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Abstract: In this paper, we investigate the controllability of a class of impulsive ψ-Caputo fractional
evolution equations of Sobolev type in Banach spaces. Sufficient conditions are presented by two new
characteristic solution operators, fractional calculus, and Schauder fixed point theorem. Our works
are generalizations and continuations of the recent results about controllability of a class of impulsive
ψ-Caputo fractional evolution equations. Finally, an example is given to illustrate the effectiveness of
the main results.
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1. Introduction

Fractional calculus sweeps the board in science and engineering, such as chemistry,
economics, biology control of dynamical systems, financing viscoelastic materials, signal
processing, and so on. For more details on the theory and applications in this filed, one
may see the monographs [1–5], and the references cited therein. The fractional calculus
from the physical community, for instance, fractional calculus and anomalous diffusion
have been studied intensively [6–9].

Controllability of fractional semilinear evolution systems in Banach spaces has been
paid much attention. Many researchers have focused on this topic. We refer the readers
to El-Borai [10,11], Balachandran and Park [12], Wang et al. [13–15], Zhou and Jiao [16,17],
Sakthivel et al. [18], Debbouchra and Baleanu [19], Li et al. [20], Kumar and Sukavanam [21],
and Lord et al. [22] and the references therein. In 2013, Fečkan et al. [23] investigated
the controllability of q ∈ (0, 1)-order Caputo fractional functional evolution equations of
Sobolev type in Banach space X :{ C

0 Dq
t Ex(t) + Ax(t) = f (t, xt) + Bu(t), t ∈ J,

x(t) = φ(t), t ∈ [−r, 0],
(1)

where φ ∈ C([−r, 0], X), A and E are linear operators, A is closed, E is bijective, and
E−1 is compact. By utilizing the Schauder fixed point theorem and the properties of two
new characteristic solution operators, the authors presented the exact controllability of
system (1).

Due to important and potential applications of impulse and delay, the study of dynam-
ical systems with impulses and time delay has gained more and more attention. Impulsive
fractional differential equations with delays have been widely applied to many fields, such
as weather predicting, drug delivery processing, agricultural insect pests control, and some
other optimization problems. We refer the readers to [24–28] and the references therein.

In 2021, Zhao [29] studied the exact controllability of a class of impulsive fractional
nonlinear evolution equations with delay in Banach spaces:

Axioms 2022, 11, 283. https://doi.org/10.3390/axioms11060283 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060283
https://doi.org/10.3390/axioms11060283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11060283
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060283?type=check_update&version=2


Axioms 2022, 11, 283 2 of 19


CDγx(t) = Ax(t) + f (t, x(t), xt) + Bu(t), a.e. t ∈ I := [0, a],
∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, . . . , m,
x(t) = φ(t), t ∈ [−b, 0],

(2)

where γ ∈ (0, 1), A : D ⊂ X → X is a closed the linear unbounded operator on X with
dense domain D. In Ref. [29], Zhao defined the mild solution of system (2) as follows:

x(t) =



φ(0) + 1
Γ(γ) A

(
∑

0<tk<t

∫ tk
tk−1

(tk − s)γ−1x(s)ds +
∫ t

tk
(t− s)γ−1x(s)ds

)

+ 1
Γ(γ)

(
∑

0<tk<t

∫ tk
tk−1

(tk − s)γ−1( f (s, x(s), xs) + Bu(s))ds

)
+ 1

Γ(γ)

∫ t
tk
(t− s)γ−1( f (s, x(s), xs) + Bu(s))ds + ∑

0<tk<t
Ik(x(tk)), t ∈ [0, τ],

φ(t), t ∈ [−b, 0].

(3)

Unfortunately, (3) is not correct. In fact, from [30] we know that the mild solution of
system (2) should be defined as below.

x(t) =



φ(0) + 1
Γ(γ)

∫ t
0 (t− s)γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ [0, t1),

φ(0) + I1(x(t1))

+ 1
Γ(γ)

∫ t
0 (t− s)γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ (t1, t2),

φ(0) + I1(x(t1)) + I2(x(t2)

+ 1
Γ(γ)

∫ t
0 (t− s)γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ (t2, t3),

...

φ(0) +
m
∑

i=1
Ii(x(ti))

+ 1
Γ(γ)

∫ t
0 (t− s)γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ (tm, a],

φ(t), t ∈ [−b, 0].

(4)

In recent decades, the generalizations of the fractional calculus operators have been
done [31–34], since they are more general operators that allow for the discussion and
analysis of a wide class of particular cases. Considering the Caputo fractional derivative of
a function with respect to another function ψ, Almeida [35] generalized the definition of
Caputo fractional derivative, in which the advantage of this new definition of the fractional
derivative is that by choosing a suitable function ψ, a higher accuracy of the model could
be achieved. For recent relevant work on generalized fractional derivatives, one may see
refs. [36–38]. In ref. [39], Suechori and Ngiamsunthorn studied the following semilinear
ψ-Caputo fractional evolution equations:{

C
0 Dα

ψu(t) = Au(t) + f (t, u(t)), t ∈ (0, T],
u(0) = u0,

(5)

where 0 < α < 1, T < ∞, A is the infinitesimal generator of a C0-semigroup of uniformly
bounded linear operators {T(t)}t≥0. Existence results of mild solutions to (5) have been ob-
tained. These results generalize the previous work in which the classical Caputo fractional
derivative is studied.

