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Abstract: A two species obligate commensal symbiosis model with Crowley–Martin functional
response was proposed and studied in this paper. For an autonomous case, local and global dynamic
behaviors of the system were investigated, respectively. The conditions that ensure the existence of
the positive equilibrium is coincidentla to the conditions of global stability of a positive equilibrium.
For nonautonomous cases, persistent and extinction properties of the system are investigated.
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1. Introduction

During the last decades, many scholars investigated the dynamic behaviors of the
commensalism model; see [1–37] and the references cited therein. Topics such as the
stability of the system [1–10,37], the existence of periodic solution or almost periodic so-
lution [11,15,25,36], the influence of harvesting [1–3,12–14,26–28], the influence of stage
structure ([16]), the influence of Allee effect [9,17–20,24,32,33], the bifurcation phenomenon
of the system [9,29,32,33], the influence of feedback control [8,23], the persistent property
of the system [34,35,37], the influence of commensalism to the ecological network [6,7],
and the influence of stochastic disturbance [5] were extensively investigated by many
scholars. However, the commensalism model is not well studied in the sense that, to
this day, still a few works on commensal symbiosis model with one party cannot survive
independently [34–37].

Yang et al. [34] proposed the following non-autonomous obligate commensalism
model:

ẋ = x
(
− a1(t)− b1(t)x + c1(t)y

)
,

ẏ = y
(
a2(t)− b2(t)y

)
.

(1)

where a1(t), a2(t), b1(t), c1(t), and b2(t) are all continuous functions bounded above and
below by positive constants. They paid attention to the persistent, extinction, and stability of
the system. Chen et al. [35,36] proposed and studied a discrete commensal symbiosis model.

Recently, stimulated by the concept of functional response of the predator prey system,
Wu et al. [37] proposed the following obligate commensalism model with ratio-dependent
functional responses.

dx
dt

= x
(
− a1 − b1x +

c1y
x + y

)
,

dy
dt

= y(a2 − b2y).
(2)

They provided a thoroughly investigation about the dynamic behaviors of the sys-
tem (2).

As for as functional response is considered, there are many type functional responses
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on predator prey system. In his pioneering work, Holling [38] argued that, in the predator
prey system, functional response should take into consideration; from then on, numerous
works (see, for example, [39,40]) were been performed on Holling type II and III functional
response. Noting that the predators hunt for food resources and as a consequence they
have to share food or involve intra-specific competition, to describe this phenomenon, a
ratio-dependent functional response [41] was introduced, and the functional response is
dependent on both predator and prey species instead of only prey dependent functional
response. However, scholars argued that the predator prey model with a ratio-dependent
functional response has curious dynamic behaviors; to overcome the drawback of the sys-
tem, the Beddition–DeAngelis functional response, which can be seen as the generalization
of the ratio-dependent and Holling II functional response functional response [42], was
introduced. In 1989, Crowley and Martin [43] proposed a functional response, which is
similar to the Beddington–DeAngelis response function, but it includes one more term
explaining mutual interferences of predators at the high density of its prey. Many scholars
performed works on predator prey system with Crowley–Martin functional responses;
see [44] and the references cited therein. The Crowley–Martin functional response can be
seen as the generalization of the Holling II functional response, ratio-dependent functional
response, and Beddition–DeAngelis functional response. Noting that to this day, still no
scholars propose and study the commensalism model with Crowley-Martin functional
response. This motivated us to propose the following model.

dx
dt

= x
(
− a1 − b1x +

c1y
d1 + e1x + f1y + g1xy

)
,

dy
dt

= y(a2 − b2y).

(3)

Throughout this paper, we assume that (H1) or (H2) hold; here, (H1) ai, bi, i = 1, 2 and
c1, d1, e1, f1, g1 are all positive constants. (H2) ai(t), bi(t), i = 1, 2 and c1(t), d1(t), e1(t), f1(t),
g1(t) are all continuous functions bounded above and below by some positive constants.

The aim of this paper is to provide a thorough investigation about the dynamic be-
haviors of the system (3). For the autonomous case, we will investigate the local stability
property of the equilibria in the next section. The global stability property is then investi-
gated in Section 3. For the nonautonomous case, we investigate persistent and extinction
properties in Section 4. Some numeric simulations are carried out in Section 5 to show the
feasibility of our results. We end this paper by a brief discussion.

