
Citation: Liu, L.; Jiang, T.; Zhu, H.;

Shang, C. A New Interior Search

Algorithm for Energy-Saving Flexible

Job Shop Scheduling with Overlapping

Operations and Transportation Times.

Axioms 2022, 11, 306. https://

doi.org/10.3390/axioms11070306

Academic Editor: Nodari Vakhania

Received: 30 May 2022

Accepted: 19 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A New Interior Search Algorithm for Energy-Saving Flexible
Job Shop Scheduling with Overlapping Operations and
Transportation Times
Lu Liu 1,2, Tianhua Jiang 1,2,3,* , Huiqi Zhu 1,2 and Chunlin Shang 1,2

1 School of Transportation, Ludong University, Yantai 264025, China; tliulut@126.com (L.L.);
zhuhuiqi0505@126.com (H.Z.); shangchunlin007@126.com (C.S.)

2 Shandong Marine Aerospace Equipment Technological Innovation Center, Yantai 264025, China
3 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
* Correspondence: jth1127@163.com

Abstract: Energy-saving scheduling has been pointed out as an interesting research issue in the
manufacturing field, by which energy consumption can be effectively reduced through production
scheduling from the operational management perspective. In recent years, energy-saving scheduling
problems in flexible job shops (ESFJSPs) have attracted considerable attention from scholars. How-
ever, the majority of existing work on ESFJSPs assumed that the processing of any two consecutive
operations in a job cannot be overlapped. In order to be close to real production, the processing
overlapping of consecutive operations is allowed in this paper, while the job transportation tasks
are also involved between different machines. To formulate the problem, a mathematical model
is set up to minimize total energy consumption. Due to the NP-hard nature, a new interior search
algorithm (NISA) is elaborately proposed following the feature of the problem. A number of exper-
iments are conducted to verify the effectiveness of the NISA algorithm. The experimental results
demonstrate that the NISA provides promising results for the considered problem. In addition,
the computational results indicate that the increasing transportation time and sub-lot number will
increase the transportation energy consumption, which is largely responsible for the increase in total
energy consumption.

Keywords: flexible job shop; overlapping operation; job transportation; total energy consumption;
interior search algorithm

MSC: 97P10

1. Introduction

Suffering from growing energy costs and a worsening ecological environment, it
is quite necessary to adopt some measures to achieve energy saving and consumption
reduction. Reviewing this situation, some managers try to purchase more energy-efficient
equipment, others attempt to redesign the products. However, these previous attempts
inevitably impose substantial capital investment, which is impossible for some small and
medium companies to afford such extra financial burden. In view of this fact, many
researchers have turned their attention to reasonable operational management for the
reduction of energy consumption. Energy-saving scheduling has been viewed as one of
the most effective manners by researchers all around the world. A number of research
achievements have been yielded for various manufacturing workshops, such as single
machine [1–5], parallel machines [6–11], flow shop [12–18], and job shop [19–25].

In recent years, considering the high theoretical complexity and strong application
background, the energy-saving flexible job shop scheduling problem (ESFJSP) has become

Axioms 2022, 11, 306. https://doi.org/10.3390/axioms11070306 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11070306
https://doi.org/10.3390/axioms11070306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9260-4041
https://doi.org/10.3390/axioms11070306
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11070306?type=check_update&version=1


Axioms 2022, 11, 306 2 of 25

a new research hotspot in the manufacturing field. Wu et al. [26] investigated the ESFJSP
with the consideration of a deterioration effect. A multi-objective mathematical model was
established to minimize total energy consumption and makespan. Then, pigeon-inspired
optimization and simulated annealing algorithm are hybridized for the problem. Caldeira
et al. [27] addressed an ESFJSP with new job arrivals and turning on/off of the mechanism.
A mathematical model was built to optimize the makespan, energy consumption, and
instability simultaneously. An improved backtracking search algorithm was proposed
to obtain the trade-off among the objectives. Dai et al. [28] formulated an ESFJSP with
transportation constraints to optimize energy consumption and makespan. Then, an im-
proved genetic algorithm was presented to solve the problem. Yin et al. [29] proposed a
mathematical model with the consideration of flexible machining speed. A multi-objective
genetic algorithm was developed to optimize productivity, energy efficiency, and noise
reduction simultaneously. Liu et al. [30] addressed an ESFJSP with crane transportation.
A mixed-integer programming model was built to get the trade-off between energy con-
sumption and makespan. Then, an integrated algorithm, consisting of a genetic algorithm,
glowworm swarm optimization, and green transport heuristic strategy, was presented for
the proposed model. Jiang et al. [31] investigated an ESFJSP considering the sequence-
dependent setup times and proposed an improved African buffalo optimization to get the
minimum total energy consumption. Li and Lei [32] reported an ESFJSP with transportation
and sequence-dependent setup times and proposed an imperialist competitive algorithm
with feedback to minimize the makespan, total tardiness and total energy consumption
simultaneously. Zhang et al. [33] studied an ESFJSP aiming to minimize makespan and
total energy consumption. A multi-objective model was formulated with the consideration
of sequence-dependent setup and transportation times. Then, an effective novel heuristic
method was proposed to solve the problem. Gong et al. [34] proposed a multi-objective
mathematical model of a double flexible job shop scheduling problem considering the
indicators of processing time, green production and human factor. Then, a hybrid genetic
algorithm was presented for the model. Peng et al. [35] addressed a multi-objective ESFJSP
with job transportation and learning effect. A hybrid discrete multi-objective imperial
competition algorithm was developed to solve the problem. Zhu et al. [36] considered an
ESFJSP considering worker learning effect and proposed a memetic algorithm to minimize
the makespan, total carbon emission and total cost of workers. Wei et al. [37] addressed
an energy-efficient FJSP with the consideration of variable machine speed. Then some
hybrid energy-efficient scheduling measures are developed to minimize the makespan and
total energy consumption. Jiang et al. [38] established a mathematical model of an ESFJSP
considering job transportation and deterioration. The animal migration optimization algo-
rithm was modified to minimize the total energy consumption. Jiang et al. [39] considered
a dual-resource constrained ESFJSP and proposed a discrete animal migration optimization
algorithm to get the minimum total energy consumption.

Regarding the above literature, the ESFJSP problems have attracted considerable at-
tention from scholars. Some research endeavors have been undertaken to narrow the gap
between the scheduling problem and production application. Various practical factors have
been investigated in the previous work, e.g., job deterioration effect [26,38], new job arrivals
and turning on/off strategy [27], job transportation constraints [28,30,32,33,35,38], flexible
machining speed [29,37], machine setup times [31–33] and double-resource constraint [34–36,39].
However, the above previous ESFJSP problems usually assume that the processing of the
successful operation of a job cannot be started until its predecessor is finished completely.
That is, the processing of any two consecutive operations of the same job is not permit-
ted to be overlapped. In some real-life industries, e.g., metal or automobile industries, a
job (lot) can always be divided into several similar parts (sublots), each of which can be
dealt with individually. For such a job, it does not need to be transferred to the next step
until all sublots are completed. In this situation, consecutive operations of a job can be
overlapped for processing. The overlapping in operations are illustrated in Figure 1. This
strategy is often reported as lot streaming in the existing literature [40]. One of the most
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important advantages of this strategy is the improvement of production efficiency. Demir
and İşleyen [41] formulated the FJSP with the consideration of overlapping operations.
A genetic algorithm was proposed for solving the problem. Meng et al. [42] designed a
hybrid artificial bee colony for the FJSP with overlapping operations to minimize the total
flow time. However, they only focus on improving the production efficiency and neglect
the energy consumption generated in the manufacturing process. As far as we know, up to
now, an ESFJSP with overlapping operations is seldom studied in the published literature.
Furthermore, according to the above review, job transportation has been frequently con-
sidered in the ESFJSP [28,30,32,33,35,38]. The main reason for this situation is that there
exist some strong interactions between production and transportation tasks in practical
manufacturing. On the one hand, the machine selection of two consecutive operations in a
job determines the transportation time. On the other hand, the transportation tasks could
affect the idle times of machines in terms of different operation sequences. Furthermore,
the energy consumption that occurs in the transportation process is nonnegligible. Based
on the above review, in this study, the overlapping of operations and transportation times
between machines are simultaneously considered in the ESFJSP problem.

Axioms 2022, 11, x FOR PEER REVIEW 3 of 27 
 

a job can be overlapped for processing. The overlapping in operations are illustrated in 
Figure 1. This strategy is often reported as lot streaming in the existing literature [40]. One 
of the most important advantages of this strategy is the improvement of production effi-
ciency. Demir and İşleyen [41] formulated the FJSP with the consideration of overlapping 
operations. A genetic algorithm was proposed for solving the problem. Meng et al. [42] 
designed a hybrid artificial bee colony for the FJSP with overlapping operations to mini-
mize the total flow time. However, they only focus on improving the production efficiency 
and neglect the energy consumption generated in the manufacturing process. As far as 
we know, up to now, an ESFJSP with overlapping operations is seldom studied in the 
published literature. Furthermore, according to the above review, job transportation has 
been frequently considered in the ESFJSP [28,30,32,33,35,38]. The main reason for this sit-
uation is that there exist some strong interactions between production and transportation 
tasks in practical manufacturing. On the one hand, the machine selection of two consecu-
tive operations in a job determines the transportation time. On the other hand, the trans-
portation tasks could affect the idle times of machines in terms of different operation se-
quences. Furthermore, the energy consumption that occurs in the transportation process 
is nonnegligible. Based on the above review, in this study, the overlapping of operations 
and transportation times between machines are simultaneously considered in the ESFJSP 
problem.  

Sublot1ijO

( 1)i jO +

Sublot3Sublot2

Sublot1 Sublot2 Sublot3

 
Figure 1. The overlapping in operations. 