Motivated by the above works, we consider the following impulsive ψ-Caputo frac-
tional evolution equations of Sobolev type:

C
0 Dα,ψ

t (Ex)(t) = Ax(t) + f (t, x(t), xt) + Bu(t), a.e. t ∈ J′,
∆x(tk) = Ik(x(tk)), k = 1, . . . , m,
x(t) = φ(t), t ∈ [−r, 0],

(6)
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where 0 < α < 1, J = [0, b] (b > 0), J′ = J \ {t1, t2, · · · , tm}, the {tk} satisfy 0 = t0 < t1 <

t2 < · · · < tm < tm+1 = b, C
0 Dα,ψ

t x(t) is the Caputo fractional derivative of a function x with
respect to another function ψ. The operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y,
where X and Y are two real Banach spaces, x(·) ∈ X and the control function u(·) ∈ U .
The Banach space of admissible control functions is denoted by U involving a Banach
space U, in which we define either U := L2(J, U) for 1

2 < α < 1 or U := L∞(J, U) for
0 < α < 1. A bounded linear operator B is from U into Y, x : J∗ := [−r, b] → X, xt ∈
C := C([−r, 0], X) defined by xt(s) := x(t + s), −r ≤ s ≤ 0. D(E) of E is a Banach space,
‖x‖D(E) := ‖Ex‖Y, x ∈ D(E) and φ ∈ C(E) := C([−r, 0], D(E)), f : J × X × C(E) → X
and Ik : PC(J∗, X) → X, k = 1, . . . , m are appropriate functions which will be specified
later. PC(J∗, X) = {x : J∗ → X, x(t) is continuous at t 6= tk, and left continuous at t =
tk, and x(t+k ) exists, k = 1, 2, . . . , m}. Obviously, PC(J∗, X) is a Banach space with the
norm ‖x‖ = supt∈J∗{‖x(t)‖ : x ∈ PC(J∗, X)}.

In this paper, by means of two new characteristic solution operators and Schauder fixed
point theorem, we present the controllability of impulsive ψ-Caputo fractional evolution
equations of Sobolev type in Banach spaces. This paper will be organized as follows. In
Section 2, we will briefly recall some definitions and preliminaries. In Section 3, sufficient
conditions ensuring exact controllability of the systems are provided. In Section 4, an
example is given to illustrate our theoretical result. Finally, we give the conclusions in
Section 5.

To the best of our knowledge, no such results in the literature studied theoretically
the impulsive fractional evolution equations of Sobolev type containing the fractional
derivative of a function with respect to another function. Our goal is to cover this gap in
this paper. Our results extend the main results of Ref. [23].

2. Preliminaries

In this section, we recall some basic definitions and lemmas that will be used later.

Definition 1 ([40]). Let α > 0, f be an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be
an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Riemann–Liouville fractional
integral operator of order α of a function f is defined by

a Iα,ψ
t f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds. (7)

Definition 2 ([35,40]). Let n− 1 < α < n, f ∈ Cn([a, b]) and ψ ∈ Cn([a, b]) be an increasing
function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Caputo fractional derivative of order α of a
function f is defined by

C
a Dα,ψ

t f (t) = (a In−α,ψ
t f [n])(t)

= 1
Γ(n−α)

∫ t
a (ψ(t)− ψ(s))n−α−1 f [n](s)ψ′(s)ds,

(8)

where n = [α] + 1 and f [n](t) :=
(

1
ψ′(t)

d
dt

)n
f (t) on [a, b].

We will give some properties of the fractional integral and the fractional derivatives of
a function with respect to another function.

Lemma 1 ([35]). Let f ∈ Cn([a, b]) and n− 1 < α < n. Then we have

(1) C
a Dα,ψ

t a Iα,ψ
t f (t) = f (t);

(2) Iα,ψ
t

C
a Dα,ψ

t f (t) = f (t)−
n−1

∑
k=0

f [k](a+)
Γ(k− α)

(ψ(t)− ψ(a))k.

In special case, given α ∈ (0, 1), we have

Iα,ψ
t

C
a Dα,ψ

t = f (t)− f (a).
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Definition 3 ([40]). Let u, ψ : [a, ∞)→ R be real valued functions such that ψ(t) is continuous
and ψ′(t) > 0 on [a, ∞). The generalized Laplace transform of u is denoted by

Lψ{u(t)} =
∫ ∞

a
e−s(ψ(t)−ψ(a))u(t)ψ′(t)dt (9)

for all s.
From Ref. [40], we have the following property of the generalized Laplace transform of the

Caputo fractional operators with respect to function ψ.

