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Abstract: This paper proposes a semiparametric solution to estimate the intensity (hazard) func-
tion of modulated renewal processes: a nonparametric estimate for the baseline intensity function
together with a parametric estimate of the model parameters of the covariate processes. Based on
the martingale property associated with the conditional intensity, we construct a statistic from a
residual analysis to estimate the baseline renewal intensity function, when the model parameters of
the covariate processes are known. In addition, when the baseline intensity is obtained, the model
parameters can be estimated using the usual maximum likelihood estimation. In practice, both
the baseline intensity and model parameters are suggested to be estimated simultaneously via an
expectation–maximization (E–M)-type iterative algorithm. A more important feature of the newly
proposed algorithm is that, given n events in the observation dataset, its computation time is of order
O(n2), while the Nelson–Aalen–Breslow estimator takes a computation time of order O(n3). For
illustration, we apply the proposed estimation procedure to a set of data simulated from a modulated
gamma renewal process and the aftershock sequence following the Ms 8 Wenchuan earthquake,
which occurred in Sichuan Province, China on 12 May 2008.

Keywords: martingale; residual analysis; Nelson–Aalen–Breslow estimator; survival analysis; point
process

MSC: 62G05; 62M20; 60G55

1. Introduction

The renewal process and its variants have been widely used in the studies of recurrent
events [1,2] including episodes of illness, failures of a computer network system, wildfires
in a particular forest, and major earthquakes on an active fault. Usually, a renewal process
is taken as a starting point to model a sequence of such recurrent events, in which the
lengths of the time intervals between each pair of neighboring events are identically and
independently distributed. When the interevent times are also influenced by some external
factors, the process then becomes a modulated renewal process (see e.g., [3]), which is
formulated mathematically in the following way:

Consider a point process observed over time t ∈ [0, T], and suppose that events occur
at time 0 < T1 < T2 < . . . < Tn. Let N([s, t]) (s < t) and Ht denote the number of events
occurring in the time interval [s, t], and the history of the process at time t, respectively. We
also write N(t) for N([0, t]) and N(t−) for N([0, t)). In general, a model for such a process
is specified by its hazard function, also known as conditional intensity, defined as

λ(t) = lim
∆→0

E{N([t, t + ∆)) | Ht}
∆

, (1)

i.e., the expectation of the number of events occurring in a unit time interval at t given the
past history. For a modulated renewal process, the conditional intensity is often expressed
in a multiplicative form:
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λ(t) = µ(t) Zβ(t) , (2)

where µ(t) = µ0(t − TN(t−)), µ0(x) being the baseline hazard function and t − TN(t−)
being the left-continuous backward recurrence time at t, and Zβ(t) is a function of a
time-varying covariate process with parameter vector β. In particular, when Zβ(t) = 1,
N(t) reduces to an ordinary renewal process, where the time differences between two
consecutive events, Xi = Ti − Ti−1, for i = 1, . . . , n, are independently and identically
distributed. In practice, µ0(t) can be interpreted as the internal property of the system, and
Zβ(t) explains the external influences to the intensity, or the responses of the system to
the external environments. For example, when modeling the recurrence of a characteristic
earthquake in a particular fault or region, µ0 describes the intrinsic recurrence time, and
Zβ(t) represents the changes in tectonic environments, which may accelerate or decelerate
the renewal of earthquake occurrences (e.g., [4]).

In past studies, the rich literature on survival analysis based on clinical data from a
sample of patients or independent cluster samples (see, e.g., [3,5,6]) has deeply influenced
studies on renewal processes and their variants. In survival analysis, the failure time Xi for
the ith individual (i = 1, . . .) are mutually independent with a modulated hazard function

hi(x) = h0(x) Zi,β(x) (3)

where h0 is the baseline hazard function common to all individual, and Zi(x; β) is the
covariate function specific to the ith individual. Refs. [3,7,8] proposed a partial likelihood
estimate for β in the absence of knowledge of the baseline intensity, i.e., the partial likelihood
estimator β̂ is obtained by maximizing in β the partial likelihood

lik(β) =
n

∏
i=1

Zi,β(Xi)

∑n
j=1 1(Xj ≥ Xi) Zj,β(Xi)

, (4)

where 1(A) denotes the indicator function of the event A. Cox also suggested that the
asymptotic inference about β proceeds as if the partial likelihood were an ordinary likeli-
hood function.