2. The Existence and Local Stability of the Equilibria

Now let us consider the autonomous case; i.e., assume that (H1) holds.
Concerned with the existence of the equilibria, we have the following result.

Theorem 1. System (3) always admits the boundary equilibrium A0(0, 0) and A1
(
0, a2

b2

)
. Assume

further that the inequality of the follow:

c1 > a1 f1 +
a1d1b2

a2
(4)

holds; then, system (3) admits a unique positive equilibrium A2(x∗, y∗), where the following is the
case.

x∗ =
−A2 +

√
A2

2 − 4A1 A3

2A1
, y∗ =

a2

b2
, (5)
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Here, we have the following.

A1 = a2b1g1 + b1b2e1 > 0,

A2 = a1a2g1 + a1b2e1 + a2b1 f1 + b1b2d1,

A3 = a1 f1a2 + a1d1b2 − c1a2 < 0.

(6)

Proof. The equilibria of system (3) is determined by the following system.

x
(
− a1 − b1x +

c1y
d1 + e1x + f1y + g1xy

)
= 0,

y(a2 − b2y) = 0.
(7)

System (3) always admits the boundary equilibrium A0(0, 0) and A1
(
0, a2

b2

)
. Now,

let us consider the positive equilibrium. From the second equation of (4), the following
immediately follows.

y =
a2

b2
. (8)

Substituting (8) into the first equation of (4) and simplify, we finally obtain the follow-
ing:

A1x2 + A2x + A3 = 0, (9)

where Ai, i = 1, 2, 3 are defined by (6). Now let us consider the following function.

F(x) = A1x2 + A2x + A3, (10)

Noting that A1 > 0 implies that F(−∞) = F(+∞) = +∞, A3 < 0 leads to F(0) =
A3 < 0, form the continuity of function F, and fact F has at most two real solutions where
F has a unique solution on (0,+∞). Hence, Equation (9) has a unique positive solution.

x∗ =
−A2 +

√
A2

2 − 4A1 A3

2A1
. (11)

Consequently, system (3) has a unique positive solution A2(x∗, y∗).
This ends the proof of Theorem 1.

Obviously, A2
(

x∗, y∗
)

satisfies the following equation.

−a1 − b1x∗ +
c1y∗

d1 + e1x∗ + f1y∗ + g1x∗y∗
= 0,

a2 − b2y∗ = 0.
(12)

Concerned with the local stability property of the above three equilibria, we have the
following.

Theorem 2. A0(0, 0) is unstable; A1
(
0, a2

b2

)
is unstable if c1 > a1 f1 +

a1d1b2

a2
holds and locally

stable if c1 < a1 f1 +
a1d1b2

a2
holds; if A2

(
x∗, y∗

)
exists, it is locally stable.

Proof. The Jacobian matrix of system (3) is calculated as follows:

J(x, y) =
(

A11 A12
0 −2b2y + a2

)
, (13)

where the following is the case.
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A11 = −a1 − b1x +
c1y

d1 + e1x + f1y + g1xy
+ x
(
− b1 −

c1y(g1y + e1)

(d1 + e1x + f1y + g1xy)2

)
,

A12 =
xc1(e1x + d1)

(d1 + e1x + f1y + g1xy)2 .
(14)

Then, the Jacobian matrix of the system (3) about equilibrium A0(0, 0) is given by the
following. (

−a1 0
0 a2

)
. (15)

The corresponding eigenvalues are λ1 = −a1 < 0, λ2 = a2 > 0. Hence, A0(0, 0)
is unstable.

Then, the Jacobian matrix of the system (3) about equilibrium A1(0, a2
b2
) is given by the

following. (
− a1a2 f1 + a1b2d1 − a2c1

a2 f1 + b2d1
0

0 −a2

)
. (16)

The corresponding eigenvalues are λ1 = − a1a2 f1 + a1b2d1 − a2c1

a2 f1 + b2d1
, λ2 = −a2 < 0.