Lemma 2. Assume that 0 < α < 1, h is continuous on [a, ∞) and of ψ-exponential order, while
C
a Dα,ψ

t h(t) is piecewise continuous on [a, ∞). Then

Lψ

{(
C
a Dα,ψ

t f
)
(t)
}
= sαLψ{ f (t)} − sα−1 f (a).

For problem (6), throughout this paper, the following assumptions on the operators A
and E are satisfied.

(H1) A and E are linear operators, and A is closed.
(H2) D(E) ⊂ D(A) and E is bijective.
(H3) Linear operator E−1 : Y → D(E) ⊂ X is compact (which implies that E−1 is bounded).

By (H3) we know that E is closed. In fact, E−1 is closed and injective, then the
inverse is also closed. Note (H1)–(H3) and the closed graph theorem that the boundedness
of the linear operator −AE−1 : Y → Y. Consequently, −AE−1 generates a semigroup
{T(t), t ≥ 0}, T(t) := e−AE−1t. We assume M := supt≥0 ‖T(t)‖ < ∞.

For convenience, denote J0 = [t0, t1], Ji = (ti, ti+1], i = 1, . . . , m.
By Definitions 1 and 2, and Lemma 1, the impulsive problem (6) could be written as

the following fractional integral equation

Ex(t) =



Eφ(0) +
1

Γ(γ)

∫ t

0
(ψ(t)− ψ(s))γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ J0,

Eφ(0) +
n
∑

i=1
EIi(x(ti))

+
1

Γ(γ)

∫ t

0
(ψ(t)− ψ(s))γ−1(Ax(s) + f (s, x(s), xs) + Bu(s))ds, t ∈ Jn, n = 1, . . . , m,

Eφ(t), t ∈ [−r, 0],

(10)

if the integral in (10) exists.

Lemma 3. Suppose that (H1)–(H3) hold, then

(i) C
0 Dα,ψ

t [ESα,ψ
E (t, 0)w] = ASα,ψ

E (t, 0)w,

(ii) C
0 Dα,ψ

t [ESα,ψ
E (t, ti)w] = ASα,ψ

E (t, ti)w, i = 1, . . . , m,

(iii) C
0 Dα,ψ

t

[
E
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)g(s)ds
]

= A
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)g(s)ds + g(t),

where Sα,ψ
E (t, s) and Tα,ψ

E (t, s) are called characteristic solutions given by

Sα,ψ
E (t, s)v :=

∫ ∞

0
E−1ξα(θ)T((ψ(t)− ψ(s))αθ)vdθ, (11)

and
Tα,ψ

E (t, s)v := α
∫ ∞

0
E−1θξα(θ)T((ψ(t)− ψ(s))αθ)vdθ, (12)
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for 0 ≤ s ≤ t ≤ b, here T(t) := e−AE−1t,

ξα(θ) =
1
α

θ−1− 1
α ρα(θ

− 1
α ),

and

ρα(θ) =
1
π

∞

∑
k=1

(−1)k−1θ−αk−1 Γ(αk + 1)
k!

sin(kπα),

where ξα is the probability density function defined on (0, ∞).

Proof. (i) For t ≥ 0, by (11) and Definition 3, we get

Lψ{ESα,ψ
E (t, 0)w} =

∫ ∞
0 e−λ(ψ(t)−ψ(0))(∫ ∞

0 ξα(θ)T((ψ(t)− ψ(0))αθ)wdθ
)
ψ′(t)dt

=
∫ ∞

0 e−λ(ψ(t)−ψ(0))
(∫ ∞

0 ρα(θ)T
(
(ψ(t)−ψ(0))α

θα

)
wdθ

)
ψ′(t)dt

=
∫ ∞

0

∫ ∞
0 θρα(θ)e−(λ(ψ(t)−ψ(0))θT((ψ(t)− ψ(0))α)wψ′(t)dθdt

=
∫ ∞

0 −
1
λ

d
dt e−(λ(ψ(t)−ψ(0)))α

T((ψ(t)− ψ(0))α)wdt

= α
∫ ∞

ti
λα−1(ψ(t)− ψ(0))α−1e−(λ(ψ(t)−ψ(0)))α

T((ψ(t)− ψ(0))α)wψ′(t)dt

= λα−1
∫ ∞

0 e−λαsT(s)wds (s = (ψ(t)− ψ(0))α)

= λα−1(λα I − AE−1)−1w.

(13)

On the other hand, by Lemma 2, one has

Lψ{C
0 Dα,ψ

t [ESα,ψ
E (t, 0)w]} = λαLψ{ESα,ψ

E (t, 0)w} − λα−1ESα,ψ
E (0, 0)w

= λα[λα−1(λα I − AE−1)−1w]− λα−1w

= λα−1(λα I − AE−1)−1[λα − (λα − AE−1)]w

= AE−1λα−1(λα I − AE−1)−1w.

(14)

Combing (13) with (14), we obtain

C
0 Dα,ψ

t [ESα,ψ
E (t, 0)w] = AE−1ESα,ψ

E (t, 0)w = ASα,ψ
E (t, 0)w.

