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Abstract: In this paper, we present a unified grammatical interpretation of the numbers that satisfy a
kind of four-term recurrence relation, including the Bell triangle, the coefficients of modified Hermite
polynomials, and the Bessel polynomials. Additionally, as an application, a criterion for real zeros of
row-generating polynomials is also presented.
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1. Introduction

Let A denote an alphabet, the letters of which are considered as independent com-
mutative indeterminates. Then, the context-free grammar G over A is defined as a
set of replacement rules that substitute the letters in A with formal functions on A.
The formal derivative D is a linear operator, which is defined relative to a context-free
grammar G (see [1]). For example, for A = {u, v} and G = {u → uv, v → v}, then
D(u) = uv, D2(u) = u(v + v2), Dn(u) = u ∑n

k=1 S(n, k)vk, where S(n, k) is the Stirling
number of the second kind, i.e., the number of ways to partition [n] into k blocks.

In [2], Hao, Wang, and Yang presented a grammatical interpretation of the numbers
T(n, k) that satisfy the following three-term recurrence relation:

T(n, k) = (a1n + a2k + a3)T(n− 1, k) + (b1n + b2k + b3)T(n− 1, k− 1).

Very recently, there is a large literature devoted to the numbers t(n, k) that satisfy the
following four-term recurrence relation (see [3–7]):

tn,k = (a1n + a2k + a3)tn−1,k + (b1n + b2k + b3)tn−1,k−1 + (c1n + c2k + c3)tn−1,k−2, (1)

with t0,0 = 1 and tn,k = 0, unless 0 ≤ k ≤ n. For example, Ma [8] showed that if G =
{x → xy, y → yz, z → y2}, then Dn(x2) = x2 ∑n

k=0 R(n + 1, k)ykzn−k, where R(n, k) is the
number of permutations in Sn with k alternating runs, and it satisfies the recurrence relation

R(n, k) = kR(n− 1, k) + 2R(n− 1, k− 1) + (n− k)R(n− 1, k− 2)

with the initial conditions R(1, 0) = 1 and R(1, k) = 0 for k ≥ 1.
Let

a(n, k) =
n

∑
i=0

S(n, i)
(

i
k

)
for 0 ≤ k ≤ n. Clearly, a(n, k) is the number of set partitions of {1, 2, . . . , n} in which exactly
k of the blocks have been distinguished. The numbers a(n, k) satisfy the recurrence relation

a(n + 1, k) = a(n, k− 1) + (k + 1)a(n, k) + (k + 1)a(n, k + 1), (2)
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with a(0, 0) = 1, a(0, k) = 0 for k 6= 0 (see [9,10]). The triangular array {a(n, k)}n,k is known
as the classical Bell triangle and is given as follows:

1
1 1
2 3 1
5 10 6 1

15 37 31 10 1
...

. . .


.

It appears that a(n, 0) = ∑n
i=0 S(n, i) = Bn, which implies that the first column of the

triangle array is made up of the Bell numbers Bn. A natural question is whether there exists
a grammatical interpretation of the numbers a(n, k).

This paper is motivated by exploring the grammatical interpretation of the triangular
array {B(n, k)}0≤k≤n that satisfies the following four-term recurrence relation

B(n + 1, k) = (a1n + a2k + a3)B(n, k− 1) + (b1n + b2k + b3)B(n, k)
+(k + 1)cB(n, k + 1),

(3)

where ai, bi, and c are integers for 1 ≤ i ≤ 3 with B(0, 0) = 1 and B(0, k) = 0 if k 6= 0.
In Section 2, we present grammatical interpretations of the triangular array {B(n, k)}.
In Section 3, we present grammatical interpretations of several combinatorial sequences,
including the Bell triangle, the modified Hermite polynomials, the Bessel polynomials, and
so on. In Section 4, we show the result of the real-rootedness of row-generating functions
for {B(n, k)}, and apply the proposed criteria to the Bell triangular array as an example.

2. Grammatical Interpretations of the Triangular Array B(n, k)

We now present the first main result of this paper.

Theorem 1. Suppose that ai, bi, and c are integers for 1 ≤ i ≤ 3. Let

G = {I → (a2+a3)IX+b3 IY; X → (a1+a2)X2+(b1+b2)XY+cY2; Y → a1XY+b1Y2}.

Then, we have
Dn(I) = I ∑

k≥0
B(n, k)XkYn−k, (4)

where the coefficients B(n, k) satisfy the recurrence relation (3).