Observed from the reviewed literature, the general solution process is to first estab-
lish a mathematical model with the expected objectives and the related constraints. After-
ward, an effective algorithm is designed to solve the problem. For the ESFJSPs models, 
some were built as standard mathematical program models, e.g., mixed-integer linear 
programming [27,28,33], mixed-integer programming [29,30]; others were not converted 
to standard forms or the authors did not state the model type clearly [26,31,32,34–39]. In 
general, the solution methods for workshop scheduling problems fall into two main cate-
gories: exact and approximate methods [43]. However, the ESFJSP is essentially an ex-
tended version of the traditional FJSP, consisting of many jobs, machines and objectives, 
which is inefficient to solve exactly and more suitable to be solved by approximate meth-
ods [43]. In recent years, many meta-heuristics have been developed to deal with the 
ESFJSPs, e.g., pigeon-inspired optimization [26], genetic algorithm [28–30,34], glowworm 
swarm optimization [30], African buffalo optimization [31], imperialist competitive algo-
rithm [32,35], memetic algorithm [36], animal migration optimization [38,39]. Neverthe-
less, none of them can be guaranteed to outperform other algorithms in all types of 
ESFJSPs. This fact is in line with the famous No Free Lunch Theorem [44], which inspires 
scholars to continuously present new algorithms or modify existing ones.  

Interior search algorithms (ISA) are a novel meta-heuristic algorithm that originated 
from aesthetic behaviors of interior design and decoration [45]. Since it was proposed, ISA 
has attracted increasing interest in dealing with various complex optimization problems 
[46–50]. In the ISA algorithm, individuals are split into two groups with the exception of 
the fittest one, namely the composition group and the mirror group. These two groups are 
in charge of global exploration and local exploitation, respectively. A specific controlling 
parameter α  is employed to select the group for each individual. This search mechanism 
gives a fine opportunity for the implementation of the cooperation between exploration 

Figure 1. The overlapping in operations.

Observed from the reviewed literature, the general solution process is to first establish
a mathematical model with the expected objectives and the related constraints. After-
ward, an effective algorithm is designed to solve the problem. For the ESFJSPs models,
some were built as standard mathematical program models, e.g., mixed-integer linear
programming [27,28,33], mixed-integer programming [29,30]; others were not converted
to standard forms or the authors did not state the model type clearly [26,31,32,34–39].
In general, the solution methods for workshop scheduling problems fall into two main
categories: exact and approximate methods [43]. However, the ESFJSP is essentially an
extended version of the traditional FJSP, consisting of many jobs, machines and objec-
tives, which is inefficient to solve exactly and more suitable to be solved by approximate
methods [43]. In recent years, many meta-heuristics have been developed to deal with
the ESFJSPs, e.g., pigeon-inspired optimization [26], genetic algorithm [28–30,34], glow-
worm swarm optimization [30], African buffalo optimization [31], imperialist competitive
algorithm [32,35], memetic algorithm [36], animal migration optimization [38,39]. Never-
theless, none of them can be guaranteed to outperform other algorithms in all types of
ESFJSPs. This fact is in line with the famous No Free Lunch Theorem [44], which inspires
scholars to continuously present new algorithms or modify existing ones.

Interior search algorithms (ISA) are a novel meta-heuristic algorithm that originated
from aesthetic behaviors of interior design and decoration [45]. Since it was proposed,
ISA has attracted increasing interest in dealing with various complex optimization prob-
lems [46–50]. In the ISA algorithm, individuals are split into two groups with the exception
of the fittest one, namely the composition group and the mirror group. These two groups
are in charge of global exploration and local exploitation, respectively. A specific controlling
parameter α is employed to select the group for each individual. This search mechanism
gives a fine opportunity for the implementation of the cooperation between exploration and
exploitation, which motivates us to select the ISA for the considered problem. Our main
work is summarized as follows: (1) A mathematical model is built for the ESFJSP with the
consideration of overlapping operations and transportation times simultaneously. (2) To
solve the model, a NISA algorithm is elaborately designed based on the characteristics of
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the problem. The design work mainly includes encoding/decoding, population initial-
ization, discrete composition optimization, discrete mirror search, tuning of parameter α
and random walk. (3) Extensive experiments are performed to validate the competitive
performance of the NISA algorithm and analyze the effect of transportation time and
sublot number.

The remainder of this paper is organized as follows. Section 2 reports the mathematical
model of the ESFJSP with overlapping operations and transportation times. Section 3
implements the NISA algorithm. Section 4 assesses the performance of the NISA algorithm.
Section 5 reports the conclusion and next work.

2. Problem Description and Mathematical Model
2.1. Problem Description

In the considered problem, n jobs are expected to be processed on m machines. For
each job, Ji operations are sequentially processed in a certain order. For processing an
operation, any machine can be selected from the operation’s compatible machine set. The
capacity of the selected machine determines the processing time of each operation on the
machine. In this work, each job is split into si sublots with equal size. Once the processing
of each sublot is finished, it will be transferred to another machine. It assumes that there
are enough transporters equipped in the workshop. Meanwhile, the transporter can convey
one sublot at a time, and the transportation times are known in advance. In the considered
ESFJSP, the optimization objective is to get the minimum of the total energy consumption
(TTEC), which contains processing energy consumption (PEC), idle energy consumption
(IEC), transportation energy consumption (TEC) and common energy consumption (CEC).
PEC is generated by machines when processing operations, IEC occurs when a machine
is waiting for processing, TEC is consumed by transporters and CEC is consumed by
accessory equipment.

Some assumptions are necessary as follows: jobs are released and machines are
available at time 0; the setup times of machines are contained in the processing times;
machine breakdowns are not considered; each machine cannot process two or more sublots
at a given time; the number of sublots in each job is known in advance and fixed; for each
operation, all sublots must be performed on the same machine; for each operation, no
preemption is permitted; each machine cannot be shut down unless all jobs assigned to it
are finished.

2.2. Mathematical Model

i: Index of jobs, i = 1, 2, 3, · · · , n;
k: Index of machines, k = 1, 2, 3, · · · , m;
Ji: Number of operations contained in job i, j = 1, 2, 3, · · · , Ji;
si: Total number of sublots of job i, l = 1, 2, 3, · · · , si;
Oij: The jth operation of job i;
Oijl : The lth sublot of Oij;
pijlk: Processing time of Oijl on machine k;
TTEC: Total energy consumption;
PEijlk: The PEC coefficient of Oijl on machine k;
SEk: The IEC coefficient of machine k in idle state;
CE: The CEC coefficient;
TE: The TEC coefficient;
Ck: Completion time of machine k;
Sk: Start time of machine k;
WLk: Workload of machine k, the total processing times of jobs assigned to machine k;
Cmax: Makespan;
TTi(j−1)lk,ijlw: Transportation time between machine k and w for Oi(j−1)l and Oijl ;
STijl : Starting time of Oijl ;
CTijl : Completion time of Oijl ;
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Γ: A large positive number;
xijk: 0–1 variable, if Oij is assigned to machine k, xijk = 1; otherwise, xijk = 0;
zijlk: 0–1 variable, if Oijl is assigned to machine k, zijlk = 1; otherwise, zijlk = 0;
yiji′ j′k: 0–1 variable, if Oij precedes Oi′ j′ on machine k, yiji′ j′k = 1; otherwise, yiji′ j′k = 0.

Jiang et al. [38] established the mathematical model of the energy-saving flexible job
shop scheduling problem with the transportation time and deterioration effect. However,
the overlapping in operations is not considered in their model. Here, we refer to their
works to define the energy consumption and deal with the transportation constraints. The
mathematical model of the ESFJSP with overlapping operations and transportation times is
built as Equations (1)–(15).

minTTEC =
n

∑
i=1

Ji

∑
j=1

si

∑
l=1

m

∑
k=1

PEijlk pijlkzijlk +
m

∑
k=1

SEk(Ck − Sk −WLk) +
n

∑
i=1

Ji

∑
j=2

si

∑
l=1

m

∑
w=1

m

∑
k=1

TE · TTi(j−1)lw,ijlkzi(j−1)lwzijlk + CE× Cmax (1)

s.t. CTijl − STijl =
m

∑
k=1

zijlk pijlk, i = 1, 2, · · · , n; j = 1, 2, · · · , Ji; l = 1, 2, · · · , si (2)

m

∑
k=1

xijk =1, i = 1, 2, · · · n; j = 1, 2, · · · , Ji (3)

si

∑
l=1

zijlk =si × xijk, i = 1, 2, · · · n; j = 1, 2, · · · , Ji; k = 1, 2, · · · , m (4)

STijl − CTij(l−1) ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , Ji; l = 2, · · · , si (5)

STijl ≥ CTi(j−1)l +
m

∑
w=1

m

∑
k=1

TTi(j−1)lk,ijlwzi(j−1)lkzijlw, i = 1, 2, · · · , n; j = 2, · · · , Ji; l = 1, 2, · · · , si (6)

STi′ j′1 + Γ(1− yiji′ j′k) ≥ CTijsi
, i, i′ = 1, 2, · · · , n; j = 1, 2, · · · , Ji; j′ = 1, 2, · · · , Ji′ ; k = 1, 2, · · · , m (7)

STij1 + Γyiji′ j′k ≥ CTi′ j′si′
, i, i′ = 1, 2, · · · , n; j = 1, 2, · · · , Ji; j′ = 1, 2, · · · , Ji′ ; k = 1, 2, · · · , m (8)

WLk =
n

∑
i=1

Ji

∑
j=1

si

∑
l=1

pijlkzijlk, k = 1, 2, · · · , m (9)

Ck = max
{

CTijlzijlk

}
, i = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji; l = 1, 2, · · ·, si; k = 1, 2, · · ·, m (10)