(ii) For t ≥ ti, similar to the proof of (i), we can prove that (ii) holds, so we omit it here.
(iii) For t ≥ 0, by (12), we have

Lψ

{
E
∫ t

0 (ψ(t)− ψ(s))α−1Tα,ψ
E (t, s)g(s)ds

}
=
∫ ∞

0 e−λ(ψ(t)−ψ(0))
∫ t

0

∫ ∞
0 αθξα(θ)(ψ(t)− ψ(s))α−1T((ψ(t)− ψ(s))αθ)g(s)ψ′(s)dθds

=
∫ ∞

0 e−λ(ψ(t)−ψ(0))
∫ t

0

∫ ∞
0 αρα(θ)

(ψ(t)−ψ(s))α−1

θα T
(
(ψ(t)−ψ(s))α

θα

)
g(s)ψ′(s)dθds

=
∫ ∞

0

∫ ∞
0 α(ψ(s)− ψ(0))α−1e−(λ(ψ(s)−ψ(0)))α

T((ψ(s)− ψ(0))α)e−λ(ψ(t)−ψ(0))g(t)ψ′(s)ψ′(t)dsdt

=
∫ ∞

0 e−λαzT(z)
∫ ∞

0 e−λ(ψ(t)−ψ(0))g(t)ψ′(t)dtdz

= (λα I − AE−1)−1Lψ{g(t)}.

(15)
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From Lemma 2, we have

Lψ

{
C
0 Dα,ψ

t

(
E
∫ t

0 (ψ(t)− ψ(s))α−1Tα,ψ
E (t, s)g(s)ds

)}
= λαLψ

{
E
∫ t

0 (ψ(t)− ψ(s))α−1Tα,ψ
E (t, s)g(s)ds

}
− λα−1 · 0

= λα(λα I − AE−1)−1Lψ{g(t)}

= [(λα I − AE−1) + AE−1](λα I − AE−1)−1Lψ{g(t)}

= AE−1(λα I − AE−1)−1Lψ{g(t)}+ Lψ{g(t)}.

(16)

Thanks to (15) and (16), we obtain

C
0 Dα,ψ

t

(
E
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)g(s)ds
)

= A
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)g(s)ds + g(t).

Lemma 4. Assume that (H1)–(H3) hold, then problem (6) has a unique solution x ∈ PC(J∗, X)
and satisfies the following integral equation:

x(t) =



Sα,ψ
E (t, 0)Eφ(0) +

∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds, t ∈ J0,

Sα,ψ
E (t, 0)Eφ(0) +

n
∑

i=1
Sα,ψ

E (t, ti)EIi(x(ti))

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds, t ∈ Jn, n = 1, . . . , m,

φ(t), t ∈ [−r, 0].

(17)

Here Sα,ψ
E (t, s) and Tα,ψ

E (t, s) are as in (11) and (12), respectively.

Proof. If t ∈ J0 = [0, t1], then we get by Lemma 3 that

C
0 Dα,ψ

t Ex(t) = C
0 Dα,ψ

t

(
ESα,ψ

E (t, 0)Eφ(0)

+E
∫ t

0 (ψ(t)− ψ(s))α−1Tα,ψ
E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds

)
= ASα,ψ

E (t, 0)Eφ(0) + A
∫ t

0 (ψ(t)− ψ(s))α−1Tα,ψ
E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds

+ f (t, x(t), xt) + Bu(t)

= Ax(t) + f (t, x(t), xt) + Bu(t).

If t ∈ Jn = (tn, tn+1], then we obtain by Lemma 3 that

C
0 Dα,ψ

t Ex(t) = C
0 Dα,ψ

t

(
ESα,ψ

E (t, 0)Eφ(0) +
n

∑
i=1

ESα,ψ
E (t, ti)EIi(x(ti))

+E
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds
)

= ASα,ψ
E (t, 0)Eφ(0) + A

n

∑
i=1

Sα,ψ
E (t, ti)EIi(x(ti))
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+A
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)( f (s, x(s), xs) + Bu(s))ψ′(s)ds

+ f (t, x(t), xt) + Bu(t)

= Ax(t) + f (t, x(t), xt) + Bu(t).

For t = 0, one has

x(0) = Sα,ψ
E (0, 0)Eφ(0) =

∫ ∞

0
E−1ξα(θ)T(0)dθEφ(0) = E−1Eφ(0) = φ(0).

Moreover, we have

∆x(tk) = x(t+k )− x(t−k )

=

[
k

∑
i=1

Sα,ψ
E (t, ti)EIi(x(ti))−

k−1

∑
i=1

Sα,ψ
E (t, ti)EIi(x(ti))

]
t=tk

= Sα,ψ
E (tk, tk)EIk(x(tk))

=
∫ ∞

0
E−1ξα(θ)T(0)EIk(x(tk))dθ

= E−1EIk(x(tk)) = Ik(x(tk)).

Thus, expression (17) is a solution of problem (6).

Definition 4. For each u ∈ U and φ ∈ C(E), a function x ∈ PC(J∗, X) is called a mild solution
of (6) if (17) holds.

From [35], we can obtain easily that the following properties of Sα,ψ
E (t, s) and Tα,ψ

E (t, s).