Proof. Note that D(I) = (a2 + a3)IX + b3 IY. Suppose that (4) holds for n. Then, by
induction, we obtain

Dn+1(I) = D{Dn(I)} = ∑
k≥0

B(n, k)D(I)XkYn−k

+ ∑
k≥0

B(n, k)ID(Xk)Yn−k + ∑
k≥0

B(n, k)IXkD(Yn−k).

Applying the rules of G, we can derive

∑
k≥0

B(n, k)I(a2 + a3)Xk+1Yn−k + ∑
k≥0

B(n, k)Ib3XkYn+1−k

+ ∑
k≥0

B(n, k)kIXk−1Yn−k{(a1 + a2)X2 + (b1 + b2)XY + cY2}

+ ∑
k≥0

B(n, k)(n− k)IXkYn−k{a1X + b1Y}.
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Collate and merge similar items

∑
k≥0

B(n, k)(a2 + a3 + k(a1 + a2) + (n− k)a1)IXk+1Yn−k

+ ∑
k≥0

B(n, k)((n− k)b1 + k(b1 + b2) + b3)IXkYn+1−k

+ ∑
k≥0

B(n, k)kcIXk−1Yn−k+2.

Extracting the coefficient of IXkYn+1−k, we obtain (3). This completes the proof.

Along the same lines of the proof of Theorem 1, one can easily derive the following result.

Proposition 1. Let

G = {I→ (a2+a3)IX+b3 IY; X→ (a1+a2)X2+(b1+b2)XY+cY2; Y→dX2+a1XY+b1Y2}.

Then, we have

Dn(I) = I ∑
k≥0

M(n, k)XkYn−k,

where M(n, k) satisfy the following five-term recursive relation:

M(n + 1, k) = (n− k + 2)dM(n, k− 2) + (a1n + a2k + a3)M(n, k− 1)
+(b1n + b2k + b3)M(n, k) + (k + 1)cM(n, k + 1).

(5)

where ai, bi, c, and d are integers for 1 ≤ i ≤ 3.

When d = 0, the recurrence relation (5) is degenerated into (3).

3. Applications
3.1. The Bell Triangle

The Bell triangle was proposed by Aigner [9] to provide a characterization of the
sequence of Bell numbers by means of the determinants of Hankel matrices. As a special
case of Theorem 1, we now present a grammatical interpretations of the Bell triangle.

Proposition 2. Let G = {I → IX + IY; X → XY + Y2; Y → 0}. Then, we have

Dn(I) = I ∑
k≥0

a(n, k)XkYn−k = IYnan(
X
Y
).

Note Dn(X) = XYn + Yn+1, Dn(Y) = 0. From Leibniz’s formula, we obtain the
following corollary:

Corollary 1. For n ≥ 0, we have

an+1(x) =
n

∑
i=0

(n
k)ak(x)(x + 1)

Let Dn(IX) = I ∑n+1
k=0 b(n + 1, k)XkYn+1−k. It is routine to verify that

b(n + 2, k) = b(n + 1, k− 1) + (k + 1)b(n + 1, k) + (k + 1)b(n + 1, k + 1),

with b(1, 1) = 1 and b(1, k) = 0 when k 6= 1. Since Dn+1(I) = Dn(IX) + Dn(IY), it follows
that a(n + 1, k) = b(n + 1, k) + a(n, k).
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Note that Dn(X) = Yn(X + Y). Then,

b(n + 1, k) =
n+1−k

∑
i=0

(
n

i + k− 1

)
a(i + k− 1, k− 1) +

n−k

∑
i=0

(
n

i + k

)
a(i + k, k).

3.2. On the Coefficients of Modified Hermite Polynomials

The modified Hermite polynomials have the following form:

h(0, x) = 1

h(1, x) = x

h(2, x) = x2 + 1

h(3, x) = x3 + 3x

h(4, x) = x4 + 6x2 + 3

h(5, x) = x5 + 10x3 + 15x

h(6, x) = x6 + 15x4 + 45x2 + 15

If n− k ≥ 0 is even, let

T(n, k) =
n!

2
n−k

2 ( n−k
2 )!k!

.

Otherwise, set T(n, k) = 0. It should be noted that the numbers T(n, k) are the
coefficients of the modified Hermite polynomials (see A099174 [11]) and

T(n + 1, k) = T(n, k− 1) + (k + 1)T(n, k + 1).

Using Theorem 1, we obtain the following proposition.

Proposition 3. Let G = {I → IX; X → Y2; Y → 0}. Then, we have

Dn(I) = I ∑
k≥0

T(n, k)XkYn−k = IYnh(n,
X
Y
).