Obviously, if c1 < a1 f1 +
a1d1b2

a2
, then λ1 < 0, in this case, A1(0, r2

a22
) is locally stable;

A1(0, r2
a22

) is unstable if c1 > a1 f1 +
a1d1b2

a2
.

By using (12), the Jacobian matrix about the positive equilibrium A2 is given by the
following. −x∗

(
b1 +

c1y∗(g1y∗ + e1)

(d1 + e1x∗ + f1y∗ + g1x∗y∗)2

) x∗c1(e1x∗ + d1)

(d1 + e1x∗ + f1y∗ + g1x∗y∗)2

0 −b2y∗

. (17)

The eigenvalues of the above matrix are λ1 = −x∗
(

b1 +
c1y∗(g1y∗ + e1)

(d1 + e1x∗ + f1y∗ + g1x∗y∗)2

)
< 0, λ2 = −b2y∗ < 0. Hence, A2(x∗, y∗) is locally stable.

This ends the proof of Theorem 2.

3. Global Stability of the Equilibria

We also assume that (H1) holds in this section.
We will investigate the global stability property of the equilibria in this section.

Theorem 3. Assume that c1 < a1 f1 +
a1d1b2

a2
holds; then, A1

(
0, a2

b2

)
is globally attractive.

Proof. Inequality c1 < a1 f1 +
a1d1b2

a2
is equivalent to the following.

c1
a2

b2
< a1 f1

a2

b2
+ a1d1. (18)

The above inequality also equivalent to the following.

a1 >
c1

a2

b2

f1
a2

b2
+ d1

. (19)
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From (19), forsmall enough ε > 0, the following inequality:

a1 >
c1(

a2

b2
+ ε)

f1(
a2

b2
+ ε) + d1

(20)

holds.
Noting that the second equation of (3) takes the following form.

dy
dt

= y(a2 − b2y). (21)

System (18) has a unique globally attractive positive equilibrium y∗ = a2
b2

.

lim
t→+∞

y(t) = y∗. (22)

For ε > 0 that is small enough, which satisfies (20), it follows from (22) that there exists
a large enough T1 > 0 such that the following is the case.

y(t) <
a2

b2
+ ε. (23)

Now let us consider the following function.

F(y) =
c1y

d1 + e1x + f1y + g1xy
, (24)

Note the following.

dF(y)
dy

=
c1(e1x + d1)

(d1 + e1x + f1y + g1xy)2 > 0. (25)

Hence, F(y) is the strictly increasing function of y; hence, from the first equation of (3)
and (23), for t > T1, we have the following.

dx
dt

= x
(
− a1 − b1x +

c1y
d1 + e1x + f1y + g1xy

)
≤ x

(
− a1 +

c1y
d1 + f1y

)

≤ x

(
− a1 +

c1

( a2

b2
+ ε
)

d1 + f1

( a2

b2
+ ε
)),

(26)

Hence, the following is the case.

x(t) ≤ x(T1) exp


(
− a1 +

c1

( a2

b2
+ ε
)

d1 + f1

( a2

b2
+ ε
))(t− T1)

→ 0 as t→ +∞. (27)

(22) and (27) show that A1(0, a2
b2
) is globally attractive. This ends the proof of Theorem 3.

Theorem 4. Assume that c1 > a1 f1 +
a1d1b2

a2
holds; then, A2

(
x∗, y∗

)
is globally stable.
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Proof. In the proof of Theorem 3, we showed that lim
t→+∞

y(t) = a2
b2

. That is, for any ε > 0

that is small enough, there exists T > 0 such that for all t > T1, the following is the case.

y∗ − ε < y(t) < y∗ + ε for all t > T1. (28)

From the first equation of system (3), we have the following.

dx
dt
≤ x

(
− a1 − b1x +

c1

f1

)
, (29)

Thus, the following is the case.

lim sup
t→+∞

x(t) ≤
c1
f1
− a1

b1
. (30)

That is, there exists a T2 > T1 such that the following is the case.

x(t) <
c1
f1
− a1

b1
+ ε for all t > T2. (31)