Sk = min
{

STijlzijlk

}
, i = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji; l = 1, 2, · · ·, si; k = 1, 2, · · ·, m (11)

STijl ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , Ji; l = 1, 2, · · · , si (12)

xijk ∈ {0, 1}, i = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji; k = 1, 2, · · ·, m (13)

zijlk ∈ {0, 1}, i = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji; l = 1, 2, · · ·, si; k = 1, 2, · · ·, m (14)

yiji′ j′k ∈ {0, 1}, i, i′ = 1, 2, · · ·, n; j = 1, 2, · · ·, Ji; j′ = 1, 2, · · ·, Ji′ ; k = 1, 2, · · ·, m (15)

Equation (1) calculates the total energy consumption; Constraint (2) defines that no
interruption is allowed during the processing of each sublot; Constraint (3) denotes that any
operation must be assigned to only one machine; Constraint (4) guarantees that the number
of sublots Oijl processing on machine k equals the total sublot number of Oij. Constraint (5)
gives the precedence relationships between the sublots of each operation, i.e., the lth sublot
of Oij must be started after the (l − 1)th sublot is completed; Constraint (6) defines the
precedence relationships between the operations belonging to the same job, i.e., the lth
sublot of Oij must be started after the lth sublot of Oi(j−1) is completed and transported
to the next machine. Constraints (7) and (8) are disjunctive constraints where only one
constraint can be met. That is, Oij and Oi′ j′ assigned to machine k cannot be processed
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simultaneously; Constraint (9) denotes the machine workload; Constraints (10) and (11)
define the machine’s completion time and start time; Constraint (12) means that the start
time of each operation is not smaller than zero; Constraints (13)–(15) state 0–1 variables.

3. Overview of the Basic ISA Algorithm

The interior search algorithm (ISA) mimics the behavior of an interior designer and
decorator. There are mainly two search operators that are contained in the algorithm, i.e.,
composition optimization and mirror search. In every iteration, individuals are split into
two groups, namely the composition group and the mirror group. In the composition
group, the position of each individual is changed randomly in the feasible space. In the
mirror group, for each individual, a mirror is first located near the global best solution, and
then a new position will be generated depending on the information of the mirror. The
steps of the basic ISA algorithm are presented below.

Step 1. Randomly generate the initial positions of individuals within the restriction of
lower and upper bounds.

Step 2. Evaluate each individual and find out the current global best solution Xt
gb.

Step 3. For each individual, a randomly generated number r1 ∈ [0, 1] will be compared
with a controlling parameter α. If r1 ≤ α, the individual goes to the mirror group;
otherwise, it is allocated to the composition group.

Step 4. For the global best individual Xt
gb, it is changed using a random walk as local search.

This process can be formulated by Equation (16). t is the current iteration number.
rn is a random number vector with normal distribution, and λ is a scale factor.

Xt
gb = Xt−1

gb + rn × λ (16)

Step 5. For the composition group, the individual position is randomly changed in a limited
search space, which is represented by Equation (17). Xt

i is the ith individual in the
tth iteration. LBt and UBt are the lower and upper bounds of the composition
group elements in tth iteration, respectively, and they are the vector of minimum
and maximum values of each dimension of all individuals in (t− 1)th iteration. r2
is a random number between 0 and 1.

Xt
i = LBt + (UBt − LBt)× r2 (17)

Step 6. For the mirror group, a mirror is randomly located between each individual and
the global best individual following Equation (18). Xt

m,i is the mirror position of
ith individual in the tth iteration. r3 is a random number between 0 and 1. The
position of each individual is updated following the mirror’s position, which can
be represented by Equation (19).

Xt
m,i = r3Xt−1

i + (1− r3)Xt
gb (18)

Xt
i = 2Xt

m,i −Xt−1
i (19)

Step 7. Evaluate each new individual. If it is superior to the original one, accept it; other-
wise, keep the original position unchanged.

Step 8. Determine whether the stop condition is satisfied. If yes, go to Step 9; otherwise, go
to Step 2.

Step 9. Output the results.

4. Implementation of the NISA
4.1. Encoding and Decoding Approach

Similar to other meta-heuristics, one of the key issues is to design an encoding ap-
proach to implement the conversion between the solution space and the search space. In
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this paper, the problem is contained by machine assignment (MA) and operation permu-
tation (OP). To represent the scheduling solutions, an encoding scheme with two vectors
is employed to indicate the information of MA and OP. In the MA vector, a machine is
chosen from the compatible machine set of each operation. In the OP vector, operations are
sequenced to represent the precedence relationships on machines.

To illustrate the encoding approach, an instance with three jobs and three machines
is given in Figure 2. Each job contains three operations. In the MA vector, each inte-
ger number corresponds to the index of the machine for an operation. In the OP vector,
each integer number corresponds to the job code. The appearance times of a job code
represent the number of operations contained in the job. Figure 1 gives the scheduling solu-
tion as follows: (O11, M2)→(O12, M1)→(O21, M3)→(O13, M3)→(O22, M1)→(O31, M3)→
(O32, M2)→(O23, M1)→(O33, M2).
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Following the above scheduling scheme, the start times and completion times of all
sublots in each operation can be determined in the decoding process. For each sublot Oijl ,
it cannot be processed until some necessary conditions must be satisfied: (1) The assigned
machine k of Oijl must be available, and the available time is represented by mtk; (2) If j = 1,
Oi1l can be immediately started once the assigned machine k is available, i.e., STi1l = mtk;
(3) If j > 1, Oijl must be started after Oi(j−1)l is finished and then transported from machine
k to w, i.e., STijl = max(mtk, Ci(j−1)l + TTi(j−1)lk,ijlw). The completion time of Oijl can be

measured by CTijl = STijl +
m
∑

k=1
zijlk pijlk.

4.2. Population Initialization

For a meta-heuristic algorithm, generating the initial population is vital for the con-
vergence speed and solution quality. Based on the above encoding structure, the initial
solutions will be created separately for the two vectors.

To obtain a machine assignment scheme, three heuristic rules [51] are randomly
adopted to choose a machine from each operation’s compatible machine set, i.e., Global
Selection (GS), Local Selection (LS) and Random Rule (RR).

For a given machine assignment, three dispatching rules [52] are randomly applied to
sequence operations on machines, i.e., Most Work Remaining (MWR), Most Number of
Operations Remaining (MOR) and Random Rule.

4.3. Discrete Composition Optimization

As can be seen from Equation (17), each individual updates its position randomly
within a limited search space, which is derived from the individuals in the composition
group. In the ISA algorithm, the composition optimization operator plays the role of global
search. However, as observed from Equation (17), it cannot be applied to solving the discrete
scheduling problem in this paper. Thus, the original composition optimization operator
should be amended to adapt to the considered problem. It is well-known that the crossover
operation is used to explore the search space and finding the global optimal solution. In
view of this consideration, we develop a crossover-based component optimization operator
to acquire new individuals. In order to implement it, an individual is randomly selected
from the composition group at first. Then, crossover operations are carried out between the
current individual and the selected one.
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Based on the characteristics of the problem, two types of crossover operators [53]
are employed for the two vectors of a scheduling solution. One type is used for the OP
vector, i.e., precedence preserving order-based crossover (POX) and job-based crossover
(JBX), while the other is employed for the MA vector, i.e., two-point crossover (TPX) and
multi-point crossover (MPX). When performing the component optimization operator,
one crossover operator is randomly selected from each of the two types to act on the two
vectors. It is notable that two offspring individuals will be generated by the crossover
operation. After evaluating their fitness, the better offspring will be judged on whether to
join the composition group or not. If the offspring is superior to the current individual, it
will be accepted to replace the current individual. Otherwise, the current individual will
remain unchanged.

4.4. Discrete Mirror Search

For each individual in the mirror group, a mirror is first randomly placed near the
global best individual, and then the current individual is updated by absorbing the infor-
mation from the mirror. However, according to Equations (18) and (19), the original mirror
search operator is also unsuitable for the considered problem. Therefore, some modifica-
tions need to be conducted following the characteristics of the problem. Here, we present a
neighborhood-crossover-based mirror search operator, which can be implemented below.

For each individual, two types of neighborhood structures are first randomly per-
formed on the global best individual to generate a mirror. After the mirror generation, a
crossover operation is performed between the current individual and the mirror to obtain
a new individual. Herein, we employ dλe to represent the execution times of neighbor-
hood operation. If λ is large, the mirror may drop into the remote area of the global best;
otherwise the mirror locates near the global best. Therefore, λ determines the degree of
exploitation of the mirror search operator. In this paper, the value of λ is dynamically
adjusted along with the iteration process. In the early iteration of the algorithm, individuals
are updated by learning from the mirrors that are far away from the global best individual,
and in the later iteration, individuals are updated by learning from the mirrors close to the
global best individual. This adjustment process of λ can be formulated by Equation (20),
where t is the current iteration number; tmax represents the maximum iteration number;
λmin and λmax represent the minimum and maximum values of λ, which are set to be
1 and 5, respectively.

λ = λmin + (λmax − λmin)× (tmax − t)/tmax (20)

When performing the crossover operations, the POX and JBX are randomly selected
for the OP vector, and the TPX and MPX are randomly selected for the MA vector. In
addition, the neighborhood structures mentioned above are described below.

(1) Type 1 for machine assignment

TMA1: Randomly choose a position in the MA vector and randomly choose a different
machine from the compatible machine set of the selected operation to take the place of the
original machine.

TMA2: Randomly choose a position in the MA vector and choose the machine with
the shortest processing time from the compatible machine set of the selected operation to
replace the original machine.

TMA3: Randomly choose a position in the MA vector and choose the machine with
the smallest PEC coefficient from the compatible machine set of the selected operation to
replace the original machine.

