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1. Introduction

In recent decades, the field of values has become increasingly important in numerical
analysis, particularly in numerical linear algebra issues requiring matrices and iterative
approaches for solving large systems of linear equations. One must deal with increasing-
dimensional matrices in such cases. For example, matrices may result from the discretiza-
tion of differential or integral operations, and their dimension approaches infinity as the
discretization is refined; in other circumstances, the discretization is fixed but the comput-
ing domain grows without bounds. In numerical linear algebra, analyzing the behavior
of techniques for approximating functions of such matrices as their size grows is critical.
Indeed, the spectral theorem for normal matrices (or bounded operators) allows one to
convert the approximation problem for matrices into a problem for functions of a real (or
complex) variable and apply classical approximation theory results.

On the other hand, the quadratic forms and their applications are used in many
branches of mathematics and physical sciences. Most researchers in this area of mathematics
have studied many types of quadratic forms, such as the numerical range and its radius.
In recent years, the concept of the generalized Euclidean operator radius has attracted the
serious attention of many researchers. In fact, this type of radius generalizes the classical
numerical radius but for multivariable Hilbert space operators and their extensions to
infinite dimensions; which is indeed considered one of the most recent concepts in the field
of values studied in literature.

This work provides some new theoretical developments in this direction. To highlight
the significance of these developments, some mathematical background and current state
of the art on the Euclidean operator radius and related inequalities must be presented.
Below are the essentials.

Let B(H ) be the Banach algebra of all bounded linear operators defined on a complex
Hilbert space (H ; 〈·, ·〉) with the identity operator 1H in B(H ).

For a bounded linear operator S on a Hilbert space H , the numerical range W(S) is
the image of the unit sphere of H under the quadratic form z → 〈Sz, z〉 associated with
the operator. More precisely,

W(S) = {〈Sz, z〉 : z ∈H , ‖z‖ = 1}.
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Moreover, the numerical radius is defined by

ω(S) = sup{|λ| : λ ∈W(S)} = sup
‖z‖=1

|〈Sz, z〉|.

We recall that the usual operator norm of an operator S is

‖S‖ = sup{‖Sz‖ : z ∈H , ‖z‖ = 1}.

It is well known that ω(·) defines an operator norm on B(H ) which is equivalent to
the operator norm ‖ · ‖. Moreover, we have

1
2
‖S‖ ≤ ω(S) ≤ ‖S‖ (1)

for any S ∈ B(H ) and this inequality is sharp.

Denote |S| = (S∗S)
1
2 the absolute value of the operator S. Then, we have

ω(|S|) = ‖S‖.

It is well known that ω(·) defines an operator norm on B(H ) which is equivalent to
the operator norm ‖ · ‖. Moreover, we have

1
2
‖S‖ ≤ ω(S) ≤ ‖S‖ (2)

for any S ∈ B(H ) and this inequality is sharp.
In 2003, Kittaneh [1] refined the right-hand side of (2); he proved that

ω(S) ≤ 1
2

(
‖S‖+ ‖S2‖

1
2

)
(3)

for any S ∈ B(H ).
After that, in 2005, the same author in [2] proved that

1
4
‖S∗S + SS∗‖ ≤ ω2(S) ≤ 1

2
‖S∗S + SS∗‖. (4)

The inequality is sharp. For recent further inequalities regarding (4) and other related
results, the reader may refer to [3–12].

In 2009, Popsecu [13] introduced the concept of Euclidean operator radius of an n-tuple
S = (S1, · · · , Sn) ∈ B(H )n := B(H )× · · · ×B(H ). Namely, for S1, · · · , Sn ∈ B(H ),
the Euclidean operator radius of S1, · · · , Sn is defined by

ωe(S1, · · · , Sn) := sup
‖z‖=1

(
n

∑
i=1
|〈Siz, z〉|2

) 1
2

.

The Euclidean operator radius was generalized in [9] as follows:

ωp(S1, · · · , Sn) := sup
‖z‖=1

(
n

∑
i=1
|〈Siz, z〉|p

) 1
p

, p ≥ 1.

In [14] Moslehian, Sattari and Shebrawi proved several inequalities regarding n-tuples
operators. Among others they proved the following two results
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wp(S1, · · · , Sn) ≤
1
2

∥∥∥∥∥ n

∑
i=1

(
|Si|2α + |S∗i |

2(1−α)
)p
∥∥∥∥∥

1
p

(5)

and

wp(S1, · · · , Sn) ≤
∥∥∥∥∥ n

∑
i=1

(
α|Si|p + (1− α)|S∗i |

p)∥∥∥∥∥
1
p

(6)

for α ∈ [0, 1] and p ≥ 1.
In [15], Sheikhhosseini, Moslehian and Shebrawi refined the above two inequalities by

proving that

wp(S1, · · · , Sn) ≤
1
2

∥∥∥∥∥ n

∑
i=1

(
|Si|2α + |S∗i |

2(1−α)
)p
∥∥∥∥∥

1
p

− inf
‖x‖=1

ξ(x), (7)

where

ξ(x) =
1
2

n

∑
i=1

(〈
|Si|2αpx, x

〉 1
2 −

〈
|S∗i |

2(1−α)px, x
〉 1

2
)2

and

wp
p(S1, · · · , Sn) ≤

∥∥∥∥∥ n

∑
i=1

(
α|Si|

p
m + (1− α)|S∗i |

p
m
)m
∥∥∥∥∥− inf

‖x‖=1
ξ(x), (8)

where

ξ(x) = min{α, 1− α}
n

∑
i=1

(〈
|Si|

p
m x, x

〉m
2 −

〈
|S∗i |

p
m x, x

〉m
2
)2

.