Let D = {(x, y)| ∈ R2
+ : x <

c1
f1
− a1

b1
+ ε, y <

a2

b2
+ ε.}. Then, every solution of

system (3) starting in R2
+ is uniformly bounded on D. Moreover, from Theorem 2, A0(0, 0)

and A1(0, a2
b2
) are all unstable, and the unique positive equilibrium A2(x∗, y∗) is locally

stable. To ensure A2(x∗, y∗) is globally stable in the above area, we consider Dulac function
u(x, y) = x−1y−1; then, we have the following:

∂(uP)
∂x

+
∂(uQ)

∂y
= − b1

y
− b2

x
− c1(g1y + e1)

(d1 + e1x + f1y + g1xy)2 < 0, (32)

where P(x, y) = x
(
− a1 − b1x +

c1y
d1 + e1x + f1y + g1xy

)
, Q(x, y) = y(a2 − b2y). By Dulac

Theorem [31], there is no closed orbit in area D. Thus, A2(x∗, y∗) is globally asymptotically sta-
ble.

This completes the proof of Theorem 4.

4. Nonautonomous Case

Now let us consider the following system:

dx
dt

= x
(
− a1(t)− b1(t)x +

c1(t)y
d1(t) + e1(t)x + f1(t)y + g1(t)xy

)
,

dy
dt

= y(a2(t)− b2(t)y),

(33)

where ai(t), bi(t), c1(t), i = 1, 2 are all continuous functions bounded above and below by
positive constants. For the rest of the paper, for a bounded continuous function g defined
on R, let gL and gM be defined as follows.

gL = inf
t∈R

g(t), gM = sup
t∈R

g(t). (34)

As for as system (33) is concerned, the most important thing is to find out the conditions
that ensure the permanence of the system, which means that the species could be coexist in
the long run. Moreover, in today’s society, more and more species are rapidly reduced or
even extinct; hence, it is also important to investigate the extinction property of the system.
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The aim of this section is to investigate the extinction and persistent property of the system.
Concerned with the extinction of the first species, we have the following result.

Theorem 5. Assume the following:

aL
1 >

cM
1 M2

dL
1 + f L

1 m2
(35)

holds, where M2, m2 are defined in (39) and (41), respectively; then, we have the following:

lim
t→+∞

x(t) = 0. (36)

i.e., the first species will be driven to extinction.

Proof. It follows from (35) that for small enough ε > 0, without a loss of generality, assume
that ε < 1

2 m2, and the following inequality holds.

aL
1 >

cM
1 (M2 + ε)

dL
1 + f L

1 (m2 − ε)
(37)

Let (x(t), y(t)) be any solution of system (33) with initial conditions x(0) > 0, y(0) > 0.
From the second equation of system (33), we have the following.

ẏ(t) ≤ y
(

aM
2 − bL

2 y
)

, (38)

Thus, the following is the case.

lim sup
t→+∞

y(t) ≤
aM

2
bL

2

def
= M2. (39)

From the second equation of system (33), we have the following.

ẏ(t) ≥ y
(
aL

2 − bM
2 y
)
, (40)

Thus, the following is the case.

lim inf
t→+∞

y(t) ≥
aL

2

bM
2

def
= m2. (41)

For any ε > 0 that is small enough such that inequality (37) holds, it follows from (39)
and (41) that there exists a T > 0 such that the following is the case.

m2 − ε < y(t) < M2 + ε for all t > T. (42)

For t > T, from the first equation of system (33), the following is the case.

ẋ(t) = x
(
− a1(t)− b1(t)x +

c1(t)y
d1(t) + e1(t)x + f1(t)y + g1(t)xy

)
≤ x

(
− a1(t)− b1(t)x +

c1(t)y
d1(t) + f1(t)y

)
≤ x

(
− aL

1 − bL
1 x +

cM
1 (M2 + ε)

dL
1 + f L

1 (m2 − ε)

)
.

(43)
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Thus, the following is the case.

x(t) ≤ x(T) exp

{(
− aL

1 − bL
1 x +

cM
1 (M2 + ε)

dL
1 + f L

1 (m2 − ε)

)
(t− T)

}
→ 0 as t→ +∞. (44)

This ends the proof of Theorem 5.