Lemma 5. Suppose that conditions (H1)–(H3) hold. Then the operators Sα,ψ
E and Tα,ψ

E have the
following properties:

(i) For any fixed t ≥ s ≥ 0, Sα,ψ
E (t, s) and Tα,ψ

E (t, s) are bounded linear operators with

‖Sα,ψ
E (t, s)(x)‖ ≤ M‖E−1‖‖x‖ and ‖Tα,ψ

E (t, s)(x)‖ ≤ M‖E−1‖
Γ(α)

‖x‖,

for each x ∈ X.
(ii) Sα,ψ

E (t, s) and Tα,ψ
E (t, s) are strongly continuous for all t ≥ s ≥ 0, that is, for each x ∈ X and

0 ≤ s ≤ t1 < t2 ≤ b we have

‖Sα,ψ
E (t2, s)− Sα,ψ

E (t1, s)‖ → 0 and ‖Tα,ψ
E (t2, s)− Tα,ψ

E (t1, s)‖ → 0

as t1 → t2.
(iii) If T(t) is compact operator for every t > 0, then Sα,ψ

E (t, s) and Tα,ψ
E (t, s) are compact for all

t, s > 0.
(iv) If Sα,ψ

E (t, s) and Tα,ψ
E (t, s) are compact strongly continuous semigroup of bounded linear

operator for t, s > 0, then Sα,ψ
E (t, s) and Tα,ψ

E (t, s) are continuous in the uniform operator
topology.

3. Main Results

According to the exact controllability considered in Ref. [41], we give the following
definition.
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Definition 5. The fractional system (6) is the exact controllability on J = [0, b] if for any initial
function φ ∈ C(E) and x1 ∈ D(E), there has a control u ∈ U such that the mild solution x of (6)
on [−r, b] satisfies x(b) = x1.

Besides (H1)–(H3), we need the following hypotheses.
(H4) If f fulfills the following two conditions:

(i) For each x ∈ PC(J∗, D(E)) and ϕ ∈ C(E), the function f (·, x, ϕ) : J → Y is strongly
measurable and for each t ∈ J, the function f (t, ·, ·) : PC(J∗, D(E))× C(E) → Y is
continuous;

(ii) For any t ∈ J and x ∈ C, there are two continuous nondecreasing functions µ1, µ2 and
constant L such that, for any (t, x, ϕ) ∈ J × PC(J∗, D(E))× C(E), such that

‖ f (t, x, xt)‖ ≤ L(1 + µ1(‖x‖) + µ2(‖xt‖), lim
s→∞

inf
µ1(s) + µ2(s)

s
= Λ < ∞, (18)

(H5) For every i = 1, 2, . . . , m, Ii : PC(J∗, D(E)) → PC(J∗, D(E)) is continuous, and
there exists constant ki such that

‖Ii(u)‖ ≤ ki‖u‖, u ∈ PC(J∗, D(E)). (19)

(H6) For ψ ∈ C1(J,R), and there exists a constant γ > 0 such that 0 < ψ′(t) ≤ γ,
∀t ∈ J.

(H7) B : U → Y is a bounded linear operator and a linear operator W : U → D(E)
defined by

Wu :=
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s)Bu(s)ψ′(s)ds. (20)

The right inverse operator W−1 : D(E) → U is bounded, i.e., WW−1 = ID(E), and
thus there exist two constants M1, M2 > 0 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2, then by
determining M2 we could define the norm ‖ · ‖D(E) on D(E).

If α ∈ (0, 1), then we have∫ t

0
(ψ(t)− ψ(s))α−1‖u(s)‖ψ′(s)ds ≤

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)ds‖u‖∞

=
(ψ(t)− ψ(0))α

Γ(α)
‖u‖∞ ≤

(ψ(b)− ψ(0))α

Γ(α)
‖u‖∞ :=

(ψ(b)− ψ(0))α

Γ(α)
‖u‖U .

If α ∈ ( 1
2 , 1), then one has by (H6) that

∫ t

0
(ψ(t)− ψ(s))α−1‖u(s)‖ψ′(s)ds ≤

(∫ t

0
(ψ(t)− ψ(s))2α−2(ψ′(s))2ds

) 1
2
‖u‖L2(J,U)

≤ √γ

(∫ t

0
(ψ(t)− ψ(s))2α−2ψ′(s)ds

) 1
2
‖u‖L2(J,U)

=
√

γ
(ψ(t)− ψ(0))2α−1

Γ(2α− 1)
‖u‖L2(J,U) ≤

√
γ
(ψ(b)− ψ(0))2α−1

Γ(2α− 1)
‖u‖L2(J,U)

:=
√

γ
(ψ(b)− ψ(0))2α−1

Γ(2α− 1)
‖u‖U .