For further properties of the Euclidean operator radius combined with several basic
properties, the reader may refer to [13–16].

In this work, we prove several new inequalities for the generalized Euclidean operator
radius. Among others, some bounds in terms of Cartesian decomposition of a given Hilbert
space operator are proven. More precisely, Section 2 is devoted to inequalities for the
generalized Euclidean operator radius which gives an equivalent version of the inequalities
(5)–(8), and Section 3 is focused on diverse upper and lower bounds for quantities involving
this radius; and this gives an extension of [6] (Theorem 5) and [15] (Theorem 4.1). The paper
is concluded in Section 4.

2. Inequalities for the Generalized Euclidean Operator Radius

In order to prove our main results, we need the following sequence of lemmas.

Lemma 1 ([17]). Let C ∈ B(H ). If k and ` are nonnegative continuous functions on [0, ∞)
satisfying k(t)`(t) = t (t ≥ 0), then we have

|〈Cz, y〉| ≤ ‖k(|C|)z‖‖`(|C∗|)y‖ (9)

for any vectors z, y ∈H .
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Lemma 2 ([3]). Let C ∈ B(H ) with the Cartesian decomposition C = G + iF. If k and ` are
nonnegative continuous functions on [0, ∞) satisfying k(t)`(t) = t (t ≥ 0), then we have

|〈Cz, y〉| ≤ {‖k(|G|)z‖‖`(|G|)y‖+ ‖k(|F|)z‖‖`(|F|)y‖} (10)

for all z, y ∈H .

Lemma 3. Let S ∈ B(H ), S ≥ 0 and z ∈ H be a unit vector. Then, the operator Jensen
inequalities are given by

〈Sz, z〉r ≤ 〈Srz, z〉, r ≥ 1 (11)

and

〈Sz, z〉r ≥ 〈Srz, z〉, 0 ≤ r ≤ 1. (12)

Lemma 4 ([7]). Let c, d ≥ 0, and p, q > 1 such that 1
p + 1

q = 1. Then, we have

cd + min
{

1
p

,
1
q

}
(c

p
2 − d

q
2 )2 ≤ cp

p
+

dq

q
. (13)

Lemma 5 ([18]). If c, d > 0, and p, q > 1 such that 1
p + 1

q = 1, then, for m = 1, 2, 3, . . . ,

(
c

1
p d

1
q

)m
+ rm

0

(
c

m
2 − d

m
2

)2
≤
(

cr

p
+

dr

q

)m
r

, r ≥ 1, (14)

where r0 = min
{

1
p , 1

q

}
. In particular, if p = q = 2, we obtain

(
c

1
2 d

1
2

)m
+

1
2m

(
c

m
2 − d

m
2

)2
≤ 2−

m
r (cr + dr)

m
r . (15)

Lemma 6. For c, d > 0, 0 ≤ α ≤ 1. Let

Mr(c, d, α) :=


(αcr + (1− α)dr)

1
r , r ≥ 1

cαd1−α, r = 0
.

Then, for all r ≤ s, we have

Mr(c, d, α) ≤ Ms(c, d, α). (16)

We are in a position to state our first main result which combines (5) and (6).

Theorem 1. Let Cj ∈ B(H ) (1 ≤ j ≤ n). Then, we have

ω
p
p(C1, · · · , Cn)

≤ 1
2

∥∥∥∥∥ n

∑
j=1

(
α
∣∣Cj
∣∣2rβ

+ (1− α)
∣∣∣C∗j ∣∣∣2r(1−β)

) p
r
+

(
α
∣∣Cj
∣∣2r(1−β)

+ (1− α)
∣∣∣C∗j ∣∣∣2rβ

) p
r
∥∥∥∥∥ (17)

for all α, β ∈ [0, 1] and p ≥ r ≥ 1 such that rβ ≥ 1.
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Proof. Let y = z in (9), we get

n

∑
j=1

∣∣〈Cjz, z
〉∣∣p

≤
n

∑
j=1

〈∣∣Cj
∣∣2αz, z

〉 p
2
〈∣∣∣C∗j ∣∣∣2(1−α)

z, z
〉 p

2

≤ 1
2p

n

∑
j=1

[〈∣∣Cj
∣∣2αz, z

〉β
〈∣∣∣C∗j ∣∣∣2(1−α)

z, z
〉1−β (

since
√

cd ≤ cγd1−γ + c1−γdγ

2

)

+
〈∣∣Cj

∣∣2αz, z
〉1−β

〈∣∣∣C∗j ∣∣∣2(1−α)
z, z
〉β
]p

≤ 1
2p

n

∑
j=1

[〈∣∣Cj
∣∣2z, z

〉βα
〈∣∣∣C∗j ∣∣∣2z, z

〉(1−β)(1−α)