For the estimation of the cumulative baseline hazard function, [9,10] considered a
nonparametric estimate for the cumulative intensity from censored survival data to assess
the fit of parametric models graphically for engineering applications. Under the framework
of counting processes, [11,12] illustrated the use of this estimate in the studies of Markov
chains and other event history models. The Nelson–Aalen estimator takes the form of

Ĥ0(x) =
n

∑
i: Xi<x

1
∑n

j=1 1(Xj ≥ Xi) Zj,β(Xi)
, (5)

for the integrated baseline hazard function

H0(x) =
∫ x

0
h0(u)du. (6)

Ref. [12] also discussed the small and large sample properties of the estimate using
the martingale methods. Stimulated by [9,13] replaced β by the Cox’s estimate β̂, i.e.,

Ĥ0(x) =
n

∑
i: Xi<x

1
∑n

j=1 1(Xj ≥ Xi) Zj,β̂(Xi)
, (7)

The asymptotic properties were discussed by [5,14].
The connection between the renewal process and survival analysis is that instead of a

series of absolute occurrence times, {Ti : i = 1, 2, . . .}, if we express the renewal process as
a series of interevent intervals,
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{Xi : X1 = T1, Xi = Ti − Ti−1, i = 2, 3, . . . , },

the modulated renewal process is turned into survival data. This treatment enables us to
apply the analyzing techniques from survival analysis to the modulated renewal processes.
For the intensity estimation, for instance, [15] introduced a pseudo-martingale estimating
equation based on such a time rearranging scheme. The word “pseudo-martingale” was
used because the authors developed an estimating equation from the filtration with respect
to the time intervals, but not the original occurrence times. For the modified renewal
process, they in fact gave the same estimators as Cox’s partial likelihood estimator for β
and the Nelson–Aalen–Breslow estimator for the cumulative baseline hazard function.

Unlike the tradition of avoiding a simultaneous estimation of the baseline intensity
and model parameters in survival studies, we propose a pure martingale-based estimating
procedure in the manner of an expectation–maximization (E–M)-type iterative algorithm
by making use of the ideas of residual analysis of [16]. The ensuing sections are organized
as follows. In Section 2, we first obtain a new estimating equation based on the martingale
property of the conditional intensity to estimate the cumulative baseline intensity. Then,
making use of the technique of partial integration, we also establish the maximum like-
lihood estimates for the model parameters. Section 3 briefly compares our estimate for
the cumulative baseline intensity with the Nelson–Aalen and Breslow estimates. Section 4
illustrates the estimating performance of the proposed method by applying it to a simu-
lated dataset from a modulated gamma renewal process and the aftershock data of the
M8.0 Wenchuan earthquake, which occurred on 12 May 2008, in Sichuan Province, China.
Finally, a residual analysis based on the transformed time sequence is conducted to test the
goodness-of-fit in Section 5.

2. Theory and Methodology
2.1. Estimation of Baseline Intensity

To estimate the baseline intensity µ0(x), we make use of the residual analysis for the
temporal or spatiotemporal point process developed by [16], which was stimulated from
the residual analysis for spatial point processes (see [17]). Let N be a simple temporal
point process in the interval [0, T], admitting a conditional intensity λ(t). According to the
martingale property of the conditional intensity, for any predictable process (measurable
with respect to the σ-algebra that is generated by sets of the form (s, t]× E, where E ∈ Fs,
and Fs is the time filtration, ζ(t) ≥ 0,

E
[∫

D
ζ(s)dN(s)

]
= E

[∫
D

ζ(s) λ(s)ds
]

(8)

where D is any regular (Lebesgue measurable) subset of [0, T]. Equation (8) holds since
dM(t) = dN(t)− λ(t)dt is a zero-mean martingale.