Note that Dn(X) = 0 (n ≥ 2). From Leibniz’s formula, we obtain the following corollaries:

Corollary 2. For n ≥ 0, we have

h(n + 1, x) = xh(n, x) + nh(n− 1, x)

Corollary 3. For n ≥ k ≥ 1, we have

T(n + 1, k) = T(n, k− 1) + nT(n− 1, k)

3.3. The Bessel Polynomials

As a well-known orthogonal sequence of polynomials, the Bessel polynomials yn(x)
were introduced by Krall and Frink in [12], which can be defined as the polynomial solutions
of the second-order differential equation

x2 d2yn(x)
dx2 + 2(x + 1)

dyn(x)
dx

= n(n + 1)yn(x)
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After that, the Bessel polynomials have been extensively studied and applied
(see [13–15]). Moreover, the polynomials yn(x) can be generated by using the Rodrigues
formula (see [11] [A001498]):

yn(x) =
1
2n e2/x dn

dxn (x2ne−2/x)

Explicitly, we can obtain

yn(x) =
n

∑
k=0

(n + k)!
(n− k)!k!

( x
2

)k

Let

H(n, k) =
(n + k)!

2k(n− k)!k!

Then,

yn(x) =
n

∑
k=0

H(n, k)xk

It is easy to verify that

H(n + 1, k) = H(n, k) + (n + k)H(n, k− 1)

The polynomials yn(x) satisfy the recurrence relation

yn+1(x) = (2n + 1)xyn(x) + yn−1(x), f or n > 0

with initial conditions y−1(x)=y0(x)=1. The first three Bessel Polynomials are expressed as

y1(x) = 1 + x,

y2(x) = 1 + 3x + 3x2,

y3(x) = 1 + 6x + 15x2 + 15x3.

We present here a grammatical characterization of the Bessel polynomials yn(x).

Proposition 4. Let G = {I→ IX + IY; X→2X2; Y→XY}. Then, we have

Dn(I) = I ∑
k≥0

H(n, k)XkYn−k = IYnyn(X/Y).

Note that Dn(X) = n!2nXn+1 and Dn(Y) = (2n− 1)!!XnY. From Leibniz’s formula,
we obtain the following corollary:

Corollary 4. For n ≥ 0, we have

yn+1(x) =
n

∑
k=0

(
n
k

)
(2n− 2k− 1)!!yk(x)xn−k +

n

∑
k=0

n!2n−k

k!
yk(x)xn−k+1.

3.4. The Exponential Riordan Array [exp (x/(1− x)), x/(1− x)]

Definition 1 (see [16]). The exponential Riordan group G is a set of infinite lower-triangular
integer matrices, and each matrix in G is defined by a pair of generating function g(x) = g0 +
g1x + g2x2 + · · · and f (x) = f1x + f2x2 + · · · , with g0 6= 0 and f1 6= 0. The associated matrix
is the matrix whose i-th column has exponential generating function g(x) f (x)i/i! (columns marked
from 0). The matrix corresponding to the pair f , g is defined by [g, f ].
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Let R(n, k) be the (n, k)-th element in the matrix [exp (x/(1− x)), x/(1− x)]. The
associated Riordan array is given as follows:

1
1 1
3 4 1

13 21 9 1
73 136 78 16 1
...

. . .


(6)

From A059110 [11], we see that

R(n, k) =
n

∑
i=0

L′(n, i)
(

i
k

)

for 0 ≤ k ≤ n, where L′(n, i) = n!
i! (

n−1
i−1) are unsigned Lah numbers. It is routine to

verify that

R(n + 1, k) = R(n, k− 1) + (n + k + 1)R(n, k) + (k + 1)R(n, k + 1).

Hence, by Theorem 1, we obtain the following Proposition.

Proposition 5. Let

G = {I → IX + IY; X → 2XY + Y2; Y → Y2}

Then, we have

Dn(I) = I ∑
k≥0

R(n, k)XkYn−k := IYnrn(
X
Y
).

Note Dn(X) = (n + 1)!xYn + nn!Yn+1, Dn(Y) = n!Yn+1. From Leibniz’s formula, we
obtain the following corollary:

Corollary 5. For n ≥ 0, we have

rn+1(x) =
n

∑
k=1

(
n
k

)
(n− k + 1)!rk(x)(x + 1)

In Table 1, we list some combinatorial sequences that satisfy (3). More examples can be
found in similar tables in [17–19]. By using Theorem 1, we give the grammatical interpreta-
tion of the corresponding sequences, so that we can obtain more convolution formulas.