(by (12))

+
〈∣∣Cj

∣∣2z, z
〉α(1−β)

〈∣∣∣C∗j ∣∣∣2(1−α)
z, z
〉(1−α)β

]p

≤ 1
2p

n

∑
j=1

[
α
〈∣∣Cj

∣∣2z, z
〉β

+ (1− α)

〈∣∣∣C∗j ∣∣∣2z, z
〉1−β

(by the AM–GM inequality)

+α
〈∣∣Cj

∣∣2z, z
〉1−β

+ (1− α)

〈∣∣∣C∗j ∣∣∣2z, z
〉β
]p

≤ 1
2p

n

∑
j=1

(α
〈∣∣Cj

∣∣2z, z
〉rβ

+ (1− α)

〈∣∣∣C∗j ∣∣∣2z, z
〉r(1−β)

) 1
r

(by (16))

+

(
α
〈∣∣Cj

∣∣2z, z
〉r(1−β)

+ (1− α)

〈∣∣∣C∗j ∣∣∣2z, z
〉rβ

) 1
r
p

≤ 1
2p

n

∑
j=1

[(
α
〈∣∣Cj

∣∣2rβz, z
〉
+ (1− α)

〈∣∣∣C∗j ∣∣∣2r(1−β)
z, z
〉) 1

r
(by (11))

+

(
α
〈∣∣Cj

∣∣2r(1−β)z, z
〉
+ (1− α)

〈∣∣∣C∗j ∣∣∣2rβ
z, z
〉) 1

r
]p

=
1
2p

n

∑
j=1

[(〈
α
∣∣Cj
∣∣2rβ

+ (1− α)
∣∣∣C∗j ∣∣∣2r(1−β)

z, z
〉) 1

r

+

(〈
α
∣∣Cj
∣∣2r(1−β)

+ (1− α)
∣∣∣C∗j ∣∣∣2rβ

z, z
〉) 1

r
]p

≤ 1
2

n

∑
j=1

[(〈
α
∣∣Cj
∣∣2rβ

+ (1− α)
∣∣∣C∗j ∣∣∣2r(1−β)

z, z
〉) p

r
(

since
(

c + d
2

)p
≤ cp + dp

2

)

+

(〈
α
∣∣Cj
∣∣2r(1−β)

+ (1− α)
∣∣∣C∗j ∣∣∣2rβ

z, z
〉) p

r
]
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≤ 1
2

n

∑
j=1

[〈(
α
∣∣Cj
∣∣2rβ

+ (1− α)
∣∣∣C∗j ∣∣∣2r(1−β)

) p
r
z, z

〉
(by (11))

+

〈(
α
∣∣Cj
∣∣2r(1−β)

+ (1− α)
∣∣∣C∗j ∣∣∣2rβ

) p
r
z, z

〉]

=
1
2

[〈
n

∑
j=1

(
α
∣∣Cj
∣∣2rβ

+ (1− α)
∣∣∣C∗j ∣∣∣2r(1−β)

) p
r
z, z

〉

+

〈
n

∑
j=1

(
α
∣∣Cj
∣∣2r(1−β)

+ (1− α)
∣∣∣C∗j ∣∣∣2rβ

) p
r
z, z

〉]
.

Taking the supremum over all unit vectors z ∈H , we obtain the desired result.

Corollary 1. Let Cj ∈ B(H ) (1 ≤ j ≤ n). Then, we have

ω
p
p(C1, · · · , Cn) ≤

∥∥∥∥∥ n

∑
j=1

(
α
∣∣Cj
∣∣r + (1− α)

∣∣∣C∗j ∣∣∣r) p
r

∥∥∥∥∥ (18)

for all α, β ∈ [0, 1] and p ≥ r ≥ 2.
In particular, we have

ω
p
p(C1, · · · , Cn) ≤

1

2
p
r

∥∥∥∥∥ n

∑
j=1

(∣∣Cj
∣∣r + ∣∣∣C∗j ∣∣∣r) p

r

∥∥∥∥∥. (19)

Proof. The proof follows by setting β = 1
2 in (17).

Remark 1. Setting r = 2, then |Cj|2 + |C∗j |2 = C∗j Cj + CjC∗j , so that the inequality (19) becomes

ωp(C1, · · · , Cn) ≤
1√
2

∥∥∥∥∥ n

∑
j=1

(
C∗j Cj + CjC∗j

) p
2

∥∥∥∥∥
1
p

for all p ≥ 2. In particular, in case we choose p = 2, we obtain

ωe(C1, · · · , Cn) ≤
1√
2

∥∥∥∥∥ n

∑
j=1

(
C∗j Cj + CjC∗j

)∥∥∥∥∥
1
2

, (20)

which is the multivariable version of the right-hand side of Kittaneh inequality (4).