The first-order innovation with respect to a predictable function ζ(t) and a measurable
set D ⊂ [0, T] is defined by

V(D, ζ, λ) =
∫

D
ζ(s)dN(s)−

∫
D

ζ(s) λ(s)ds (9)

Because of (8), E[V(D, ζ, λ)] = 0. The first-order residual is defined by replacing the
true model in Equation (9) by the fitted model, i.e.,

R(D, ζ̂, λ̂) =
∫

D
ζ̂(s)dN(s)−

∫
D

ζ̂(s) λ̂(s)ds, (10)

where we use ζ̂ instead of ζ for the reason that ζ may include the estimated model parame-
ters. If the fitted model is sufficiently close to the true model, then R(D, ζ̂, λ̂) ≈ 0.

Ref. [16] also illustrated how to use the above techniques to reconstruct different com-
ponents in the formation of a branching-type clustering model for describing the spatiotem-
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poral clustering features of earthquake occurrences, which was called the epidemic-type
aftershocks sequence (ETAS) model ([18,19]). In the following, we apply similar techniques
to the multiplicative modulated processes in order to reconstruct the baseline intensity
function.

Let N be a modulated renewal process with occurrence times T1, . . . , Tn and intensity
function (2). Furthermore, let T0 = 0, Tn+1 = T, and Xi = Ti − Ti−1, i = 1, 2, . . . , n + 1.
For x > 0, choose ζx(t) as

ζx(t) :=
1(t < TN(t−) + x) µ(t)

λ(t)
=

1(t < TN(t−) + x)
Zβ(t)

, 0 ≤ t ≤ T, x ≥ 0,

and then (8) gives

E
[∫ T

0
ζ(s)dN(s)

]
= E

[∫ T

0
1(s < TN(t−) + x) µ(s)ds

]
. (11)

As the integral of the left hand side of (11) is actually equivalent to summing the
integrand over the jump times T1, . . . , Tn of the process, we rewrite it as

∫ T

0

1(s < TN(t−) + x)
Zβ(s)

dN(s) =
n

∑
i=1

1(Xi < x)
Zβ(Ti)

. (12)

Additionally, we partition the integral of the right hand side of (11) into n + 1 parts:

∫ T

0
1(s < TN(t−) + x) µ(s)ds =

n+1

∑
i=1

∫ Ti

Ti−1

1(s < Ti−1 + x) µ(s)ds . (13)

Now, dropping the expectation sign and inserting (12) and (13) into (11), we get an
approximation

n

∑
i=1

1(Ti − Ti−1 < x)
Zβ(Ti)

≈
n+1

∑
i=1

[1(Xi < x)U0(Xi) + 1(Xi ≥ x)U0(x)] (14)

where
U0(x) =

∫ x

0
µ0(s)ds

is the cumulative baseline intensity function. Rearranging (14), we obtain a recursive
estimate of U0(x):

Û0(x) =
∑n

i=1 1(Xi < x)/Zβ(Ti)−∑n+1
i=1 1(Xi < x) Û0(Xi)

∑n+1
i=1 1(Xi ≥ x)

, (15)

by setting U0(0) = 0. It is easy to see that Û0(x) is a right-continuous function, if we change
< and ≥ to ≤ and > in (14), respectively, we can obtain another estimate for U0(x), which
has the same values as Û0(x) at almost all the locations except that it is a left-continuous
function. Thus, to eliminate the ambiguity of Û0(x) at each observed interevent time, we
consider the following function,

Ũ0(x) =


0, x ∈ [0, X(1)/2]

ωi(x)Û(X(i−1)) + [1−ωi(x)]Û(X(i)), x ∈
[
(X(i−1) + X(i))/2, (X(i) + X(i+1))/2

]
,

i = 1, 2, . . . , n
ωn(x)Û(X(n−1)) + [1−ωn(x)]Û(X(n)), x ∈ [(X(n) + X(n+1))/2, ∞],

(16)
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where {X(i) : i = 1, 2, . . . , n + 1} is the reordering of {Xi : i = 1, 2, . . . , n + 1} in an ascend-
ing order, X(0) = 0, and ωi(x) = [2x− (X(i−1) + X(i))]/(X(i+1) −X(i−1)) represents the pro-

portion of the segment cut by x from the left end of
[
(X(i−1) + X(i))/2, (X(i) + X(i+1))/2

]
.