(2) Type 2 for operation permutation

TOP1: Randomly select two positions with different values in the OP vector and swap
their values.
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TOP2: Randomly select two positions in the OP vector and insert the second position
in front of the first one.

TOP3: Randomly select two positions in the OP vector and invert the values between
the two positions.

4.5. Tuning of Parameter α

In the basic ISA, individuals are divided into two groups controlled by parameter
α, which determines the degree of emphasis on exploration and exploitation during the
iteration search process. That is, if parameter α has a small value, more individuals join the
composition group, and the algorithm has a stronger exploration capacity. Otherwise, the
algorithm emphasizes the exploitation capacity. To acquire a balance between exploration
and exploitation, Gandomi and Roke [54] proposed a linear adjustment approach of α in
Equation (21), which indicates that the search focuses on exploration by using composition
optimization at the early stage, and then it is gradually switched to mirror search to
emphasize exploitation at the latter stage.

α = αmin + (αmax − αmin)t/tmax (21)

4.6. Random Walk

In the ISA algorithm, a random walk acts as a local search to boost the local search
capacity of the algorithm around the global best individual. To this end, a local search
algorithm is constructed on the basis of the neighborhood structures in Section 4.4. The
steps of the local search algorithm are stated below.

Step 1. Set the current global best solution as the initial solution.
Step 2. Set ζ ← 1 .
Step 3. Perform two neighborhood structures on the MA and the OP vectors, respectively.

For the two neighborhood structures, one is randomly selected from TMA1-TMA3,
the other from TOP1-TOP3.

Step 4. Conduct the comparison between the new individual and the original one. If the
new individual outperforms the original one, update the current best solution.

Step 5. Set ζ ← ζ + 1 , if ζ > ζmax, go to Step 6; otherwise, go to Step 2.
Step 6. Terminate the algorithm.

4.7. Steps of the NISA

Step 1. Initialize the parameters, i.e., the population size PS, the maximum iteration of
NISA tmax and the maximum iteration of local search algorithm ζmax.

Step 2. Create the initial population by using the approach in Section 4.2.
Step 3. Find out the current global best solution Xt

gb.

Step 4. Calculate the value of parameter α, and divide the population into the composition
group and the mirror group.

Step 5. Perform the local search algorithm on Xt
gb.

Step 6. Perform the crossover-based composition optimization operator on the individuals
in the composition group.

Step 7. Perform the neighborhood-crossover mirror search operator on the individuals in
the mirror group.

Step 8. Evaluate each new individual. If it is superior to the original one, accept it; other-
wise, keep the original solution unchanged.

Step 9. Determine whether the stop condition is met. If yes, go to Step 10; otherwise, go
to Step 3.

Step 10.Terminate the NISA algorithm.
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5. Numerical Experiments

Extensive experiments are conducted in this section to test the performance of the
NISA. All algorithms are coded in Fortran language and run on VMware Workstation with
2GB RAM under Windows XP.

5.1. Test Instance

Two sets of test instances are examined in this section. The first set refers to
15 small-scale instances modified from benchmark instances of the traditional FJSP, and
the second set is 24 large-scale instances randomly generated with a certain number of jobs
and machines. That is, there are 39 instances of different scales considered in this section.
For each instance, all compared algorithms are independently run 10 times to obtain the
comparison results.

Small-scale instances: Fifteen benchmark instances (Kacem01-Kacem05, MK01-MK10)
were proposed by Kacem et al. [55] and Brandimarte [56]. In those benchmark instances,
the information on job split, energy consumption and transportation times are not involved.
Therefore, we modified the original instances by setting some additional information in
a certain range with a discrete uniform distribution. i.e., si ∈ [1, 3], PEijkl ∈ [10, 15],
SEk ∈ [6, 10], CE ∈ [12, 18], TE ∈ [5, 10] and TTi(j−1)lk,ijlw ∈ [5, 15].

Large-scale instances: Twenty-four instances (RM01-RM24) are generated with the
number of jobs n ∈ {50, 60, 70,80, 90, 100} and machines m ∈ {10, 15, 20, 25}. In addi-
tion, other data are set with a discrete uniform distribution, i.e., si ∈ [1, 5], Ji ∈ [1, 3],
nop ∈ [2, m], pijk ∈ [10, 20], PEijkl ∈ [10, 15], SEk ∈ [6, 10], CE ∈ [12, 18], TE ∈ [5, 10] and
TTi(j−1)lk,ijlw ∈ [5, 10]. nop represents the size of compatible machine set for each operation.

5.2. Parameter Tuning

There are three parameters to be tuned, i.e., population size PS, maximum iteration
of NISA tmax and maximum iteration of local search algorithm ζmax. Here, the design of
the experiment is carried out to get the best combination of these parameters based on the
instance RM12. Tables 1 and 2 show the factor levels and the orthogonal array L16(53). In
Table 2, Avg denotes the average value gained from the ten runs of NISA. Table 3 gives the
response value and the significance rank, which reflects that PS and tmax are much more
significant than ζmax. The trend of the factor level is illustrated in Figure 3. According to
the computational results, the three parameters are fixed as follows: PS = 300, tmax = 1500,
ζmax = 40.
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Table 1. Parameter levels.

Factor
Level

1 2 3 4 5

PS 100 150 200 250 300
tmax 500 1000 1500 2000 2500
ζmax 10 20 30 40 50
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Table 2. Orthogonal array and Avg values.

Number PS tmax ζmax Avg

1 1 1 1 77,119.7
2 1 2 2 76,567.3
3 1 3 3 76,178.2
4 1 4 4 76,062.4
5 1 5 5 76,173.3
6 2 1 2 76,774.1
7 2 2 3 76,156.1
8 2 3 4 76,227.6
9 2 4 5 76,190.4
10 2 5 1 76,236.3
11 3 1 3 76,414.9
12 3 2 4 76,078.1
13 3 3 5 76,096.7
14 3 4 1 76,169.8
15 3 5 2 76,084.4
16 4 1 4 76,271.5
17 4 2 5 76,012.7
18 4 3 1 75,977.1
19 4 4 2 76,070.8
20 4 5 3 75,946.5
21 5 1 5 76,141.6
22 5 2 1 75,890.4
23 5 3 2 75,882.3
24 5 4 3 75,914.1
25 5 5 4 75,927.3

Table 3. Response value and significance rank.

Level PS tmax ζmax

1 76,438.4 76,543.3 76,281.1
2 76,327.7 76,162.0 76,255.5
3 76,152.9 76,062.7 76,130.0
4 76,044.7 76,063.6 76,119.6
5 75,946.2 76,078.3 76,123.7

Delta 492.2 480.6 161.5
Rank 1 2 3

5.3. Comparison Results of Different Algorithms
5.3.1. Effectiveness of the Population Initialization Approach

To guarantee the quality of the initial population, a population initialization approach
is adopted in Section 4.2. Here, the effectiveness of the approach is first validated through
a comparison between NISA and ISARR. For the ISARR, it is an abbreviated algorithm of
the proposed NISA, where the machine assignment and the operation permutation of each
initial scheduling solution are both generated at random. Table 4 reports the comparison
data of the two algorithms. ‘Best’ is the best value collected by each algorithm. ‘Avg’ is the
average result of each algorithm in ten runs. ‘Time’ is the average running time (in seconds).
The data in bold denote the best value collected by all compared algorithms.



Axioms 2022, 11, 306 12 of 25

Table 4. Effectiveness analysis of the population initialization approach.

Instance m × n
NISA ISARR

Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1762.0 36.5 1762 1762.0 37.2
Kacem02 8 × 8 3494 3495.2 77.2 3486 3500.8 78.2
Kacem03 7 × 10 3117 3125.4 82.9 3117 3126.9 83.4
Kacem04 10 × 10 3842 3883.0 85.6 3833 3860.9 87.8
Kacem05 10 × 15 7029 7186.9 158.8 7110 7233.1 162.9

MK01 6 × 10 8971 9050.5 149.2 8974 9005.3 149.5
MK02 6 × 10 10,163 10,256.2 154.8 10,103 10,185.9 156.6
MK03 8 × 15 32,034 32,387.1 411.8 32,402 32,653.1 424.2
MK04 8 × 15 15,496 15,710.9 247.9 15,308 15,462.4 260.9
MK05 4 × 15 27,182 27,272.5 311.5 27,091 27,148.9 296.9
MK06 15 × 10 36,672 37,152.9 417.2 36,613 37,058.3 430.9
MK07 5 × 20 20,965 21,019.4 276.8 20,960 20,998.2 288.1
MK08 10 × 20 88,152 89,319.2 659.8 87,738 88,714.4 662.8
MK09 10 × 20 62,277 63,514.5 680.2 62,486 63,606.0 705.8
MK10 15 × 20 72,341 73,085.5 708.3 73,950 75,542.6 717.3
RM01 10 × 50 37,600 37,751.8 410.3 37,745 37,926.7 411.1
RM02 10 × 60 40,503 40,597.0 495.9 40,703 40,882.7 501.6
RM03 10 × 70 46,416 46,592.9 624.0 46,557 46,799.9 625.4
RM04 10 × 80 64,828 65,022.4 716.4 65,113 65,623.4 719.9
RM05 10 × 90 59,776 59,854.9 884.1 60,055 60,313.3 871.4
RM06 10 × 100 66,035 66,192.8 1004.3 66,055 66,457.6 990.1
RM07 15 × 50 37,031 37,240.9 430.3 37,374 37,610.7 426.1
RM08 15 × 60 37,546 37,769.8 520.6 37,777 37,963.1 527.6
RM09 15 × 70 48,581 48,751.7 638.5 48,850 49,203.7 654.9
RM10 15 × 80 57,888 58,022.8 766.3 58,419 58,727.1 771.6
RM11 15 × 90 57,058 57,238.5 902.8 57,458 58,100.2 905.4
RM12 15 × 100 75,616 75,872.3 1028.8 76,398 76,816.3 1024.3
RM13 20 × 50 36,252 36,489.7 463.2 36,625 36,947.2 479.4
RM14 20 × 60 42,683 42,876.9 585.6 43,104 43,580.2 601.8
RM15 20 × 70 44,171 44,464.3 694.1 45,096 45,589.0 706.7
RM16 20 × 80 59,297 59,508.9 822.6 60,076 60,535.1 827.9
RM17 20 × 90 61,150 61,321.0 966.5 62,559 62,801.9 1016.3
RM18 20 × 100 63,135 63,446.7 1089.4 64,045 64,477.8 1061.9
RM19 25 × 50 32,512 32,659.4 491.2 33,156 33,360.9 473.9
RM20 25 × 60 39,477 39,660.7 625.5 39,754 40,167.6 595.6
RM21 25 × 70 41,535 41,872.1 799.9 41,966 42,400.4 700.5
RM22 25 × 80 46,759 46,998.3 929.6 47,535 48,328.4 826.2
RM23 25 × 90 63,567 63,880.3 1096.9 65,112 65,709.1 1024.3
RM24 25 × 100 65,134 65,345.0 1163.7 66,414 67,460.8 1119.6
Mean - 41,488.4 41,706.5 579.7 42,888.5 42,247.2 574.5