Example 1. Let C1 =

[
0 2
1 0

]
and C2 =

[
0 0
2 0

]
be 2× 2-matrices. Employing (20) with

n = 2, α = 1
2 and p = 2, we obtain

ω2
e(C1, C2) = sup

‖z‖=1

(
|〈C1z, z〉|2 + |〈C2z, z〉|2

)
= 4,

i.e., ωe(C1, C2) = 2. However,

2 = ωe(C1, C2) ≤
1√
2

∥∥∥∥∥ n

∑
j=1

(
C∗j Cj + CjC∗j

)∥∥∥∥∥
1
2

= 2.1213,

which verifies (20).
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Our next goal is to generalize the inequality (4).

Theorem 2. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decomposi-
tion of Cj for all j = 1, · · · , n. Then, we have

1
2pnp−1

∥∥∥∥∥ n

∑
j=1

(
Gj + Fj

)2

∥∥∥∥∥
p

≤ 1
2p

∥∥∥∥∥ n

∑
j=1

(
Gj + Fj

)2p

∥∥∥∥∥
≤ ω

2p
2p(C1, · · · , Cn) (21)

≤ 2p−1

∥∥∥∥∥ n

∑
j=1

(∣∣Gj
∣∣2p

+
∣∣Fj
∣∣2p
)∥∥∥∥∥

for all p ≥ 1.

Proof. We start by proving the left-side inequality. We have

n

∑
j=1

∣∣〈Cjz, z
〉∣∣2p

=
n

∑
j=1

(∣∣〈Gjz, z
〉∣∣2 + ∣∣〈Fjz, z

〉∣∣2)p

≥
n

∑
j=1

(
1
2
(∣∣〈Gjz, z

〉∣∣+ ∣∣〈Fjz, z
〉∣∣)2

)p

≥ 1
2p

n

∑
j=1

(∣∣〈Gjz, z
〉
+
〈

Fjz, z
〉∣∣)2p

=
1
2p

n

∑
j=1

∣∣〈(Gj + Fj
)
z, z
〉∣∣2p

≥ 1
2pnp−1

(
n

∑
j=1

∣∣〈(Gj + Fj
)
z, z
〉∣∣2)p

. (Jensen’s inequality)

Taking the supremum over all unit vectors z ∈H , we obtain the left hand side of (21).
To prove the right-hand side of (21), we have

 n

∑
j=1

(∣∣〈Cjz, z
〉∣∣2

2

)p 1
p

=

 n

∑
j=1

(∣∣〈Gjz, z
〉∣∣2 + ∣∣〈Fjz, z

〉∣∣2
2

)p 1
p

≤
(

n

∑
j=1

(∣∣〈Gjz, z
〉∣∣2p

+
∣∣〈Fjz, z

〉∣∣2p

2

)) 1
p

≤ 2−
1
p

(
n

∑
j=1

(〈∣∣Gj
∣∣z, z

〉2p
+
〈∣∣Fj

∣∣z, z
〉2p
)) 1

p

≤ 2−
1
p

(
n

∑
j=1

(〈∣∣Gj
∣∣2pz, z

〉
+
〈∣∣Fj

∣∣2pz, z
〉)) 1

p

= 2−
1
p

(
n

∑
j=1

(〈(∣∣Gj
∣∣2p

+
∣∣Fj
∣∣2p
)

z, z
〉)) 1

p

= 2−
1
p

〈
n

∑
j=1

(∣∣Gj
∣∣2p

+
∣∣Fj
∣∣2p
)

z, z

〉 1
p

.
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Taking the supremum over all unit vectors z ∈ H we obtain the right-hand side of
(21), and thus the proof of Theorem 2 is completely finished.

Example 2. Let C1 =

[
0 2
1 0

]
and C2 =

[
0 0
2 0

]
be 2 × 2-matrices. Then it is easy to

observe that

C1 = G1 + iF1 =

[
0 3

2
3
2 0

]
+ i
[

0 − i
2

i
2 0

]
,

and

C2 = G2 + iF2 =

[
0 1
1 0

]
+ i
[

0 i
−i 0

]
.

Employing (21) with n = 2 and p = 1, we obtain

1
2

∥∥∥∥∥ 2

∑
j=1

(
Gj + Fj

)2

∥∥∥∥∥ =
1
2

∥∥∥(G1 + F1)
2 + (G2 + F2)

2
∥∥∥

=
1
2

∥∥∥∥[ 5
2 0
0 5

2

]
+

[
2 0
0 2

]∥∥∥∥
= 2.25,

and

ω2
e(C1, C2) = sup

‖z‖=1

(
|〈C1z, z〉|2 + |〈C2z, z〉|2

)
= 4

while∥∥∥∥∥ 2

∑
j=1

(∣∣Gj
∣∣2 + ∣∣Fj

∣∣2)∥∥∥∥∥ =
∥∥∥(|G1|2 + |F1|2

)
+
(
|G2|2 + |F2|2

)∥∥∥
=

∥∥∥∥([ 9
4 0
0 9

4

]
+

[ 1
4 0
0 1

4

])
+

([
1 0
0 1

]
+

[
1 0
0 1

])∥∥∥∥
=

∥∥∥∥[ 18
4 0
0 18

4

]∥∥∥∥
= 4.5,

which verifies that

2.25 :=
1
2

∥∥∥∥∥ 2

∑
j=1

(
Gj + Fj

)2

∥∥∥∥∥ ≤ ω2
e(C1, C2) = 4 ≤

∥∥∥∥∥ 2

∑
j=1

(∣∣Gj
∣∣2 + ∣∣Fj

∣∣2)∥∥∥∥∥ := 4.5.