2.2. Estimation of Parameters in the External Process

The log-likelihood of a point process equipped with conditional intensity λ(t) is

log L =
n

∑
i=1

log λ(Ti)−
∫ T

0
λ(s)ds

(see [20]). When the baseline intensity is known, the maximum likelihood estimates of
parameter β of model (2) is the maximizer of

log L =
n

∑
i=1

[
log µ0(Xi) + log Zβ(Ti)

]
−

n+1

∑
i=1

∫ Xi

0
µ0(s) Zβ(s + Ti−1)ds . (17)

The integral term of (17) can be rewritten by using partial integration∫ Xi

0
µ0(s) Zβ(s + Ti−1)ds

=
∫ Xi

0
Zβ(s + Ti−1)dU0(s)

= Zβ(Xi + Ti−1)U0(Xi)−
∫ Xi

0
U0(s) Z′β(s + Ti−1)ds. (18)

Recall that we can estimate U0 by using (15) or (16) and that Û0 is a stepwise function;
(18) can be approximated by∫ Xi

0
µ0(s) Zβ(s + Ti−1)ds ≈ Zβ(Xi + Ti−1) Ũ0(Xi)−

∫ Xi

0
Û0(s) Z′β(s + Ti−1)ds.

Denote {X(k) : k = 1, 2, . . . , n + 1} in the ascending order of {Xj : j = 1, 2, . . . , n + 1}.
The integral term in the above equation can be rewritten as∫ Xi

0
Û0(s) Z′β(s + Ti−1)ds = ∑

k:X(k)<Xi

Û(X(k))
[

Zβ(X(k+1) + Ti−1)− Zβ(X(k) + Ti−1)
]
. (19)

In summary, the likelihood can be approximated by

log L ≈
n

∑
i=1

{
log µ0(Xi) + log Zβ(Ti)− Zβ(Ti) Ũ0(Xi)

+ ∑
k:X(k)<Xi

Û(X(k))
[

Zβ(X(k+1) + Ti−1)− Zβ(X(k) + Ti−1)
]}

.

As ∑n
i=1 log µ0(Xi) is independent of the model parameters, it can be omitted in the

calculation of the maximum of the likelihood function. Similarly, the derivative of the
likelihood function with respect to the model parameter can be approximated by

∂ log L
∂β

≈
n

∑
i=1

{
1

Zβ(Ti)

∂Zβ(Ti)

∂β
−

∂Zβ(Ti)

∂β
Ũ0(Xi)

+ ∑
k:X(k)<Xi

Û(X(k))

[
∂Zβ(X(k+1) + Ti−1)

∂β
−

∂Zβ(X(k) + Ti−1)

∂β

]}
.
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2.3. Estimation Algorithm

As shown in Section 2.2, when µ0(x) is known, we can estimate the model parameter in
Zβ through a maximum likelihood estimation (MLE). Furthermore, when Zβ is given, µ0(x)
can be estimated by taking the derivative of a smoothed version of Û0(x) in Equation (15).
However, in practice, both µ0(x) and Zβ are unknown to us. What we have is a series of
occurring times, T1, . . . , Tn, in a given observation period, say [0, T], with or without other
related information such as an external process or marks (such as sizes and location) of each
event. To estimate µ0(x) and β simultaneously, we use the following iterative algorithm:

Step 1: Set `← 0, µ̂
(`)
0 (s) = n/T, or Û(`)

0 (s) = ns/T, where n is the total number of event
and [0, T] is the observing time window.