It can be obviously observed that: (1) In comparisons of Best values, NISA performs
better than ISARR in 31 out of 39 instances. In the small-scale instances, NISA can obtain
7 bold values out of 15 instances, which is less than those (10 bold values) obtained by
ISARR. However, in the large-scale instances (RM01-RM24), NISA performs better than
ISARR in all instances. (2) In comparisons of Avg values, NISA also performs better than
ISARR in 31 out of 39 instances. In the small-scale instances, NISA yields 7 bold values,
and ISARR obtains 9 bold values. However, in the large-scale instances (RM01-RM24),
NISA is also superior to ISARR in all instances. (3) In comparison to Time, the difference
between the two algorithms is very small. (3) The Mean value also reflects the superior
performance of the NISA algorithm. In addition, to illustrate the comparison results more
clearly, the curves of BRPD and ARPD are shown in Figure 4. BRPD and ARPD are two
kinds of relative percentage deviation (RPD), which can be measured by Equations (22)
and (23), respectively.

BRPD = 100× (A∗i − A∗)/A∗ (22)
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ARPD = 100× (Ai − A∗)/A∗ (23)

where A∗i is the Best value obtained by algorithm i; Ai is the Avg value acquired by algorithm
i; and A∗ is the best solution among all the compared algorithms. Following Equations
(22) and (23), the values of BRPD and ARPD are, respectively, determined by Best and Avg.
According to the results in Table 4 and Figure 4, it can be concluded that the population
initialization approach is applicable for the considered problem.
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5.3.2. Effectiveness of the Dynamic Adjustment on λ

In Section 4.4, a mirror is first acquired by dynamically changing the execution time
of neighborhood operation in the iteration process. To validate the effectiveness of the
dynamic adjustment strategy, five algorithms with different values of λ, namely ISA1-
ISA5, are compared with the proposed NISA. The comparison results are reported in
Table 5, where the data in bold represent the best values among all compared algorithms.
It can be easily observed that: (1) For the Best value, NISA received 14 bold values out
of 39 instances. In the small-scale instances, NISA yields only 4 bold values, but it can
obtain 10 bold values in large-scale instances. The second-best algorithm, namely ISA1,
can only achieve 12 boldface values. In the small-scale instances, ISA1 yields 7 bold val-
ues, but it can obtain 5 bold values in large-scale instances. (2) For the Avg value, NISA
yields 16 boldface values out of 39 instances. In the small-scale instances, NISA obtains
5 bold values; meanwhile, it can get 11 bold values in large-scale instances. The second-best
algorithm, namely ISA1, can only receive 10 boldface values. In the small-scale instances,
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ISA1 obtains only 3 bold values; meanwhile, it gets only 7 bold values in large-scale
instances. (3) For the Time value, the differences between NISA and other compared al-
gorithms are not particularly obvious. (4) The Mean value also demonstrates the superior
performance of the NISA algorithm. In addition, the curves of BRPD and ARPD are shown
in Figure 5. According to the results in Table 5 and Figure 5, the dynamic adjustment
strategy on λ is effective for the considered problem.

Table 5. Effectiveness analysis of the dynamic adjustment on λ.

Instance m× n
NISA ISA1 (λ) ISA2 (λ)

Best Avg Time Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1762.0 36.5 1762 1763.6 36.2 1762 1765.2 36.4
Kacem02 8 × 8 3494 3495.7 77.2 3494 3516.9 74.9 3494 3500.8 75.1
Kacem03 7 × 10 3117 3125.4 82.9 3117 3132.4 80.2 3117 3133.1 80.0
Kacem04 10 × 10 3842 3883.0 85.6 3836 3881.2 84.3 3842 3884.7 84.4
Kacem05 10 × 15 7029 7113.9 158.8 7028 7128.4 156.7 7094 7151.3 157.7

MK01 6 × 10 8971 9025.8 149.2 8971 9030.0 144.6 8972 9021.4 145.2
MK02 6 × 10 10,163 10,239.4 154.8 10,112 10,219.7 152.3 10,164 10,239.9 152.5
MK03 8 × 15 32,034 32,387.1 411.8 32,169 32,403.7 400.0 32,076 32,462.6 403.8
MK04 8 × 15 15,496 15,640.8 247.9 15,546 15,796.9 245.6 15,451 15,618.9 244.8
MK05 4 × 15 27,182 27,272.5 311.5 27,140 27,255.1 278.2 27,164 27,251.0 279.6
MK06 15 × 10 36,672 37,003.7 417.2 36,362 36,743.1 407.4 36,414 36,780.1 409.2
MK07 5 × 20 20,965 21,019.4 276.8 20,948 20,993.0 272.3 20,958 21,026.2 273.1
MK08 10 × 20 88,152 89,219.2 659.8 88,570 89,204.6 640.9 88,572 89,173.4 635.6
MK09 10 × 20 62,277 63,514.5 680.2 62,428 63,594.6 664.2 62,937 63,545.5 685.2
MK10 15 × 20 72,341 73,005.0 708.3 72,752 73,265.1 697.3 72,586 73,386.8 709.6
RM01 10 × 50 37,600 37,736.8 410.3 37,621 37,712.8 419.3 37,635 37,755.9 422.1
RM02 10 × 60 40,503 40,556.4 495.9 40,533 40,598.3 558.3 40,477 40,575.1 552.7
RM03 10 × 70 46,416 46,538.8 624.0 46,535 46,684.5 632.1 46,469 46,648.2 643.8
RM04 10 × 80 64,828 64,957.7 716.4 64,900 65,078.8 783.7 64,881 65,035.1 764.0
RM05 10 × 90 59,776 59,854.9 884.1 59,794 60,028.1 949.6 59,722 59,982.6 912.8
RM06 10 × 100 66,035 66,192.8 1004.3 66,136 66,300.1 1032.8 66,106 66,220.2 1030.8
RM07 15 × 50 37,031 37,188.1 430.3 37,095 37,268.4 434.8 37,045 37,209.8 440.7
RM08 15 × 60 37,546 37,683.6 520.6 37,570 37,675.9 549.1 37,545 37,692.4 562.3
RM09 15 × 70 48,581 48,704.5 638.5 48,575 48,789.0 661.3 48,490 48,700.0 672.6
RM10 15 × 80 57,888 58,002.9 766.3 57,861 58,079.7 864.4 57,953 58,044.2 797.9
RM11 15 × 90 57,058 57,215.1 902.8 57,118 57,371.6 944.1 57,145 57,272.1 946.1
RM12 15 × 100 75,616 75,826.8 1028.8 75,705 75,984.0 1077.6 75,624 75,829.2 1084.9
RM13 20 × 50 36,252 36,429.6 463.2 36,193 36,339.1 455.8 36,175 36,330.1 465.0
RM14 20 × 60 42,683 42,876.9 585.6 42,714 42,886.9 614.5 42,687 42,866.5 585.5
RM15 20 × 70 44,171 44,464.3 694.1 44,241 44,465.7 693.2 44,320 44,502.4 704.1
RM16 20 × 80 59,297 59,431.9 822.6 59,253 59,577.9 829.7 59,349 59,541.3 834.0
RM17 20 × 90 61,150 61,321.0 966.5 61,122 61,298.8 1075.7 61,161 61,227.9 1027.3
RM18 20 × 100 63,135 63,446.7 1089.4 63,137 63,372.9 1103.8 63,193 63,469.4 1198.4
RM19 25 × 50 32,512 32,659.4 491.2 32,451 32,603.6 529.8 32,527 32,613.1 525.2
RM20 25 × 60 39,477 39,660.7 625.5 39,366 39,531.5 653.3 39,245 39,576.1 656.8
RM21 25 × 70 41,535 41,872.1 799.9 41,479 41,673.1 778.1 41,628 41,779.6 785.5
RM22 25 × 80 46,759 46,998.3 929.6 46,768 46,900.2 915.5 46,823 46,945.9 937.6
RM23 25 × 90 63,567 63,880.3 1096.9 63,688 63,869.5 1074.9 63,712 63,930.9 1095.6
RM24 25 × 100 65,134 65,345.0 1163.7 65,034 65,267.4 1237.3 65,234 65,344.6 1239.3
Mean - 41,488.4 41,706.5 579.7 41,516.0 41,725.3 595.0 41,532.0 41,720.1 596.3
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Table 5. Cont.