Thus ∫ t

0
(ψ(t)− ψ(s))α−1‖u(s)‖ψ′(s)ds ≤ Kα,ψ‖u‖U , (21)

for any t ∈ J, where
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Kα,ψ =

{
(ψ(b)−ψ(0))2α−1

2α−1 γ, u ∈ L2(J, U), 1
2 < α < 1,

(ψ(b)−ψ(0))α

α , u ∈ L∞(J, U), 0 < α < 1.
(22)

Obviously, Wu ∈ D(E) and W is well defined. In fact, by Lemma 5 and (21), one has

‖EWu‖ =
∥∥∥∥∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

I (b, s)Bu(s)ψ′(s)ds
∥∥∥∥

≤ M‖B‖
Γ(α)

∫ b

0
(ψ(b)− ψ(s))α−1ψ′(s)‖u(s)‖ds

≤ M‖B‖
Γ(α)

Kα,ψ‖u‖U .

For an arbitrary function x(·), by means of the above assumptions, it is suitable to
define the following control formula:

u(t) := W−1

[
x1 − Sα,ψ

E (b, 0)Eφ(0)−
m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))

−
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s) f (s, x(s), xs)ψ
′(s)ds

]
. (23)

In the following, we will prove that, in view of the control u in (23), the operator P
defined by

(Px)(t) :=



Sα,ψ
E (t, 0)Eφ(0) +

∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s) f (s, x(s), xs)ψ
′(s)ds

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)Bu(s)ψ′(s)ds, t ∈ J0,

Sα,ψ
E (t, 0)Eφ(0) +

n

∑
i=1

Sα,ψ
E (t, ti)EIi(x(ti))

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s) f (s, x(s), xs)ψ
′(s)ds

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

E (t, s)Bu(s)ψ′(s)ds, t ∈ Jn, n = 1, 2, . . . , m,

φ(t), t ∈ [−r, 0],

from PC(J∗, D(E)) into PC(J∗, D(E)), has a fixed point. It is obvious that this fixed point is
just a solution of system (6). Moreover, we can check that

(Px)(b) := Sα,ψ
E (b, 0)Eφ(0) +

m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))

+
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s) f (s, x(s), xs)ψ
′(s)ds

+
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s)Bu(s)ψ′(s)ds

= Sα,ψ
E (b, 0)Eφ(0) +

m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))

+
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s) f (s, x(s), xs)ψ
′(s)ds

+
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s)BW−1

[
x1 − Sα,ψ

E (b, 0)Eφ(0)−
m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))
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−
∫ b

0
(ψ(b)− ψ(τ))α−1Tα,ψ

E (b, τ) f (τ, x(τ), xτ)ψ
′(τ)dτ

]
ψ′(s)ds = x1.

For each number K > 0, set

BK := {x ∈ PC(J∗, D(E)) : ‖x(t)‖ ≤ K, t ∈ J∗}.

Clearly, BK is a bounded, closed, convex subset in PC(J, D(E)).

Lemma 6. Assume that (H1)–(H7) are satisfied. Then there exists a K ≥ max
{
‖φ‖, N3

1−ρ

}
where

ρ :=



M
m
∑

i=1
ki +

M‖E−1‖LΛ
Γ(α+1) (ψ(b)− ψ(0))α

+M2‖W−1‖B‖
Γ(α) Kα,ψ

√
b
(
‖

m
∑

i=1
ki +

L‖E−1‖Λ
Γ(α+1) (ψ(b)− ψ(0))α

)
< 1, U = L2(J, U),

M
m
∑

i=1
ki +

M‖E−1‖LΛ
Γ(α+1) (ψ(b)− ψ(0))α

+M2‖W−1‖B‖
Γ(α) Kα,ψ

(
m
∑

i=1
ki +

L‖E−1‖Λ
Γ(α+1) (ψ(b)− ψ(0))α

)
< 1, U = L∞(J, U),

(24)

and

N3 =

 M‖φ(0)‖+ M‖E−1‖
Γ(α+1) (ψ(b)− ψ(0))α(L +

√
b‖B‖N1), U = L2(J, U),

M‖φ(0)‖+ M‖E−1‖
Γ(α+1) (ψ(b)− ψ(0))α(L + ‖B‖N1), U = L∞(J, U),

here

N1 = ‖Ex1‖+ M‖Eφ(0)‖+ ML
Γ(α + 1)

(ψ(b)− ψ(0))α,

such that PBK ⊂ BK.

Proof. Let x ∈ BK. If t ∈ [−r, 0] then ‖(Px)(t)‖ = ‖φ(t)‖ ≤ maxt∈[−r,0] ‖φ(t)‖ = ‖φ‖. If
t ∈ [0, b], then

‖xt‖ = sup
τ∈[−r,0]

‖x(t + τ)‖ ≤ max{‖φ‖, ‖x‖}. (25)

Since K ≥ ‖φ‖, by (25), we note that the control u defined in (23) satisfies

‖u(t)‖ ≤ ‖W−1‖
∥∥∥∥∥x1 − Sα,ψ

E (b, 0)Eφ(0)−
m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))

−
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s) f (s, x(s), xs)ψ
′(s)ds

∥∥∥∥
D(E)

= ‖W−1‖
∥∥∥∥∥E

([
x1 − Sα,ψ

E (b, 0)Eφ(0)−
m

∑
i=1

Sα,ψ
E (b, ti)EIi(x(ti))