Corollary 2. Let C ∈ B(H ). Assume C = G + iF be the Cartesian decomposition of C. Then,
we have

1
2p ‖G + F‖2p ≤ ω2p(C) ≤ 2p−1

∥∥∥|G|2p + |F|2p
∥∥∥

for all p ≥ 1. In particular, we have
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1
2
‖G + F‖2 ≤ ω2(C) ≤

∥∥∥|G|2 + |F|2∥∥∥. (22)

Proof. Choosing n = 1 in (21) and set C1 = C, G1 = G and F1 = F, this yields that
ω

2p
2p(C1, · · · , Cn) = ω2(C). The particular case holds with n = 1 and p = 1.

Example 3. As in Example 2, let C = G + iF. Then, by employing (22) we obtain

1.25 =
1
2
‖G + F‖2 ≤ ω2(C) = 2.25 ≤

∥∥∥|G|2 + |F|2∥∥∥ = 2.5.

Our next result can be stated as follows:

Theorem 3. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decomposi-
tion of Cj for all j = 1, · · · , n. Then, we have

ω
rp
p (C1, · · · , Cn) ≤

1
2

∥∥∥∥∥ n

∑
j=1

{[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]pr

+
[
`2(∣∣Gj

∣∣)+ `2(∣∣Fj
∣∣)]pr}∥∥∥∥∥ (23)

for all r ≥ 1 and p ≥ 2.

Proof. Setting y = z in (10). Let p, q > 1 such that 1
p + 1

q = 1. Then, we have

|〈Cz, z〉| ≤ {‖k(|G|)z‖‖`(|G|)z‖+ ‖k(|F|)z‖‖`(|F|)z‖}
≤
(
‖k(|G|)z‖p + ‖k(|F|)z‖p) 1

p

×
(
‖`(|G|)z‖q + ‖`(|F|)z‖q) 1

q (by the Hölder inequality)

≤
(〈

k2(|G|)z, z
〉 p

2 +
〈
k2(|F|)z, z

〉 p
2

) 1
p

×
(〈

`2(|G|)z, z
〉q/2

+
〈
`2(|F|)z, z

〉q/2
) 1

q

≤ (〈kp(|G|)z, z〉+ 〈kp(|F|)z, z〉)
1
p

×(〈`q(|G|)z, z〉+ 〈`q(|F|)z, z〉)
1
q (by (11))

≤ 〈[kp(|G|) + kp(|F|)]z, z〉
1
p 〈[`q(|G|) + `q(|F|)]z, z〉

1
q

(24)

In particular, for p = q = 2, we have

|〈Cz, z〉| ≤
〈[

k2(|G|) + k2(|F|)
]
z, z
〉 1

2
〈[

`2(|G|) + `2(|F|)
]
z, z
〉 1

2 . (25)

Applying (25) for p ≥ 2, we obtain

n

∑
j=1

∣∣〈Cjz, z
〉∣∣p

≤
n

∑
j=1

〈[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]z, z

〉 p
2
〈[

`2(∣∣Gj
∣∣)+ `2(∣∣Fj

∣∣)]z, z
〉 p

2

≤
n

∑
j=1

〈[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]p

z, z
〉 1

2
〈[

`2(∣∣Gj
∣∣)+ `2(∣∣Fj

∣∣)]p
z, z
〉 1

2
(by (11))
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≤ 1

2
1
r

n

∑
j=1

[〈[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]p

z, z
〉r

+
〈[

`2(∣∣Gj
∣∣)+ `2(∣∣Fj

∣∣)]p
z, z
〉r
] 1

r
(by Lemma 6)

≤ 1

2
1
r

n

∑
j=1

[〈[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]pr

z, z
〉
+
〈[

`2(∣∣Gj
∣∣)+ `2(∣∣Fj

∣∣)]pr
z, z
〉] 1

r
(by (11))

=

[
1
2

〈
n

∑
j=1

{[
k2(∣∣Gj

∣∣)+ k2(∣∣Fj
∣∣)]pr

+
[
`2(∣∣Gj

∣∣)+ `2(∣∣Fj
∣∣)]pr}

z, z

〉] 1
r

.

Taking the supremum over all unit vectors z ∈H , we obtain the desired result.

Corollary 3. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decompo-
sition of Cj for all j = 1, · · · , n. Then, we have

ω
rp
p (C1, · · · , Cn) ≤

1
2

∥∥∥∥∥ n

∑
j=1

{[∣∣Gj
∣∣2α

+
∣∣Fj
∣∣2α
]pr

+
[∣∣Gj

∣∣2(1−α)
+
∣∣Fj
∣∣2(1−α)

]pr}∥∥∥∥∥ (26)

for all r ≥ 1, p ≥ 2 and α ∈ [0, 1].

Proof. The desired result follows by setting k(t) = tα and `(t) = t1−α (0 ≤ α ≤ 1) in
Theorem 3.

