[ Γh SqZ ] = q − r − c.

◻

Remark A2. The Equation (A28) was proved only if in the case of kinematic defectivity (ker(JT)) ≠ 0),
i.e., with J ∈R(t×q), thus only in the case of t > q. It is easy to prove that t ≤ q is a trivial extension.
Let r and c be the ranks of the matrices Γr and Γuc, respectively. It follows that rank(J) = q − r. By
Lemma A2, rank[ Γh SqZ ] = rank(Γh)+ rank(SqZ) = q − r − c. In conclusion, Equation (A28)
demonstrates that

rank(Q) = q − r − c,

which follows trivially from Equation (A25). In fact, rank(Q) = rank(QT) = q − rank(ker(Q)) =
q − (r + c).

It the following we will formally prove “part c)” of Theorem 2.
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Proof. (“Part c)” of Theorem 2)
It is possible to show the following:

im(Lti)∩ im(Luc) ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This subspace is A-invariant and thus guarantees the necessary conditions. By

Eqr = Γr(ΓT
r Γr)−1[ ΓT

r Mh 0 0 0 ],

even the rank condition is invariant. ◻

Appendix B

In this appendix, we provide several technical results useful for the calculations given
in Appendix A.

Lemma A3. Let Sq and Su be basis matrices of minI(M−1
h JTKJ, M−1

h JTKGT)
and minI(M−1

o GKGT , M−1
o GKJ), respectively. Then,

M−1
o GBJSq ⊆ Su.

Proof. Being

Sq = minI(M−1
h JTKJ, M−1

h JTKGT), and (A35)

Su = minI(M−1
o GKGT , M−1

o GKJ). (A36)

Now,

S⊥u = maxI(GKGTM−1
o , ker(JTKGTM−1

o )), (A37)

(Su)⊥ ⊆ ker(JTKGTM−1
o ), (A38)

(M−1
o GBJSq)⊥ = ker(ST

q JTBGTM−1
o ) ⊇ (ker(JTBGTM−1

o ). (A39)

Thus,
(M−1

o GBJSq)⊥ ⊇ S⊥u , (A40)

and finally,
M−1

o GBJSq ⊆ Su. (A41)

◻

Lemma A4. Let Sq and Su above be defined. It follows that

M−1
o GBJSq ∩ ker(ΓT

uc)∩ Su = M−1
o GBJSqZ.

Proof. Recalling the definition of Z, it follows that im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩
ker(ΓT

uc), although it remains to be demonstrated that M−1
o GBJSqZ ∩ Su = M−1

o GKJSqZ.
This follows immediately by the previous Lemma A3. ◻
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Lemma A5. The complementary subspace im(Ta) was defined in [49] as the deforming motions
subspace. It is possible to choose a complementary subspace im(Ta) such that

im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
−Γuc 0

0 Γqc
0 −Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⊆ im(Ta).

This part of the appendix discusses, through the following lemma, three necessary
conditions to obtain the controlled invariant subspace im(V) as pointed out in Appendix A.

Lemma A6.

M−1
o GKJSqZ ⊆ im[Mb M2 ],

−M−1
o GKGTMb ⊆ im[Mb M2 ],

M−1
o GKJM1 −M−1

o GKGTM2 ⊆ im[Mb M2 ].

Proof. The proof starts distinguishing three possible cases depending on ker(ΓT
uc).

Case 1:
ker(Γuc) is M−1

o GKGT-invariant.
This is the simplest case. In fact, if we take Mb = ker(ΓT

uc) and M2 = 0 such that the first
and the second equations are satisfied automatically, the third will be satisfied for M1 = 0.

Case 2:
ker(ΓT

uc) /⊇ M−1
o GKGTker(ΓT

uc) and ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc) ≠ 0.

In this case the second equation can be verified by the following:

M2 = ker(ΓT
uc),

Mb ∶ M−1
o GKGTMb =

ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc).

Now, the first equation is trivially verified, while the third will be verified if

M−1
o GKGTker(ΓT

uc) ⊆ im[ M−1
o GKJSq ker(ΓT

uc) ].

We will demonstrate that this condition is always verified.
Case 3:
The last case to analyse is that in which

ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc) = 0.

Under this condition, the second equation is satisfied only with Mb = 0. To satisfy this, it is
sufficient to set im(M2) = ker(ΓT

uc). This implies the same condition of the second case and
thus involves the following condition:

M−1
o GKGTker(ΓT

uc) ⊆ im[ M−1
o GKJSq ker(ΓT

uc) ].

◻

The following lemma shows how this condition is verified.

Lemma A7. If Sq ≠ 0, then the matrix

[ M−1
o GKJSq ker(ΓT

uc) ]

is a basis matrix of the subspace Rd, where d is the dimension of the physical space.
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Proof. Sq = minI(M−1
h JTKJ, M−1

h JTKGT) and the M−1
h is positive definite:

im(M−1
o GKJ) ⊇ im(M−1

o GKJSq) ⊇ im(M−1
o GKJM−1

h JTKGT) = im(M−1
o GKJ).

This implies that
im(M−1

o GKJSq) = im(M−1
o GKJ).

It is now easy to prove that

Rd ⊇ im[ M−1
o GKJ ker(ΓT

uc) ] ⊇ im[ M−1
o GKJΓqc ker(ΓT

uc) ],

im[ M−1
o GKGTΓuc ker(ΓT

uc) ] = Rd

and
rank(M−1

o GKGTΓuc) = rank(Γuc),

because M−1
o GKGT has a null subspace equal to zero. ◻
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