Instance m× n
ISA3 (λ = 3) ISA4 (λ = 4) ISA5 (λ = 5)

Best Avg Time Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1765.2 36.4 1762 1768.4 36.8 1762 1762.0 37.3
Kacem02 8 × 8 3494 3498.0 76.1 3494 3495.2 76.0 3486 3497.0 77.1
Kacem03 7 × 10 3117 3129.0 81.1 3120 3136.6 81.3 3117 3143.3 81.5
Kacem04 10 × 10 3816 3870.3 84.7 3851 3884.5 85.4 3851 3883.9 85.4
Kacem05 10 × 15 7023 7160.9 157.8 7090 7156.5 158.3 7093 7188.7 159.6

MK01 6 × 10 8986 9035.3 147.8 8971 9034.4 147.2 8971 9021.0 146.8
MK02 6 × 10 10,141 10,233.2 153.2 10,151 10,228.2 152.8 10,151 10,245.0 153.1
MK03 8 × 15 32,029 32,428.4 403.5 32,162 32,498.7 405.9 32,138 32,431.9 404.6
MK04 8 × 15 15,563 15,687.8 244.6 15,477 15,639.2 244.7 15,557 15,689.3 245.8
MK05 4 × 15 27,164 27,245.8 280.3 27,141 27,260.0 281.3 27,181 27,268.6 280.1
MK06 15 × 10 36,695 37,168.5 409.7 36,893 37,272.9 411.5 36,938 37,330.4 413.8
MK07 5 × 20 20,951 21,006.8 273.8 20,965 21,004.3 274.5 20,948 21,007.8 273.7
MK08 10 × 20 88,437 89,212.9 631.0 88,388 88,919.3 628.7 88,019 89,016.8 632.1
MK09 10 × 20 62,791 63,645.0 682.3 62,681 63,572.2 684.5 62,517 63,475.3 684.4
MK10 15 × 20 72,194 73,090.7 699.6 72,371 73,111.0 701.1 72,166 73,120.5 721.4
RM01 10 × 50 37,620 37,708.5 436.7 37,644 37,714.6 428.8 37,565 37,702.7 425.5
RM02 10 × 60 40,454 40,589.6 540.1 40,475 40,569.9 538.9 40,495 40,563.2 549.5
RM03 10 × 70 46,491 46,610.7 647.8 46,498 46,651.1 647.2 46,481 46,676.1 651.5
RM04 10 × 80 64,835 65,008.8 775.3 64,975 65,109.8 766.2 64,846 65,054.0 774.9
RM05 10 × 90 59,793 59,997.8 901.8 59,897 60,033.6 903.9 59,819 60,033.3 910.3
RM06 10 × 100 66,123 66,281.2 1031.4 66,138 66,270.5 1033.2 66,081 66,280.0 1025.1
RM07 15 × 50 37,117 37,263.7 445.3 37,102 37,267.3 450.3 37,164 37,303.9 458.3
RM08 15 × 60 37,714 37,822.2 562.7 37,611 37,759.2 572.8 37,760 37,860.1 566.6
RM09 15 × 70 48,529 48,686.8 672.0 48,504 48,737.4 679.3 48,505 48,733.9 680.1
RM10 15 × 80 57,880 58,025.8 799.2 57,872 58,008.6 827.3 57,903 58,080.9 797.7
RM11 15 × 90 56,985 57,247.1 947.4 57,105 57,241.9 957.4 57,124 57,252.8 948.5
RM12 15 × 100 75,696 75,971.2 1085.3 75,742 75,939.0 1092.4 75,823 75,987.5 1081.4
RM13 20 × 50 36,094 36,440.0 463.8 36,260 36,426.8 465.9 36,347 36,523.7 466.7
RM14 20 × 60 42,716 42,860.7 600.7 42,825 42,970.1 589.2 42,731 42,884.4 601.2
RM15 20 × 70 44,314 44,577.2 711.2 44,422 44,572.5 707.7 44,454 44,550.8 711.6
RM16 20 × 80 59,415 59,665.5 845.6 59,311 59,495.6 852.6 59,312 59,623.3 882.6
RM17 20 × 90 61,181 61,414.7 996.0 61,223 61,418.2 991.7 61,312 61,543.3 994.5
RM18 20 × 100 63,348 63,512.9 1180.2 63,162 63,506.3 1122.4 63,357 63,675.4 1176.6
RM19 25 × 50 32,399 32,579.8 517.6 32,480 32,613.6 465.1 32,510 32,647.2 442.7
RM20 25 × 60 39,609 39,667.4 653.3 39,539 39,649.8 650.2 39,418 39,630.4 620.4
RM21 25 × 70 41,681 41,838.0 782.9 41,583 41,926.5 777.4 41,791 41,993.2 694.7
RM22 25 × 80 46,774 46,969.0 925.9 46,851 47,033.6 917.6 46,871 47,041.6 804.2
RM23 25 × 90 63,839 63,976.6 1121.8 63,637 64,105.1 1099.3 63,830 64,129.6 954.4
RM24 25 × 100 65,163 65,451.7 1243.1 65,359 65,510.2 1226.8 65,304 65,548.5 1077.2
Mean - 41,536.7 41,752.4 596.1 41,557.2 41,756.7 593.2 41,556.4 41,779.5 581.9

5.3.3. Effectiveness of the Dynamic Adjustment on α

To cooperate the abilities of exploration and exploitation, a linear adjustment approach
of α is employed to divide individuals into two groups. In this subsection, we validate
the effectiveness of the dynamic adjustment approach based on the comparison between
NISA and ISAF. In the ISAF, α is set as the recommended value in [44], i.e., α = 0.2. It can be
clearly observed from Table 6 that: (1) In comparison to the Best values, NISA performs
better than ISAF in 34 out of 39 instances. (2) In comparison to the Avg values, NISA is
superior to ISAF in 33 out of 39 instances. (3) In comparison to the Time value, the running
time of NISA is less than that of ISAF in 19 out of 39 instances. (4) The Mean value also
demonstrates the superior performance of the NISA algorithm. In addition, the curves of
BRPD and ARPD are shown in Figure 6. According to the results in Table 6 and Figure 6,
it can be concluded that the dynamic adjustment strategy on α is also effective for the
considered problem.
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Figure 6. The curves of BRPD and ARPD in the comparison between NISA and ISAF.

Table 6. Effectiveness analysis of the dynamic adjustment on α.

Instance m × n
NISA ISAF

Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1762.0 36.5 1762 1762.0 36.1
Kacem02 8 × 8 3494 3495.2 77.2 3496 3502.3 75.8
Kacem03 7 × 10 3117 3125.4 82.9 3135 3142.8 79.8
Kacem04 10 × 10 3842 3883.0 85.6 3836 3884.4 85.3
Kacem05 10 × 15 7029 7186.9 158.8 7066 7201.9 159.6

MK01 6 × 10 8971 9050.5 149.2 8973 9022.4 145.3
MK02 6 × 10 10,163 10,256.2 154.8 10,163 10,257.4 152.7
MK03 8 × 15 32,034 32,387.1 411.8 32,152 32,691.1 406.1
MK04 8 × 15 15,496 15,710.9 247.9 15,399 15,710.3 245.8
MK05 4 × 15 27,182 27,272.5 311.5 27,102 27,195.7 306.7
MK06 15 × 10 36,672 37,152.9 417.2 36,622 36,946.9 414.5
MK07 5 × 20 20,965 21,019.4 276.8 20,980 21,042.0 271.5
MK08 10 × 20 88,152 89,319.2 659.8 87,505 88,564.9 652.7
MK09 10 × 20 62,277 63,514.5 680.2 62,307 63,089.3 670.9
MK10 15 × 20 72,341 73,085.5 708.3 73,194 73,534.5 699.6
RM01 10 × 50 37,600 37,751.8 410.3 37,670 37,847.8 451.1
RM02 10 × 60 40,503 40,597.0 495.9 40,513 40,629.4 566.3
RM03 10 × 70 46,416 46,592.9 624.0 46,558 46,759.2 636.6
RM04 10 × 80 64,828 65,022.4 716.4 64,914 65,128.4 769.7
RM05 10 × 90 59,776 59,854.9 884.1 59,880 60,150.9 974.2
RM06 10 × 100 66,035 66,192.8 1004.3 66,076 66,312.8 1232.9
RM07 15 × 50 37,031 37,240.9 430.3 37,152 37,345.9 436.8
RM08 15 × 60 37,546 37,769.8 520.6 37,711 37,844.8 545.6
RM09 15 × 70 48,581 48,751.7 638.5 48,609 48,768.8 658.9
RM10 15 × 80 57,888 58,022.8 766.3 57,932 58,288.3 781.8
RM11 15 × 90 57,058 57,238.5 902.8 57,207 57,473.6 964.4
RM12 15 × 100 75,616 75,872.3 1028.8 75,789 76,013.7 1096.6
RM13 20 × 50 36,252 36,489.7 463.2 36,327 36,505.0 491.0
RM14 20 × 60 42,683 42,876.9 585.6 42,858 43,010.9 615.8
RM15 20 × 70 44,171 44,464.3 694.1 44,550 44,985.8 734.6
RM16 20 × 80 59,297 59,508.9 822.6 59,328 59,709.7 890.7
RM17 20 × 90 61,150 61,321.0 966.5 61,261 61,527.8 1045.3
RM18 20 × 100 63,135 63,446.7 1089.4 63,464 63,845.1 1192.8
RM19 25 × 50 32,512 32,659.4 491.2 32,537 32,883.0 504.2
RM20 25 × 60 39,477 39,660.7 625.5 39,517 39,755.6 615.6
RM21 25 × 70 41,535 41,872.1 799.9 41,415 41,888.7 739.3
RM22 25 × 80 46,759 46,998.3 929.6 46,757 47,308.7 875.6
RM23 25 × 90 63,567 63,880.3 1096.9 63,867 64,208.9 1072.3
RM24 25 × 100 65,134 65,345.0 1163.7 65,232 6,5553.1 1146.6
Mean - 41,488.4 41,706.5 579.7 41,559.4 41,828.0 601.1
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5.3.4. Comparison with Existing Algorithms