Corollary 4. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decompo-
sition of Cj for all j = 1, · · · , n. Then, we have

ω
p
p(C1, · · · , Cn) ≤

∥∥∥∥∥ n

∑
j=1

[∣∣Gj
∣∣+ ∣∣Fj

∣∣]p

∥∥∥∥∥ (27)

for all p ≥ 1.

Proof. Setting r = 1 an α = 1
2 in (26), we obtain the desired result.

Example 4. Consider C1 = G1 + iF1 and C2 = G2 + iF2 as given in Example 2. Then, by employ-
ing (27) with p = 2, we obtain

4 = ω2
e(C1, C2) ≤

∥∥∥(|G1|+ |F1|)2 + (|G2|+ |F2|)2
∥∥∥ = 8,

or it is more appropriate to write

2 = ωe(C1, C2) ≤
√∥∥∥(|G1|+ |F1|)2 + (|G2|+ |F2|)2

∥∥∥ = 2.8284.

3. Upper and Lower Bounds for the Generalized Euclidean Operator Radius

In this section, we provide some upper and lower bounds for quantities involving the
generalized Euclidean operator radius. Let us start, with the following result.
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Theorem 4. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decomposi-
tion of Cj for all j = 1, · · · , n. If k and ` are nonnegative continuous functions on [0, ∞) satisfying
k(t)`(t) = t (t ≥ 0), then

1
n2r−1

∥∥∥∥∥ n

∑
i=1

Ci

∥∥∥∥∥
2r

≤ ωp

([
k2(|G1|) + k2(|F1|)

]r
, · · · ,

[
k2(|Gn|) + k2(|Fn|)

]r)
(28)

×ωq

([
`2(|G1|) + `2(|F1|)

]r
, · · · ,

[
`2(|Gn|) + `2(|Fn|)

]r)
≤ 1

p

∥∥∥∥∥ n

∑
i=1

[
k2(|Gi|) + k2(|Fi|)

]rp
∥∥∥∥∥+ 1

q

∥∥∥∥∥ n

∑
i=1

[
`2(|Gi|) + `2(|Fi|)

]rq
∥∥∥∥∥− inf

‖z‖=‖y‖=1
Φ(z, y),

for all r ≥ 1, p, q > 1 such that 1
p + 1

q = 1, where

Φ(z, y) := min
{

1
p

,
1
q

}(√ n

∑
i=1
〈[k2(|Gi|) + k2(|Fi|)]z, z〉 −

√
n

∑
i=1
〈[`2(|Gi|) + `2(|Fi|)]y, y〉

)2

.

Proof. Let z, y ∈H . Applying inequality (10) and the convexity of t2r, we have

1
n2r−1

∣∣∣∣∣ n

∑
i=1
〈Ciz, y〉

∣∣∣∣∣
2r

≤
n

∑
i=1
|〈Ciz, y〉|2r

≤
n

∑
i=1

〈[
k2(|Gi|) + k2(|Fi|)

]
z, z
〉r〈[

`2(|Gi|) + `2(|Fi|)
]
y, y
〉r

≤
n

∑
i=1

〈[
k2(|Gi|) + k2(|Fi|)

]r
z, z
〉〈[

`2(|Gi|) + `2(|Fi|)
]r

y, y
〉

(by (11))

≤
(

n

∑
i=1

〈[
k2(|Gi|) + k2(|Fi|)

]r
z, z
〉p
) 1

p
(

n

∑
i=1

〈[
`2(|Gi|) + `2(|Fi|)

]r
y, y
〉q
) 1

q

(by the Hölder inequality)

≤ 1
p

(
n

∑
i=1

〈[
k2(|Gi|) + k2(|Fi|)

]r
z, z
〉p
)
+

1
q

(
n

∑
i=1

〈[
`2(|Gi|) + `2(|Fi|)

]r
y, y
〉q
)

(by (14) )

−min
{

1
p

,
1
q

}(√ n

∑
i=1
〈[k2(|Gi|) + k2(|Fi|)]z, z〉 −

√
n

∑
i=1
〈[`2(|Gi|) + `2(|Fi|)]y, y〉

)2

≤ 1
p

(
n

∑
i=1

〈[
k2(|Gi|) + k2(|Fi|)

]rp
z, z
〉)

+
1
q

(
n

∑
i=1

〈[
`2(|Gi|) + `2(|Fi|)

]rq
y, y
〉)

(by (11) )

−min
{

1
p

,
1
q

}(√ n

∑
i=1
〈[k2(|Gi|) + k2(|Fi|)]z, z〉 −

√
n

∑
i=1
〈[`2(|Gi|) + `2(|Fi|)]y, y〉

)2

Taking the supremum over all unit vectors z, y ∈ H , we obtain the desired result.
which proves the required result.