4. Real Rootedness

In this section, as an application, we will pay attention to the property of real roots of
the row-generating functions in the array {B(n, k)}0≤k≤n in (3). For the sake of proving our
results, some known results should be introduced beforehand.

Let {Pn(x)} denote a Sturm sequence, which is a sequence of standard polynomials
meeting the condition of deg Pn = n and Pn−1(r)Pn+1(r) < 0 whenever Pn(r) = 0 and
n ≥ 1. Let RZ represent the set of polynomials with only real roots. {Pn(x)} is known as a
generalized Sturm sequence (GSS) if Pn ∈ RZ and zeros of Pn(x) are separated by those of
Pn−1(x) for n ≥ 1. As a special case of Corollary 2.4 in Liu and Wang [20] (also see Zhu,
Yeh, and Lu [7]), the following result provides a unified method to many polynomials with
only real zeros.
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Table 1. Some combinatorial sequences satisfying formula (3).

(a1, a2, a3, b1, b2, b3, c) Description Entry

(1,−1,1,0,1,1,0) Eulerian numbers A173018
(2.−1,1,0,1,1,0) Second-order Eulerian numbers A008517
(0,1,0,0,1,0,0) Surj(n, k) A019538
(1,1,0,0,1,0,0) Ward numbers A134991
(0,0,1,0,1,0,0) Stirling subset numbers A008277

(0,0,−1,−1,−1,0,0) Lah numbers Ln,k A008297
(0,0,1,1,1,0,0) Unsigned Lah numbers L(n, k) A105278

(−2,1,−2,0,0,1,0)
Coefficients of Laguerre polynomials

in reverse order A021010

(0,0,1,0,0,1,0) Binomial coefficients A007318
(0,0,1,1,0,0,0) Stirling cycle numbers A132393

(0,0,1,−1,0,0,0) Stirling numbers of the 1st kind s(n, k) A008275

(0,0,1,0,1,2,1)
Production of the triangle of Stirling numbers

of the 2nd kind with
the Pascal’s triangle read by rows

A137597

(0,0,1,0,1,0,1) Set partitions without singletons A217537

(0,0,1,0,2,1,2)
Exponential Riordan Array

[exp(sinh(x) ∗ exp(x)), sinh(x) ∗ exp(x)] A154602

(0,1,0,0,2,1,1) n!(n
k) A196347

(0,1,0,0,2,2,1) Row-generating function is n! ∑n
k=0

(1+x)n−k

k! A073474

(1,1,0,2,2,2,1)
The number of (n, k) labeled rooted Greg trees

(n ≥ 1, 0 ≤ k ≤ n− 1) A048160

(2,−1,2,0,0,0,1)
The number of fixed-point-free involutions
of 1, 2, . . . , 2n having k cycles with entries of

opposite parities (0 ≤ k ≤ n)
A161119

Lemma 1. Let {Pn(x)} be a sequence of polynomials with nonnegative coefficients and 0 ≤
deg Pn − deg Pn−1 ≤ 1. Suppose that

Pn(x) = (anx + bn)Pn−1(x) + x(cnx + dn)P′n−1(x)

where an, bn ∈ R, and cn ≤ 0, dn ≥ 0. Then, {Pn(x)}n≥0 is a generalized Sturm sequence.

For nonnegative array B(n, k), which satisfies the recurrence relation (3), it is sufficient
to assume that, for n ≥ 1,

a1n + a2k + a3 − a1 ≥ 0 for 1 ≤ k ≤ n,
b1n + b2k + b3 − b1 ≥ 0 for 0 ≤ k ≤ n− 1,
c(k + 1) ≥ 0 for 0 ≤ k ≤ n− 2,

which is equivalent to 
a1 ≥ 0, a1 + a2 ≥ 0, a2 + a3 ≥ 0,
b1 ≥ 0, b1 + b2 ≥ 0, b3 ≥ 0,
c ≥ 0.

Define Bn(x) = ∑n
k≥0 B(n, k)xk (n ≥ 0) as the row-generating functions of B(n, k).

Thus, B0(x) = 1 and

B1(x) = b3 + (a2 + a3)x.
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Moreover, it turns out that Bn(x) follows from the recurrence relation (3) as

Bn(x) = [b1n + b3 − b1 + (a1n + a2 + a3 − a1)x]Bn−1(x) + (c + b2x + a2x2)B′n−1(x),

which implies that

deg(Bn(x))− deg(Bn−1(x)) ≤ 1

for each n.