To further demonstrate the advantage of the proposed NISA algorithm, we compared
it with three published algorithms, i.e., genetic algorithm (GA) [41], modified animal
migration optimization (MAMO) [38] and hybrid particle swarm optimization and genetic
algorithm (PSO-GA) [57]. The GA was proposed for the FJSP with overlapping operations,
but job transportation times and energy consumption are neglected. The MAMO was
proposed for the energy-saving FJSP considering transportation time and deterioration
effect simultaneously, but the overlapping in operations is not considered. The PSO-GA
was presented for energy-saving FJSP with assembly operations, but job transportation
times and overlapping in operations are not involved. The three compared algorithms are
easily implemented for the considered problem. For the GA, to enhance the search capacity,
the proposed population initialization approach and local search algorithm are shared with
the NISA. For the PSO-GA, the population initialization approach and crossover operator
are also the same as the NISA. The neighborhood structures are randomly selected as the
mutation operator. The parameters of the two algorithms are set as follows: In the GA,
the population size PS is 300, the maximum iteration tmax is 1500, the maximum iteration
of local search algorithm ζmax is 40, the crossover rate is 0.8 and the mutation rate is 0.2.
In the MAMO, the population size PS is 300, the maximum iteration tmax is 1500 and the
crossover rate is 0.6. In the PSO-GA, the population size PS is 300, the maximum iteration
tmax is 1500, the crossover rate is 0.8 and the mutation rate is 0.2.

According to the comparison results in Table 7, the following observations can be
obtained: (1) In comparison to the Best values, NISA outperforms the other three algorithms
in 38 out of 39 instances. (2) In comparison to the Avg values, NISA performs best in 38
out of 39 instances. (3) In comparison to the Time value, GA performs best among the
four algorithms. (4) The last row suggests that the proposed algorithm can obtain better
computational results, but it consumes more time than GA and MAMO. The curves of
BRPD and ARPD are shown in Figure 7. According to the results in Table 7 and Figure 7, it
can be concluded that the NISA algorithm is effective in solving the considered problem.

Table 7. Comparison results of NISA and existing algorithms.

Instance m× n
NISA GA

Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1762.0 36.5 1762 1776.0 3.8
Kacem02 8 × 8 3494 3495.2 77.2 3518 3540.9 9.3
Kacem03 7 × 10 3117 3125.4 82.9 3147 3198.5 10.1
Kacem04 10 × 10 3842 3883.0 85.6 3903 3932.1 11.1
Kacem05 10 × 15 7029 7186.9 158.8 7223 7398.4 22.1

MK01 6 × 10 8971 9050.5 149.2 9050 9155.4 18.7
MK02 6 × 10 10,163 10,256.2 154.8 10,263 10,387.8 19.9
MK03 8 × 15 32,034 32,387.1 411.8 32,632 33,205.2 53.6
MK04 8 × 15 15,496 15,710.9 247.9 15,755 15,963.0 32.9
MK05 4 × 15 27,182 27,272.5 311.5 27,308 27,414.3 35.7
MK06 15 × 10 36,672 37,152.9 417.2 37,194 37,716.1 57.2
MK07 5 × 20 20,965 21,019.4 276.8 21,072 21,272.0 36.9
MK08 10 × 20 88,152 89,319.2 659.8 88,859 89,563.2 94.4
MK09 10 × 20 62,277 63,514.5 680.2 62,708 63,234.3 95.8
MK10 15 × 20 72,341 73,085.5 708.3 72,859 73,967.9 108.2
RM01 10 × 50 37,600 37,736.8 410.3 37,673 38,106.7 78.5
RM02 10 × 60 40,503 40,556.4 495.9 40,614 41,005.9 102.8
RM03 10 × 70 46,416 46,538.8 624.0 46,985 47,254.8 129.5
RM04 10 × 80 64,828 64,957.7 716.4 65,653 66,146.7 159.3
RM05 10 × 90 59,776 59,854.9 884.1 60,434 60,666.0 190.8
RM06 10 × 100 66,035 66,192.8 1004.3 66,728 67,099.3 219.3
RM07 15 × 50 37,031 37,188.1 430.3 37,578 37,790.0 86.4
RM08 15 × 60 37,546 37,683.6 520.6 37,983 38,445.8 112.5
RM09 15 × 70 48,581 48,704.5 638.5 49,029 49,447.0 140.1
RM10 15 × 80 57,888 58,002.9 766.3 58,955 59,345.8 170.1
RM11 15 × 90 57,058 57,215.1 902.8 57,988 58,378.4 205.1
RM12 15 × 100 75,616 75,826.8 1028.8 77,023 77,441.6 237.3



Axioms 2022, 11, 306 19 of 25

Table 7. Cont.

Instance m× n
NISA GA

Best Avg Time Best Avg Time

RM13 20 × 50 36,252 36,429.6 463.2 36,940 37,196.8 91.4
RM14 20 × 60 42,683 42,876.9 585.6 43,390 43,672.5 121.1
RM15 20 × 70 44,171 44,464.3 694.1 45,181 45,573.7 149.0
RM16 20 × 80 59,297 59,431.9 822.6 60,067 60,611.2 178.5
RM17 20 × 90 61,150 61,321.0 966.5 62,349 62,768.9 216.3
RM18 20 × 100 63,135 63,446.7 1089.4 64,265 64,743.9 251.1
RM19 25 × 50 32,512 32,659.4 491.2 32,890 33,317.2 97.0
RM20 25 × 60 39,477 39,660.7 625.5 40,164 40,445.1 134.9
RM21 25 × 70 41,535 41,872.1 799.9 42,327 42,633.0 155.1
RM22 25 × 80 46,759 46,998.3 929.6 47,722 48,117.1 187.6
RM23 25 × 90 63,567 63,880.3 1096.9 6,4887 65,330.0 224.5
RM24 25 × 100 65,134 65,345.0 1163.7 66,596 66,917.2 266.1
Mean - 41,488.4 41,706.5 579.7 42,068.6 42,414.9 115.7

Instance m× n
MAMO PSO-GA

Best Avg Time Best Avg Time

Kacem01 5 × 4 1762 1780.8 17.9 1762 1811.0 57.9
Kacem02 8 × 8 3500 3601.2 41.7 3350 3532.2 122.4
Kacem03 7 × 10 3218 3313.8 44.6 3155 3201.9 131.8
Kacem04 10 × 10 3963 4048.5 47.8 3885 3984.5 138.9
Kacem05 10 × 15 7365 7550.7 99.3 7267 7413.7 252.3

MK01 6 × 10 9047 9145.7 78.9 9044 9162.7 236.6
MK02 6 × 10 10,290 10,500.8 82.6 10,254 10,484.6 249.0
MK03 8 × 15 33,121 33,610.7 245.8 32,671 33,889.2 660.0
MK04 8 × 15 15,693 15,926.0 148.6 15,827 16,166.5 387.4
MK05 4 × 15 27,309 27,437.8 163.4 27,260 27,494.6 442.9
MK06 15 × 10 37,652 38,402.6 263.4 37,206 37,865.1 656.2
MK07 5 × 20 21,228 21,412.9 170.3 21,344 21,512.9 434.5
MK08 10 × 20 90,105 90,949.1 428.1 89,788 90,887.7 1003.2
MK09 10 × 20 63,985 64,657.1 457.8 63,536 64,780.1 1063.7
MK10 15 × 20 73,476 75,002.8 502.5 74,530 75,979.6 1096.0
RM01 10 × 50 37,852 38,049.5 375.0 38,035 38,285.9 611.2
RM02 10 × 60 40,823 41,303.7 474.1 41,064 41,313.0 807.5
RM03 10 × 70 46,894 47,228.1 631.3 47,260 47,713.3 904.6
RM04 10 × 80 65,530 66,025.1 720.3 65,903 66,683.6 1081.3
RM05 10 × 90 60,341 60,614.0 878.9 60,704 61,144.0 1265.8
RM06 10 × 100 66,443 66,836.0 1076.1 67,538 68,230.5 1419.5
RM07 15 × 50 37,593 38,237.9 387.6 37,955 38,250.0 650.0
RM08 15 × 60 38,092 38,363.5 519.2 38,629 39,101.6 806.6
RM09 15 × 70 49,418 49,821.4 630.9 49,759 50,151.9 984.4
RM10 15 × 80 58,925 59,419 777.9 59,849 60,194.9 1204.7
RM11 15 × 90 58,131 58,594.9 955.3 59,675 60,094.2 1324.5
RM12 15 × 100 77,121 77,765.6 1101.1 78,758 79,438.1 1462.0
RM13 20 × 50 36,964 37,375.6 428.8 37,415 37,773.0 688.1
RM14 20 × 60 43,547 44,136.5 556.8 44,248 44,616.4 863.3
RM15 20 × 70 45,552 45,896.6 697.2 46,502 46,796.9 1062.8
RM16 20 × 80 60,368 60,868.1 883.8 61,575 62,043.1 1238.9
RM17 20 × 90 62,458 62,977.2 1015.5 64,168 64,685.2 1462.6
RM18 20 × 100 64,406 64,908.4 1232.4 65,930 66,685.2 1664.5
RM19 25 × 50 33,364 33,759.7 495.6 33,634 34,102.0 748.7
RM20 25 × 60 40,191 40,478.9 653.2 40,852 41,142.5 972.2
RM21 25 × 70 42,498 42,762.6 770.5 43,070 43,559.5 1133.5
RM22 25 × 80 48,047 48,269.7 977.6 49,251 49,864.2 1360.3
RM23 25 × 90 65,025 65,454.0 1136.4 66,768 68,007.8 1563.9
RM24 25 × 100 66,248 67,187.4 1310.1 68,721 69,347.5 1687.9
Mean - 42,244.7 42,658.3 550.9 42,772.9 43,266.4 869.3
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Figure 7. The curves of BRPD and ARPD in the comparison between NISA and the
published algorithms.