Corollary 5. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decompo-
sition of Cj for all j = 1, · · · , n. Then, we have



Axioms 2022, 11, 285 12 of 16

1
n2r−1

∥∥∥∥ n
∑

i=1
Ci

∥∥∥∥2r

≤ ωp

([
|G1|2α + |F1|2α

]r
, · · · ,

[
|Gn|2α + |Fn|2α

]r)
×ωq

([
|G1|2(1−α) + |F1|2(1−α)

]r
, · · · ,

[
|Gn|2(1−α) + |Fn|2(1−α)

]r)
≤ max

{
1
p , 1

q

}[∥∥∥∥ n
∑

i=1

[
|Gi|2α + |Fi|2α

]rp
∥∥∥∥+ ∥∥∥∥ n

∑
i=1

[
|Gi|2(1−α) + |Fi|2(1−α)

]rq
∥∥∥∥]− inf

‖z‖=‖y‖=1
Ψp,q,α(z, y),

(29)

for all r ≥ 1, p, q > 1 such that 1
p + 1

q = 1, where

Ψp,q,α(z, y) := min
{

1
p

,
1
q

}(√ n

∑
i=1

〈[
|Gi|2α + |Fi|2α

]
z, z
〉
−
√

n

∑
i=1

〈[
|Gi|2(1−α) + |Fi|2(1−α)

]
y, y
〉)2

.

Proof. Setting k(t) = tα and `(t) = t1−α (0 ≤ α ≤ 1) in (28) yields the desired result.

Corollary 6. Let Cj ∈ B(H ) (j = 1, · · · , n). Assume Cj = Gj + iFj be the Cartesian decompo-
sition of Cj for all j = 1, · · · , n. Then, we have

1
n2r−1

∥∥∥∥ n
∑

i=1
Ci

∥∥∥∥2r

≤ ωp
(
[|G1|+ |F1|]r, · · · , [|Gn|+ |Fn|]r

)
×ωq

(
[|G1|+ |F1|]r, · · · , [|Gn|+ |Fn|]r

)
≤ max

{
1
p , 1

q

}[∥∥∥∥ n
∑

i=1
[|Gi|+ |Fi|]rp

∥∥∥∥+ ∥∥∥∥ n
∑

i=1
[|Gi|+ |Fi|]rq

∥∥∥∥]− inf
‖z‖=‖y‖=1

Ψp,q, 1
2
(z, y),

(30)

for all r ≥ 1, p, q > 1 such that 1
p + 1

q = 1, where

Ψp,q, 1
2
(z, y) := min

{
1
p

,
1
q

}(√ n

∑
i=1
〈[|Gi|+ |Fi|]z, z〉 −

√
n

∑
i=1
〈[|Gi|+ |Fi|]y, y〉

)2

.

Proof. Setting α = 1
2 in (29) yields the stated result.

Remark 2. Setting r = 1 and p = q = 2 in Corollary 6, we obtain

1
n

∥∥∥∥∥ n

∑
i=1

Ci

∥∥∥∥∥
2

≤ ω2
2([|G1|+ |F1|], · · · , [|Gn|+ |Fn|])

≤
∥∥∥∥∥ n

∑
i=1

[|Gi|+ |Fi|]2
∥∥∥∥∥− inf

‖z‖=‖y‖=1
Ψ1,2,2, 1

2
(z, y), (31)

where

Ψ1,2,2, 1
2
(z, y) :=

1
2

(√
n

∑
i=1
〈[|Gi|+ |Fi|]z, z〉 −

√
n

∑
i=1
〈[|Gi|+ |Fi|]y, y〉

)2

.

Example 5. Consider C1 = G1 + iF1 and C2 = G2 + iF2 as given in Example 2. Therefore,
by employing (31) with r = 1 and p = q = 2, then we have

1
2
‖C1 + C2‖2 = 4.5,
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ω2
2([|G1|+ |F1|], [|G2|+ |F2|]) = sup

‖z‖=1

(
|〈[|G1|+ |F1|]z, z〉|2 + |〈[|G2|+ |F2|]z, z〉|2

)
= 8,

and ∥∥∥(|G1|+ |F1|)2 + (|G2|+ |F2|)2
∥∥∥ = 8,

with

inf
‖z‖=‖y‖=1

Ψ1,2,2, 1
2
(z, y) = 0.

This gives that

4.5 =
1
2
‖C1 + C2‖2 ≤ ω2

2([|G1|+ |F1|], [|G2|+ |F2|]) = 8

≤
∥∥∥(|G1|+ |F1|)2 + (|G2|+ |F2|)2

∥∥∥− inf
‖z‖=‖y‖=1

Ψ1,2,2, 1
2
(z, y) = 8,

or we may write

2.1213 =
1√
2
‖C1 + C2‖ ≤ ωe(C1, C2) = 2.8284

≤
√∥∥∥(|G1|+ |F1|)2 + (|G2|+ |F2|)2

∥∥∥− inf
‖z‖=‖y‖=1

Ψ1,2,2, 1
2
(z, y) = 2.8284.

In 2007, El-Hadad and Kittaneh in [6] proved the corresponding version of the Kittaned
inequality (4) in terms of the Cartesian decomposition. Indeed, they proved

2−
r
2−1∥∥|G + F|r + |G− F|r

∥∥ ≤ ωr(C) ≤ 1
2

∥∥|G + F|r + |G− F|r
∥∥ (32)

for all r ≥ 2, where F, G are the Cartesian decomposition of C.
In the next result, we generalize (32) in terms of the generalized Euclidean

operator radius.