−
∫ b

0
(ψ(b)− ψ(s))α−1Tα,ψ

E (b, s) f (s, x(s), xs)ψ
′(s)ds

])∥∥∥∥
≤ ‖W−1‖

[
‖Ex1‖+ M

(
‖Eφ(0)‖+ K‖E‖

m

∑
i=1

ki

)

+
M

Γ(α)

∫ b

0
(ψ(b)− ψ(s))α−1L[1 + µ1(K) + µ2(max{‖φ‖, K})]ψ′(s)ds

]
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≤ ‖W−1‖
[
‖Ex1‖+ M

(
‖Eφ(0)‖+ K‖E‖

m

∑
i=1

ki

)

+L(1 + µ1(K) + µ2(K))
M

Γ(α + 1)
(ψ(b)− ψ(0))α

]
:= N1 + N2(K)K,

which implies that

‖u‖U ≤
{ √

b(N1 + N2(K)K), U = L2(J, U),
N1 + N2(K)K, U = L∞(J, U),

(26)

where

N1 =

[
‖Ex1‖+ M‖Eφ(0)‖+ ML

Γ(α + 1)
(ψ(b)− ψ(0))α

]
‖W−1‖,

N2(K) =

[
M‖E‖

m

∑
i=1

ki +
ML

Γ(α + 1)
(ψ(b)− ψ(0))α µ1(K) + µ2(K)

K

]
‖W−1‖.

Thus, for t ∈ Jn, we derive by (21) and (26) that

‖(Px)(t)‖ ≤ M‖E−1‖
(
‖Eφ(0)‖+

n

∑
i=1

ki‖E‖x(ti)‖
)

+
M‖E−1‖

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1L[1 + µ1(‖x(s)‖) + µ2(max{‖x(s)‖, ‖xs‖})]ψ′(s)ds

+
M‖E−1‖‖B‖

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)‖u(s)‖ds

≤ M

(
‖φ(0)‖+ K

m

∑
i=1

ki

)
+

M‖E−1‖L
Γ(α + 1)

(ψ(b)− ψ(0))α(1 + µ1(K) + µ2(K))

+
M‖E−1‖‖B‖

Γ(α)
Kα,ψ‖u‖U

≤ M

(
‖φ(0)‖+ K

m

∑
i=1

ki

)
+

M‖E−1‖L
Γ(α + 1)

(ψ(b)− ψ(0))α(1 + µ1(K) + µ2(K))

+
M‖E−1‖‖B‖

Γ(α)
Kα,ψ

{ √
b(N1 + N2(K)K), U = L2(J, U),

N1 + N2(K)K, U = L∞(J, U),

:= N3 + N4(K)K,

where

N3 =

 M‖φ(0)‖+ M‖E−1‖L
Γ(α+1) (ψ(b)− ψ(0))α + M‖E−1‖‖B‖

Γ(α) Kα,ψ
√

bN1, U = L2(J, U),

M‖φ(0)‖+ M‖E−1‖L
Γ(α+1) (ψ(b)− ψ(0))α + M‖E−1‖‖B‖

Γ(α) Kα,ψN1, U = L∞(J, U),

N4(K) =



M
m
∑

i=1
ki +

M‖E−1‖L
Γ(α+1) (ψ(b)− ψ(0))α µ1(K)+µ2(K)

K

+M‖E−1‖‖B‖
Γ(α) Kα,ψ

√
bN2(K), U = L2(J, U),

M
m
∑

i=1
ki +

M‖E−1‖L
Γ(α+1) (ψ(b)− ψ(0))α µ1(K)+µ2(K)

K

+M‖E−1‖‖B‖
Γ(α) Kα,ψN2(K), U = L∞(J, U).



Axioms 2022, 11, 283 12 of 19

From (18), we have µ1(K)+µ2(K)
K ≥ Λ for K > 0. Thus

N4(K) ≥



M
m
∑

i=1
ki +

M‖E−1‖LΛ
Γ(α+1) (ψ(b)− ψ(0))α

+M2‖W−1‖B‖
Γ(α) Kα,ψ

√
b
(
‖

m
∑

i=1
ki +

L‖E−1‖Λ
Γ(α+1) (ψ(b)− ψ(0))α

)
, U = L2(J, U),

M
m
∑

i=1
ki +

M‖E−1‖LΛ
Γ(α+1) (ψ(b)− ψ(0))α

+M2‖W−1‖B‖
Γ(α) Kα,ψ

(
m
∑

i=1
ki +

L‖E−1‖Λ
Γ(α+1) (ψ(b)− ψ(0))α

)
, U = L∞(J, U),

:= ρ.

So N3 + N4(K)K ≤ K for each K ≥ max
{
‖φ‖, N3

1−ρ

}
sufficiently large, that is PBK ⊂

BK. We complete the proof.

Lemma 7. Assume that (H1)–(H7) are satisfied. Then, for any fixed t ∈ J the set VK(t) :=
{(Px)(t) : x ∈ BK} is precompact in X.