Lemma 1. Assume that c
d > a; then, the following system:

dy
dt

= y
(
− a− by +

c
ey + d

)
(45)

admits a unique positive equilibrium x∗, which is globally attractive, where a, b, c, d , and e are all
positive constants.

Proof. With some minor revision, the proof of Lemma 1 is similar to the proof of Lemma 3.1
in [37], and we omit the details here.

Concerned with the persistent property of the system, we have the following result.

Theorem 6. Assume the following:

aM
1 <

cL
1 m2

dM
1 + f M

1 M2
(46)

holds, where M2, m2 are defined in (39) and (41), respectively; then, system (33) is permanent.

Proof. It follows from (46) that for small enough ε > 0, without loss of generality, assume
that ε < 1

2 m2; the following inequality holds.

aM
1 <

cL
1 (m2 − ε)

dM
1 + f M

1 (M2 + ε)
. (47)

Let (x(t), y(t)) be any solution of system (33) with initial conditions x(0) > 0, y(0) > 0.
similarly to the analysis of (37)–(40), for any ε > 0 small enough such that inequality (47)
holds; there exists a T > 0 such that the following is the case.

m2 − ε < y(t) < M2 + ε for all t > T. (48)

For t > T, from the first equation of system (33), the following is the case.

ẋ(t) = x
(
− a1(t)− b1(t)x +

c1(t)y
d1(t) + e1(t)x + f1(t)y + g1(t)xy

)
≤ x

(
− aL

1 − bL
1 x +

cM
1
f L
1

)
.

(49)

Hence, the following holds

lim sup
t→+∞

x(t) ≤

cM
1
f L
1
− aL

1

bL
1

. (50)
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From the first equation of system (33), the following is the case.

ẋ(t) ≥ x
(
− aM

1 − bM
1 x +

cL
1 (m2 − ε)

dM
1 + eM

1 x + f M
1 (M2 + ε) + gM

1 x(M2 + ε)

)
= x

(
− aM

1 − bM
1 x +

cL
1 (m2 − ε)

dM
1 + f M

1 (M2 + ε) + (eM
1 + gM

1 (M2 + ε))x

)
.

(51)

Now, let us consider the following equation.

ẇ(t) = w
(
− aM

1 − bM
1 w +

cL
1 (m2 − ε)

dM
1 + f M

1 (M2 + ε) + (eM
1 + gM

1 (M2 + ε))w

)
. (52)

Since the following is the case:

cL
1 (m2 − ε)

dM
1 + f M

1 (M2 + ε)
> aM

1 , (53)

it follows from Lemma 1 that (52) admits a unique positive equilibrium w∗ε , which is
globally stable. Thus, by the comparison theorem of the differential equation, one has
the following:

lim inf
t→+∞

x(t) ≥ w∗ε − ε. (54)

and it immediately follows from (48), (50) and (54) that system (3) is permanent. This ends
the proof of Theorem 6.

5. Numeric Simulations

Now let us consider the following three examples.

Example 1. Consider the following system.

dx
dt

= x
(
− a1 − x +

c1y
1 + x + y + xy

)
,

dy
dt

= y(1− y).

(55)

In this system, corresponding to system (3), we take b1 = d1 = e1 = f1 = g1 = a2 = b2 = 1.

(1) Now take a1 = 2, c1 = 1, then c1 = 1 < 4 = a1 f1 +
a1d1b2

a2
; it follows from Theorem 3 that

(0, 1) is globally stable. Numeric simulation (Figure 1) supports this assertion.

(2) Now take a1 = 1
2 , c1 = 2; then, c1 = 2 > 1 = a1 f1 +

a1d1b2

a2
, and it follow from Theorem 4

that the unique positive equilibrium (0.28, 1) is globally stable. Numeric simulation (Figure 2)
supports this assertion.
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Figure 1. Stability of boundary equilibrium (0,1); here, we take a1 = 2, c1 = 1, which includes initial
conditions (x(0), y(0)) = (1, 0.3), (0.4, 2), (1, 0.02), (1, 2), and (1, 1.2).