Theorem 5. Let Sj = Gj + iFj ∈ B(H ) be the Cartesian decomposition of Sj (1 ≤ j ≤ n). Then

2−
p
2

np−1

∥∥∥∥∥ n

∑
j=1

∣∣Gj + Fj
∣∣∥∥∥∥∥

p

≤ ω
p
p(S1, . . . , Sn) ≤

1
2

n

∑
j=1

∥∥∥∣∣Gj + Fj
∣∣p + ∣∣Gj − Fj

∣∣p∥∥∥ (33)

for all p ≥ 2.

Proof. Let z be a unit vector in H . Then, the right-hand side inequality could be obtained
as follows:

ω
p
p(S1, . . . , Sn)

= sup
‖z‖=1

n

∑
j=1

∣∣〈Sjz, z
〉∣∣p

= sup
‖z‖=1

n

∑
j=1

(〈
Gjz, z

〉2
+
〈

Fjz, z
〉2
) p

2
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≤
n

∑
j=1

sup
‖z‖=1

(〈
Gjz, z

〉2
+
〈

Fjz, z
〉2
) p

2
(by properties of sup)

= 2−p/2
n

∑
j=1

sup
‖z‖=1

(∣∣〈(Gj + Fj
)
z, z
〉∣∣2 + ∣∣〈(Gj − Fj

)
z, z
〉∣∣2) p

2

≤ 2−p/2+p/2−1
n

∑
j=1

sup
‖z‖=1

(∣∣〈(Gj + Fj
)
z, z
〉∣∣p + ∣∣〈(Gj − Fj

)
z, z
〉∣∣p) (

by convexity of t
p
2

)
≤ 1

2

n

∑
j=1

sup
‖z‖=1

(〈∣∣Gj + Fj
∣∣z, z

〉p
+
〈∣∣Gj − Fj

∣∣z, z
〉p
) (

since Gj, Fj are selfadjoint
)

≤ 1
2

n

∑
j=1

sup
‖z‖=1

(〈∣∣Gj + Fj
∣∣pz, z

〉
+
〈∣∣Gj − Fj

∣∣pz, z
〉)

(by McCarthy inequality)

=
1
2

n

∑
j=1

sup
‖z‖=1

(〈(∣∣Gj + Fj
∣∣p + ∣∣Gj − Fj

∣∣p)z, z
〉)

=
1
2

n

∑
j=1

∥∥∥∣∣Gj + Fj
∣∣p + ∣∣Gj − Fj

∣∣p∥∥∥,

which proves the right-hand side of (33). To prove the left-hand side, since we have

ω
p
p(S1, . . . , Sn)

= sup
‖z‖=1

n

∑
j=1

(∣∣〈Sjz, z
〉∣∣2) p

2

= sup
‖z‖=1

n

∑
j=1

(∣∣〈Gjz, z
〉∣∣2 + ∣∣〈Fjz, z

〉∣∣2) p
2

≥ 2−
p
2 sup
‖z‖=1

n

∑
j=1

∣∣〈Gjz, z
〉
+
〈

Fjz, z
〉∣∣p (

since
c2 + d2

2
≥
(

c + d
2

)2
)

≥ 2−
p
2

np−1 sup
‖z‖=1

(
n

∑
j=1

∣∣〈(Gj + Fj
)
z, z
〉∣∣)p

, (by Jensen’s inequality)

which proves the left-hand side inequality of (33). Hence, the proof is established.

Example 6. Let S1 = C1 and S2 = C2 as given in Example 2. Employing (33) with n = 2 and
p = 2, we obtain

1
4

∥∥∥∥∥ 2

∑
j=1

∣∣Gj + Fj
∣∣∥∥∥∥∥

2

=
1
4
‖|G1 + F1|+ |G2 + F2|‖2

= 2.24303,

and

ω2
e(S1, S2) = sup

‖z‖=1

(
|〈S1z, z〉|2 + |〈S2z, z〉|2

)
= 4

while

1
2

2

∑
j=1

∥∥∥∣∣Gj + Fj
∣∣2 + ∣∣Gj − Fj

∣∣2∥∥∥ =
1
2

[∥∥∥|G1 + F1|2 + |G1 − F1|2
∥∥∥+ ∥∥∥|G2 + F2|2 + |G2 − F2|2

∥∥∥]
= 4.5,
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which verifies that

2.24303 :=
1
4

∥∥∥∥∥ 2

∑
j=1

∣∣Gj + Fj
∣∣∥∥∥∥∥

2

≤ ω2
e(S1, S2) = 4 ≤ 1

2

2

∑
j=1

∥∥∥∣∣Gj + Fj
∣∣2 + ∣∣Gj − Fj

∣∣2∥∥∥ := 4.5.

4. Conclusions

In this work, we proved several new inequalities for the generalized Euclidean opera-
tor radius. Among others, some bounds in terms of Cartesian decomposition of a given
Hilbert space operator were established. More precisely, Section 2 was devoted to inequal-
ities for the generalized Euclidean operator radius which gives an equivalent version of
the inequalities (5)–(8), and Section 3 was focused on diverse upper and lower bounds for
quantities involving this radius; and this gives an extension of [6] (Theorem 5) and [15]
(Theorem 4.1).
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