Step 2 (Maximization): Estimate β(`) through an MLE, with Û(`)
0 , i.e.,

β̂(`) = arg max
β

log L

= arg max
β

n

∑
i=1

{
log Zβ(Ti)−

∫ Xi

0
µ
(`)
0 (s)Zβ(s + Ti+1)ds

}
(20)

≈ arg max
β

n

∑
i=1

{
log Zβ(Ti)− Zβ(Ti) Ũ(`)

0 (Xi)

+ ∑
k:X(k)<Xi

Û(`)(X(k))
[

Zβ(X(k+1) + Ti−1)− Zβ(X(k) + Ti−1)
]}

,

where

Ũ(`)
0 (x) =


0, x ∈

[
0,

X(1)
2

]
ωi(x)Û(`)(X(i−1)) + [1−ωi(x)]Û(`)

0 (X(i)), x ∈
[
(X(i−1)+X(i))

2 ,
(X(i)+X(i+1))

2

]
ωn(x)Û(`)

0 (X(n−1)) + [1−ωn(x)]Û(`)
0 (X(n)), x ∈

[X(n)+X(n+1)
2 , ∞

]
,

and ωi(x) = [2x− (X(i−1) + X(i))]/(X(i+1) − X(i−1)).

Step 3 (Expectation): Update

Û(`+1)
0 (x) =

∑n
i=1 1(Xi < x)/Zβ̂(`)(Ti)−∑n+1

i=1 1(Xi < x) Û(`+1)
0 (Xi)

∑n+1
i=1 1(Xi ≥ x)

.

Step 4 (Rescaling): Let Û(`+1)
0 (x) = Û(`+1)

0 (x)/max Û(`+1)
0 (x).

Step 5: If max |Û(`+1)
0 − Û(`)

0 | < ε, where ε is a small number, stop; otherwise, let `← `+ 1,
and go back to Step 2.

In Step 2, the term ∑n
i=1 log µ0(Xi) is dropped out in (20) because it is independent

from β. Step 4 is introduced here because there is a free linear factor between function Zβ

and U0(x), that is, if we divide Zβ by a constant C and then multiply C by U0(x), such a
solution {Zβ/C, CU0(x)} is equivalent to {Zβ, U0(x)}.

3. Comparison with Existing Estimates

As mentioned in the introduction, it has been a tradition to construct statistical infer-
ences of renewal processes in the manner of a survival analysis. Given the occurrence times
of a renewal process, {T1, T2, . . . , Tn}, in an observation time window [0, T], let T0 = 0 and
Xi = Ti − Ti−1, i = 1, . . . , n, then the new sequence {X1, X2, . . . , Xn} forms up a survival
process starting with n individuals. To study the differences between our estimate and those
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in survival processes, we compare our estimate of the cumulative baseline intensity with
the Nelson–Aalen and Breslow estimates that were constructed based on partial likelihood
(see [3,21]).

As mentioned in Section 1, after rearranging each interevent time as a survival sample
that starts at time 0 and dies off after a period of the same length as the interevent time, the
modulated renewal process is converted into a survival model with conditional intensity

λ(x) = µ0(x)
n

∑
i=1

1(Xi ≥ x) Zβ(Ti−1 + x).

If β is known, the cumulative baseline intensity U0(x) could be estimated by the
Nelson–Aalen estimator

A(x) =
∫ x

0

dN(s)
∑n

i=1 1(Xi ≥ s) Zβ(Ti−1 + s)
= ∑

Xj≤x

1
∑n

i=1 1(Xi ≥ Xj) Zβ(Ti−1 + Xj)
. (21)

If β is unknown and is replaced by its estimate β̂, U0(x) could be estimated by the
Breslow estimator

B(x) =
∫ x

0

dN(s)
∑n

i=1 1(Xi ≥ s) Zβ̂(Ti−1 + s)
= ∑

Xj≤x

1
∑n

i=1 1(Xi ≥ Xj) Zβ̂(Ti−1 + Xj)
(22)