5.3.5. Analysis of the Effect of Transportation Times

In this subsection, two scenarios with different levels of transportation times are
used to investigate the effect of transportation times. For two scenarios, transportation
times are randomly generated with two discrete uniform distributions U [1,5] and U [5,10],
respectively. Table 8 reports that TTEC increases along with the increase in transportation
times. In addition, four instances (RM01, RM06, RM09, RM16) are taken as examples, and
the histograms of energy consumption are shown in Figure 8. It can be easily seen that the
increase in TTEC is mainly attributed to the increase in TEC. It can also be inferred that
the increase in transport times does not have a great impact on the other three kinds of
energy consumption.

5.3.6. Analysis of the Effect of Sublot Number

In this subsection, two scenarios with different levels of sublot number are employed to
analyze the effect of the sublot number. In the two scenarios, sublot numbers are randomly
generated with two discrete uniform distributions U [1,5] and U [5,10], respectively. Table 9
indicates that TTEC increases along with the increase in the sublot numbers. In addition,
for four instances (RM01, RM06, RM09, RM16), the histograms of energy consumption are
shown in Figure 9. It can be easily observed that the increase in TEC is largely responsible
for the increase in TTEC. It can also be inferred that the increase in sublot number has a
relatively small effect on the other three types of energy consumption.
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Table 8. Comparison results for two scenarios with different transportation times.

Instance m × n
Scenario 1 Scenario 2

Best Avg Best Avg

RM01 10 × 50 27,695 27,953.2 37,600 37,736.8
RM02 10 × 60 32,382 32,457.8 40,503 40,556.4
RM03 10 × 70 36,686 36,773.1 46,416 46,538.8
RM04 10 × 80 47,185 47,347.3 64,828 64,957.7
RM05 10 × 90 47,286 47,391.0 59,776 59,854.9
RM06 10 × 100 52,287 52,508.5 66,035 66,192.8
RM07 15 × 50 26,438 26,520.4 37,031 37,188.1
RM08 15 × 60 29,410 29,509.5 37,546 37,683.6
RM09 15 × 70 35,964 36,112.9 48,581 48,704.5
RM10 15 × 80 41,916 42,100.6 57,888 58,002.9
RM11 15 × 90 44,756 44,921.0 57,058 57,215.1
RM12 15 × 100 53,575 53,771.0 75,616 75,826.8
RM13 20 × 50 25,539 25,694.2 36,252 36,429.6
RM14 20 × 60 30,629 30,837.8 42,683 42,876.9
RM15 20 × 70 33,501 33,598.2 44,171 44,464.3
RM16 20 × 80 41,555 41,686.2 59,297 59,431.9
RM17 20 × 90 44,758 44,927.0 61,150 61,321.0
RM18 20 × 100 47,687 47,937.8 63,135 63,446.7
RM19 25 × 50 23,912 23,988.0 32,512 32,659.4
RM20 25 × 60 28,630 28,801.0 39,477 39,660.7
RM21 25 × 70 31,910 32,321.8 41,535 41,872.1
RM22 25 × 80 35,984 39,191.4 46,759 46,998.3
RM23 25 × 90 45,566 45,812.0 63,567 63,880.3
RM24 25 × 100 47,788 47,928.7 65,134 65,345.0
Mean - 38,043.3 38,337.1 51,022.9 51,201.9
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Table 9. Comparison results for two scenarios with different sublot number.

Instance m × n
Scenario 1 Scenario 2

Best Avg Best Avg

RM01 10 × 50 37,600 37,736.8 55,665 55,958.1
RM02 10 × 60 40,503 40,556.4 56,095 56,311.2
RM03 10 × 70 46,416 46,538.8 65,348 65,560.6
RM04 10 × 80 64,828 64,957.7 98,949 99,153.4
RM05 10 × 90 59,776 59,854.9 83,832 84,085.0
RM06 10 × 100 66,035 66,192.8 92,725 93,068.6
RM07 15 × 50 37,031 37,188.1 57,140 57,261.3
RM08 15 × 60 37,546 37,683.6 53,053 53,217.7
RM09 15 × 70 48,581 48,704.5 72,076 72,430.1
RM10 15 × 80 57,888 58,002.9 87,837 88,217.8
RM11 15 × 90 57,058 57,215.1 80,785 80,973.4
RM12 15 × 100 75,616 75,826.8 117,685 117,919.0
RM13 20 × 50 36,252 36,429.6 55,647 55,941.3
RM14 20 × 60 42,683 42,876.9 64,505 64,857.6
RM15 20 × 70 44,171 44,464.3 64,637 65,035.9
RM16 20 × 80 59,297 59,431.9 92,765 93,353.1
RM17 20 × 90 61,150 61,321.0 92,102 92,250.8
RM18 20 × 100 63,135 63,446.7 92,755 93,318.0
RM19 25 × 50 32,512 32,659.4 48,313 48,535.1
RM20 25 × 60 39,477 39,660.7 58,820 59,222.6
RM21 25 × 70 41,535 41,872.1 58,833 59,187.7
RM22 25 × 80 46,759 46,998.3 67,400 67,575.7
RM23 25 × 90 63,567 63,880.3 97,668 98,202.7
RM24 25 × 100 65,134 65„345.0 99,061 99,281.6
Mean - 51,022.9 51,201.9 75,570.7 75,871.6

Axioms 2022, 11, x FOR PEER REVIEW 24 of 27 
 

 
Figure 9. The histograms in the two scenarios of sublot number. 

Table 9. Comparison results for two scenarios with different sublot number. 

Instance m n×  
Scenario 1 Scenario 2 

Best Avg Best Avg 
RM01 10 × 50 37,600 37,736.8 55,665 55,958.1 
RM02 10 × 60 40,503 40,556.4 56,095 56,311.2 
RM03 10 × 70 46,416 46,538.8 65,348 65,560.6 
RM04 10 × 80 64,828 64,957.7 98,949 99,153.4 
RM05 10 × 90 59,776 59,854.9 83,832 84,085.0 
RM06 10 × 100 66,035 66,192.8 92,725 93,068.6 
RM07 15 × 50 37,031 37,188.1 57,140 57,261.3 
RM08 15 × 60 37,546 37,683.6 53,053 53,217.7 
RM09 15 × 70 48,581 48,704.5 72,076 72,430.1 
RM10 15 × 80 57,888 58,002.9 87,837 88,217.8 
RM11 15 × 90 57,058 57,215.1 80,785 80,973.4 
RM12 15 × 100 75,616 75,826.8 117,685 117,919.0 
RM13 20 × 50 36,252 36,429.6 55,647 55,941.3 
RM14 20 × 60 42,683 42,876.9 64,505 64,857.6 
RM15 20 × 70 44,171 44,464.3 64,637 65,035.9 
RM16 20 × 80 59,297 59,431.9 92,765 93,353.1 
RM17 20 × 90 61,150 61,321.0 92,102 92,250.8 
RM18 20 × 100 63,135 63,446.7 92,755 93,318.0 
RM19 25 × 50 32,512 32,659.4 48,313 48,535.1 
RM20 25 × 60 39,477 39,660.7 58,820 59,222.6 
RM21 25 × 70 41,535 41,872.1 58,833 59,187.7 
RM22 25 × 80 46,759 46,998.3 67,400 67,575.7 
RM23 25 × 90 63,567 63,880.3 97,668 98,202.7 
RM24 25 × 100 65,134 65,,345.0 99,061 99,281.6 
Mean - 51,022.9  51,201.9  75,570.7  75,871.6  

  

20,261

0

15,165

2210

21,052

0

32,247

2379

0 

10,000 

20,000 

30,000 

40,000 

PEC IEC TEC CEC

RM01

Scenario 1 Scenario 2

39,910

0

21,732

4394

42,025

0

46,032

4875

0 

10,000 

20,000 

30,000 

40,000 

50,000 

PEC IEC TEC CEC

RM06

Scenario 1 Scenario 2

26,549

0

19,848

2416

27,246

0

42,872

2528

0 

10,000 

20,000 

30,000 

40,000 

50,000 

PEC IEC TEC CEC

RM09

Scenario 1 Scenario 2

30,607

0

27,090

1974

31,480

131

59,630

2226

0 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

PEC IEC TEC CEC

RM16

Scenario 1 Scenario 2

Figure 9. The histograms in the two scenarios of sublot number.

6. Conclusions and Future Work

In this paper, an ESFJSP is considered with overlapping operations and transportation
times simultaneously. First, a mathematical model is constructed with the objective of
minimizing the total energy consumption. Secondly, a new interior search algorithm (NISA)
is presented according to the characteristics of the problem. To implement the algorithm,
the design work mainly includes encoding/decoding, population initialization, discrete
composition optimization, discrete mirror search, tuning of parameter α and random
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walk. Thirdly, extensive experiments are conducted to test the NISA’s performance. The
comparison results demonstrate that NISA is very competitive in solving the ESFJSP with
overlapping operations and transportation times. In addition, the computational results
indicate that the increase in transportation time and sublot number will incur an increase in
transportation energy consumption, which is largely responsible for the increase in TTEC.

The model of the considered problem is abstracted and assumed in this work. In the
next work, more practical constraints need to be integrated to be close to the real produc-
tion, such as the dynamic/uncertain manufacturing environment, limited manufacturing
resources (transporter, worker, etc.), job deterioration effect, time-of-use electricity strategy
and so on. Moreover, we will extract some more efficient search rules from the problem, by
which the computational efficiency of the algorithm will be further improved.
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