Figure 2. Stability of positive equilibrium (0.28,1); here we take a1 = 1
2 , c1 = 2, which includes the

initial conditions (x(0), y(0)) = (0.04, 2), (0.5, 0.2), (0.5, 0.02), (0.5, 0.4), (0.2, 2), and (0.01, 2).

Example 2. Consider the following system.

dx
dt

= x
(
− (3 + sin(t))− x +

(0.75 + 0.25 cos(t))y
1 + x + y + xy

)
,

dy
dt

= y(1− y).

(56)

In this system, corresponding to system (3), we take b1 = d1 = e1 = f1 = g1 = a2 = b2 = 1.
a1 = 3 + sin(t), c1 = 0.75 + 0.25 cos(t). By simple computation, we have aL

1 = 2, cM
1 = 1,

M2 = m2 = 1. One could easily verify the following.

aL
1 = 2 >

1
2
=

cM
1 M2

dL
1 + f L

1 m2
. (57)
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Hence, it follows from Theorem 5 that the first species will be driven to extinction. Figure 3
supports this assertion.

Figure 3. Extinction of the first species; here, we take a1 = 3 + sin(t), c1 = 0.75 + 0.25 cos(t), which
includes the initial conditions (x(0), y(0)) = (0.5, 2), (0.4, 0.02), (0.1, 0.4), and (0.2, 2).

Example 3. Consider the following system.

dx
dt

= x
(
− (1 +

sin(t)
2

)− x +
(7 + cos(t)

4 )y
1 + x + y + xy

)
,

dy
dt

= y
(

1 + 0.2 sin(t)− (1− 0.2 cos(t))y
)

.

(58)

In this system, corresponding to system (3), we take b1 = d1 = e1 = f1 = g1 = a2 = b2 = 1.

a1 = 1 +
sin(t)

2
, c1 = 7 + cos(t)

4 , a2 = 1 + 0.2 sin(t), and b2 = 1− 0.2 cos(t). By simple

computation, we have aM
1 = 3

2 , cL
1 = 27

4 , m2 = 2
3 , M2 = 3

2 , dM
1 = f M

1 = 1. One could easily
verify that the following is the case.

aM
1 =

3
2
<

9
5
=

cL
1 m2

dM
1 + f M

1 M2
. (59)

Hence, it follows from Theorem 6 that the system is permanent. Figure 4 supports this assertion.
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Figure 4. Attractively of solutions; here, we take a1 = 1 +
sin(t)

2
, c1 = 7 + cos(t)

4 , a2 = 1 + 0.2 sin(t),

ajnd b2 = 1− 0.2 cos(t). The initial conditions are (x(0), y(0)) = (1.0, 0.7), (1.1, 0.7), (0.7, 1.2), and
(0.2, 1.2).

6. Conclusions

Stimulated by recent work of Wu and Li [37], we proposed a two-species obligate
commensal symbiosis model with Crowley–Martin functional responses. Such forms of
functional response take many famous functional responses as its special case: Holling
II functional response, ratio-dependent functional response, and Bedditon-0DeAngelis
functional response, etc.

For autonomous case, we showed that the conditions that ensure the existence of
the positive equilibrium is coincident to the conditions of the global stability of positive
equilibrium, which means that if the positive equilibrium exists, it is a globally stable one;
consequently, two species could be coexistent in the long run. In this case, the system has
no positive equilibrium, and we showed that the first species involves extinction, while
the second species is globally stable. Our results showed that, for the obligate system,
the commensal effect may be one of the most important factors to avoid the extinction of
the species.

For the nonautonomous case, by using the differential inequality theory, we also could
establish sufficient conditions to ensure the persistence or extinction of the system.

We mention here that, in our main results Theorems 3 and 4, coefficients e1 and g1
have no influence on the persistent property of the system; that is, the mutual interferences
of the first species have no influence on the persistence or extinction property of the system.
The strength of the commensalism plays an essential role on the persistence property of
the system.

One of the anonymous reviewers thought it is better for us to add a numerical exam-
ple to show the persistence property of the system; we add Example 3, from numerical
simulation (Figure 4) and we found that, indeed, the system admits a unique T periodic
solution, which is globally attractive; however, we could not prove this assertion at present,
and we leave this for future investigation.
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