The main difference between these two estimates and ours is the inclusion of the last
interval of the event times in the estimation. In our study, we assume that the last interval
is censored at time T, that is, the recurrence time of the (n + 1)th observation is longer
than Xn+1, whereas in the partial likelihood estimation, there are no censored data in the
last interval. In addition, concerns regarding the validity of using the Nelson–Aalen and
Breslow estimators in modulated renewal processes were raised by [22,23], as the timescale
reordering, from real time t to time interval x, might invalidate the conditioning argument
underlying partial likelihood. As our estimate is martingale-based, its validity naturally
holds according to the asymptotic properties related to martingales.

4. Applications
4.1. Simulation Study

In this example, we consider a modulated gamma renewal process with
Z(t) = 2 + 30 sin2(0.2t + 1.5) and µ0(x) = x e−x/Γ(2, x), where Γ denotes the incom-
plete gamma function. We simulated this process using the thinning algorithm given
in Appendix A. Figure 1a displays the number of events occurring in a 3-day interval.
We first assumed that the true Zβ(t) is given, then applied (15) and (21) to the simulated
data to get estimates of the cumulative baseline intensity, Û0(x) and A(x), as shown in
Figure 1b. Figure 1c gives the ratio of the estimates to the true U0(x). From Figure 1b,c, we
can see that the two estimates are almost identical to the true model, especially for small
time intervals, and starts to diverge slightly when the size of the time interval increases.

To examine the convergence of our algorithm proposed in Section 2.3, we assumed that
Z(t) = a + b sin2(ωt + d), where (a, b, ω, d) is the parameter vector to be estimated. After
some iterations, the final estimation converged to Ẑ(t) = 0.0799 + 1.0040 sin2(0.2000t +
1.4466). The convergence steps of Û0(t) are plotted in Figure 1d. To show the con-
vergence steps more clearly in Figure 1d, we modified the rescaling step (Step 4) to
Û(`+1)

0 (x) =
√

b̂(`+1) Û(`+1)
0 (x). The ratio of the finally estimated Û0(x) to the true U0(x),

Û0(x)/U0(x), is similar to that in Figure 1c, but fluctuates around a different constant 28,
which when multiplied with Ẑ(t), yields a good estimate to the real values of parameters.
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Figure 1. (a) Histogram of the simulated periodic gamma renewal process; (b) cumulative baseline
intensity: Û0 (thick), A(x) (thin), and true (dashed); (c) ratio of Û0(x) (thick) and A(x) (thin) to the
true cumulative baseline intensity; (d) convergence steps of Û0(x). The iteration steps are indicated
by different grayscales from the lightest gray for the initial step to the darkest for the final results.

4.2. Real Data: Wenchuan Earthquake

In our second example, we applied our method to the aftershock data of the 2008
Wenchuan earthquake. This mainshock was measured at Ms 8.0 and Mw 7.9 and occurred
at 14:28:01 CST (06:28:01 UTC) on Monday, 12 May 2008 in the Sichuan province of China,
killing about 68,000 people. We selected the aftershocks of Ms ≥ 4.0 for the analysis. In
addition, as aftershocks immediately after a large mainshock are usually missing due to
detection and recording problems (see, e.g., [24]), we neglected the event occurring within
0.225 days (about 5.4 h) after the occurrence of the mainshocks (see also [25]. Figure 2a
gives the daily occurrence numbers of earthquakes.

In seismology, the Omori–Utsu formula ([26]; see [27], for a review) is a generally
accepted empirical law for describing how the frequency of aftershocks decays with time.
It asserts that the occurrence rate of aftershocks can be written as an inverse power law of
time, i.e.,

n(t) =
ν

(t + c)p , (23)

where t is the time since the occurrence of the mainshock, ν is the amplitude, c is a “time-
offset” parameter, and p modifies the decay rate of the aftershocks. All parameters are
positive. In Figure 2a, the dashed line represents the results from fitting the Omori–Utsu
formula, with ν̂ = 46.21, ĉ = 0.1449 day, and p̂ = 1.1160.