Theorem 2. Let {B(n, k)}n,k≥0 be the array defined in (3). Assume that b2 = a2 + c. Then, we
have the following results:

(i) There exist polynomials An(x) for n ≥ 0 such that

Bn(x) = an(1 + x)n An(
d

1 + x
),

where An(x)satisfies the recurrence relation

An(x) = 1
a{(a1 + a2)n + a3 − a1 +

(b1+c−a1−a2)n−c+b3−b1−a3+a1
d x}An−1(x)

+ x
a {

(a2−c)x
d − a2}A′n−1(x)

(7)

with A0(x) = 1, a > 0 and d > 0.
(ii) Assume b1 ≥ a1 and b3 ≥ a2 + a3. If a2 ≤ 0, then {Bn(x)}n≥0 is a generalized Sturm

sequence.

Proof. (i) Because b2 = a2 + c, it is obvious that

Bn(x) = [b1n + b3 − b1 + (a1n + a2 + a3 − a1)x]Bn−1(x) + (c + a2x)(1 + x)B′n−1(x),

It can be proven that (i) holds by induction on n as follows.
As n = 1, we can obtain

A1(x) =
1
a
{a2 + a3 +

b3 − a2 − a3

d
x}

B1(x) = b3 + (a2 + a3)x.

Thus, we have

B1(x) = a(1 + x)A1(
d

1 + x
).

By the induction hypothesis, it now turns out that

B′n−1(x) =an−1(n− 1)(x + 1)n−2 An−1(
d

1 + x
)− an−1(x + 1)n−1 A′n−1(

d
1 + x

)
d

(1 + x)2

=
(n− 1)Bn−1(x)

1 + x
− dan−1(x + 1)n−3 A′n−1(

d
1 + x

).

It follows from that recurrence relation (7) that, for n ≥ 2,

an(1 + x)n An(
d

1 + x
)

={((a1 + a2)n + a3 − a1)(1 + x) + (b1 + c− a1 − a2)n− c + b3 − b1 − a3 + a1}Bn−1(x)

− (c + a2x)(n− 1)Bn−1(x) + (c + a2x)(1 + x)B′n−1(x) = Bn(x)
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Thus, for n ≥ 1, we can prove that

Bn(x) = an(1 + x)n An(
d

1 + x
).

(ii) Evidently, in light of (i), Bn(x) forms a generalized Sturm sequence if and only
if (iff) An(x) forms a generalized Sturm sequence. The nonnegativity of the coefficients
for An(x) needs to be considered firstly. Let An(x) = ∑n

k=0 A(n, k)xk for n ≥ 0. Then,
according to the recurrence relation (7), we obtain

A(n, k) =
(a1 + a2)n− a2k + a3 − a1

a
A(n− 1, k)

+
(b1 + c− a1 − a2)n− (c− a2)k + b3 − b1 + a1 − a2 − a3

ad
A(n− 1, k− 1)

for n ≥ 1. Following from the nonnegativity of {B(n, k)}n,k≥0, it holds

a1 + a2 ≥ 0, a1 ≥ 0, a2 + a3 ≥ 0

Furthermore, by the hypothesis condition, we obtain
b1 + c− a1 − a2 ≥ c− a2 ≥ 0,
(b1 + c− a1 − a2)− (c− a2) = b1 − a1 ≥ 0,
(b1 + c− a1 − a2)− (c− a2) + b3 − b1 + a1 − a2 − a3 ≥ 0.

Thus, {B(n, k)}n,k≥0 is a nonnegative array. According to the recurrence relation (7)
and Lemma 1, we can conclude that the polynomials An(x) form a generalized Sturm
sequence if a2 ≤ 0. For the same reason, the polynomials Bn(x) form a generalized Sturm
sequence.

For example, the row-generating function of the Bell triangle a(n, k) in Section 3 is
an(x) = ∑n

k=0 a(n, k)xk. Then, the polynomials satisfy

an(x) = (1 + x)an−1(x) + (1 + x)a′n−1(x),

with a0(x) = 1. Using Theorem 2 (i), there exists an array A(n, k) such that

an(x) =
n

∑
k=0

a(n, k)xk = (1 + x)n An(
1

1 + x
)

where An(x) for n ≥ 1 satisfies the recurrence relation

An(x) = [(n− 1)x + 1]An−1(x)− x2 A′n−1(x)

where A0(x) = 1 and A1(x) = 1. Obviously, A(n, k) = S(n, n− k) for n ≥ 1. Applying
Theorem 2 (ii), it can be proven that {an(x)} for n ≥ 0 is a generalized Sturm sequence.
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