It is interesting to know whether the Omori-Utsu formula can describe the aftershock
activity sufficiently; that is, if we regard the inverse power decay as the external modulation
from the mainshock, whether the baseline hazard function is temporally constant. If so,
the interevent time between the consecutive aftershocks behaves like a Poisson process,
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after the excitation effect from the mainshock is removed. We applied a modulated renewal
model to the data, where the covariate process Zβ(t) = ν1/(t + c1)

p1 was chosen to follow
the Omori–Utsu formula.

The final estimates of the parameters in the fitted modulated renewal model were
ν̂1 = 1.0010, ĉ1 = 0.0743 day, and p̂1 = 0.8270. Figure 2b shows the convergence steps of
Û0(x). in Figure 2c, which gives the ratio of Û0(x) to the cumulative conditional intensity
of a Poisson process of unit rate, i.e., UPoisson

0 (x) = x, we can see that the estimated baseline
intensity has higher values at small time intervals and decreases to a constant when the time
interval is large. This implies that, even if the triggering effect of the mainshock is modeled
by the Omori–Utsu formula as the external modulating process and is eliminated by using
the proposed technique, the interevent times between consecutive events do not always
follow a Poisson process. For longer time intervals, the constant rate of the baseline intensity
indicates that the larger interevent times are exponentially distributed. However, for the
shorter time intervals, U0(x)/x is much larger than at longer time intervals, indicating that,
beyond the clustering effect excited by the mainshock, there are further clusters occurring
immediately after some of the aftershocks. In other words, the aftershock sequence from
the Wenchuan earthquake shows a multistage triggering effect: not only the mainshock,
but also the aftershocks can trigger their own aftershocks.
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Figure 2. (a) Daily occurrence numbers of the MS4.0+ Wenchuan aftershocks and the dashed
line represents the intensity function from fitting the original Omori–Utsu formula to this dataset;
(b) convergence steps of Ũ0(x): the iteration steps are indicated by different grayscale colors from the

lightest gray for the initial step to the darkest for the final results; (c) Ratio of the final estimate Ũ0(x)
to U0(x) = x in the Omori–Utsu formula modulated renewal model; (d) the cumulative numbers of
events against the transformed times.



Axioms 2022, 11, 303 10 of 12

5. Transformed Time Analysis

When a model comparison is not presented, the technique of time-sequence transfor-
mation is a naive method to test goodness-of-fit. Notice that the following transformation
of the original occurrence times of events,

Ti → τi =
∫ Ti

0
λ(s)ds (24)

forms up a sequence {τi : i = 1, 2, . . . , n}. If the model is true, then {τi : i = 1, 2, . . . , n}
should follow a standard Poisson process with unit rate (see, e.g., [18]). Thus, graphically,
the plot of the cumulative frequencies of a fitted model against the transformed times
would be close to a straight line if it fits the data well. For our study, the transformed time
sequence for modulated renewal processes could be calculated based on Equation (19), i.e.,

τ0 = 0;

τi+1 ≈ τi + Ũ0(Xi) Zβ̂(Ti)−
∫ Xi

0
Û0(s) Z′

β̂
(s + Ti−1)ds

= τi + Ũ0(Xi) Zβ̂(Ti)− ∑
k:X(k)<Xi

Û(Xk)
[

Zβ̂(X(k+1) + Ti−1)− Zβ̂(X(k) + Ti−1)
]
. (25)

Applying the above analysis to the Wenchuan aftershocks, the cumulative number of
events against the transformed time sequence for the Wenchuan aftershocks are plotted in
Figure 2d. The closeness between the curve of cumulative frequencies and the straight line
of the unit slope shows the goodness-of-fit of the fitted-Omori–Utsu-formula modulated
renewal process for the aftershock data. To understand the variation of the transformed
times caused by randomness, we also simulated 10 realizations of a Poisson process with
the same number of events as the Wenchuan aftershocks and rescaled their occurrence
times in the interval [0, n] (see [28], for justification of

∫ T
0 λ̂(u)du = n). The curve of the

cumulative number of the transformed time sequence lies among the simulated curves,
again indicating the goodness-of-fit of the fitted-Omori–Utsu-formula modulated renewal
process.

6. Discussion

From (21) and (22), we can see that, for each x, the computational complexity of the
Nelson–Aalen and Brewslow estimators are O(n2), since these estimators have two layers
of summations over the events in the processes. Considering that A(x) or B(x) are both
stepwise constant functions, which change their values at nodes of n interevent times,
the total computational complexity for estimating the entire A(x) or B(x) is O(n3). From
(15), the calculation of Û0(x) takes a computation time of the order O(n) at one location,
and O(n2) at all locations. This is a great improvement from the Nelson–Aalen–Brewslow
estimators and the method proposed by [15].

Another point is that we used the true likelihood function for estimating the model
parameters in the modulating covariate processes instead of Cox’s maximizing partial
likelihood estimator. In our procedure, once Û0(x) in (20) is obtained, the computation
time of log L in (20) is also of the order of O(n2), the same as the partial likelihood in
Cox’s estimator in (4). In other words, the proposed algorithm does not increase the
computational complexity in the parametric part.

7. Conclusions

This study presented a semiparametric method for simultaneously estimating the
baseline hazard function and the parameters of a modulated renewal process. The core of
this approach was an E–M-type iterative algorithm. The E step was the estimation of the
integrated baseline hazard intensity obtained through constructing a zero-mean martingale,
by assuming that the parameters of the external modulating effects were known. The
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M step was the MLE of the parameters in the external process, assuming the integrated
baseline intensity was known. Compared to the Nelson–Aalen–Breslow estimator, the
computation time of this algorithm was of the order of O(n2) for a dataset consisting of
n events, while the Nelson–Aalen–Breslow estimator took a time of order O(n3). The
power of such a semiparametric method was illustrated through two examples: a simulated
periodically modulated gamma renewal process and the aftershock sequences of the Ms 8.0
Wenchuan earthquake, which occurred on 21 May 2008 in Sichuan Province, China. We
also used the transformed time analysis to show the goodness-of-fit of our procedure to the
Wenchuan earthquake.

Author Contributions: Conceptualization, J.Z.; methodology, H.-Y.S.; software and formal analysis,
H.-Y.S. both authors have written, edited, and finalized the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: H.-Y. Siew was supported by the Global COE program of Meiji University for this study.
Jiancang Zhuang is partially supported by JSPS Kakenhi Grant No. 19H04073. Helpful comments
from two anonymous referees are gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Algorithm for Simulating a Modulated Renewal Process

A modulated renewal process can be simulated based on the following thinning
algorithm, which was designed according to Daley and Vere-Jones (2003, Algorithm 7.5.IV,
Chapter 7):

Suppose that the process, which is equipped with a conditional intensity
λ(t) = µ0(t− tN(t)) Z(t), has been simulated up to time t, with a record of {T1, T2, . . . , Tk}.

Step 1. Find three positive numbers D, M1, and M2 such that M1 ≥ µ0(s − Tk) and
M2 ≥ Z(s) for s ∈ (t, t + D).

Step 2. Starting from t, generate the next event according to a Poisson process with rate
M1 M2. Suppose that its occurrence time is t′, that is to say, t′ − t has an exponential
distribution with a rate of M1M2.

Step 3. Stop the simulation if t′ is greater than the termination time.

Step 4. If t′ > t + D, then let t = t + D and return to step 1.

Step 5. Generate an r. v. U ∼ U[0, 1]. If U < µ0(t′−Tk)
M1

Z(t′)
M2

, accept t′, i.e., set Tk+1 = t′ and
k = k + 1; otherwise, let t = t′ and return to step 1.
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