Proof. For t ∈ [−r, 0], obviously, it holds. For t ∈ J \ {t1, . . . , tm} be fixed. Without loss of
generality, let t ∈ Jn. Note that

(Px)(t) = E−1(P0x)(t),

(P0x)(t) = Sα,ψ
I (t, 0)φ(0) +

n

∑
i=1

Sα,ψ
I (t, ti)Ii(x(ti))

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

I (t, s) f (s, x(s), xs)ψ
′(s)ds

+
∫ t

0
(ψ(t)− ψ(s))α−1Tα,ψ

I (t, s)Bu(s)ψ′(s)ds, for t ∈ Jn.

For x ∈ BK, we can derive

‖(P0x)(t)‖ ≤ M

(
‖φ(0)‖+ K

m

∑
i=1

ki

)

+
ML

Γ(α + 1)
(ψ(b)− ψ(0))α(1 + µ1(K) + µ2(K)) +

M
Γ(α)

Kα,ψ‖B‖‖u‖U .

Thus, {(P0x)(t) : x ∈ BK} is bounded in Y by (28).

Since E−1 : Y → Y is compact, then (Px)(t) := E−1({(P0x)(t) : x ∈ BK}) is precom-
pact in X. The proof is completed.

Lemma 8. Assume that (H1)–(H7) are satisfied. Then PBK := {Px : x ∈ BK} is equicontinuous.

Proof. Let x ∈ BK and t′, t′′ ∈ Jn, t′ < t′′. One has

‖(Px)(t′′)− (Px)(t′)‖

≤
∥∥∥∥∥Sα,ψ

E (t′′, 0)Eφ(0) +
n

∑
i=1

Sα,ψ
E (t′′, ti)EIi(x(ti))

−Sα,ψ
E (t′, 0)Eφ(0)−

n

∑
i=1

Sα,ψ
E (t′, ti)EIi(x(ti))

∥∥∥∥∥
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+

∥∥∥∥∫ t′′

0
(ψ(t′′)− ψ(s))α−1Tα,ψ

E (t′′, s) f (s, x(s), xs)ψ
′(s)ds

−
∫ t′

0
(ψ(t′)− ψ(s))α−1Tα,ψ

E (t′, s) f (s, x(s), xs)ψ
′(s)ds

∥∥∥∥
+

∥∥∥∥∫ t′′

0
(ψ(t′′)− ψ(s))α−1Tα,ψ

E (t′′, s)Bu(s)ψ′(s)ds

−
∫ t′

0
(ψ(t′)− ψ(s))α−1Tα,ψ

E (t′, s)Bu(s)ψ′(s)ds
∥∥∥∥

≤
∥∥∥[Sα,ψ

E (t′′, 0)− Sα,ψ
E (t′, 0)]Eφ(0)

∥∥∥
+

m

∑
i=1

∥∥∥[Sα,ψ
E (t′′, ti)− Sα,ψ

E (t′, ti)]Ii(x(ti))
∥∥∥

+
∫ t′

0
[(ψ(t′′)− ψ(s))α−1 − (ψ(t′)− ψ(s))α−1]‖Tα,ψ

E (t′′, s) f (s, x(s), xs)‖ψ′(s)ds

+
∫ t′

0
(ψ(t′)− ψ(s))α−1‖[Tα,ψ

E (t′′, s)− Tα,ψ
E (t′, s)] f (s, x(s), xs)‖ψ′(s)ds

+
∫ t′

0
[(ψ(t′′)− ψ(s))α−1 − (ψ(t′)− ψ(s))α−1]‖Tα,ψ

E (t′′, s)Bu(s)‖ψ′(s)ds

+
∫ t′

0
(ψ(t′)− ψ(s))α−1‖[Tα,ψ

E (t′′, s)− Tα,ψ
E (t′, s)]Bu(s)‖ψ′(s)ds

+
∫ t′′

t′
(ψ(t′′)− ψ(s))α−1‖[Tα,ψ

E (t′′, s) f (s, x(s), xs)‖ψ′(s)ds

+
∫ t′′

t′
(ψ(t′′)− ψ(s))α−1‖[Tα,ψ

E (t′′, s)Bu(s)‖ψ′(s)ds

≤ J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8,

where

J1 :=
∥∥∥Sα,ψ

E (t′′, 0)− Sα,ψ
E (t′, 0)

∥∥∥‖Eφ(0)‖,

J2 :=
m

∑
i=1

∥∥∥Sα,ψ
E (t′′, ti)− Sα,ψ

E (t′, ti)
∥∥∥ki‖x(ti)‖,

J3 :=
M‖E−1‖L

Γ(α)
(1 + µ1(K) + µ2(K))

·
∫ t′

0
[(ψ(t′′)− ψ(s))α−1 − (ψ(t′)− ψ(s))α−1]ψ′(s)ds,

J4 :=
L
α
(ψ(b)− ψ(0))α(1 + µ1(K) + µ2(K)) sup

s∈[0,t′ ]
‖Tα,ψ

E (t′′, s)− Tα,ψ
E (t′, s)‖,

J5 :=
M‖E−1‖‖B‖

Γ(α)

∫ t′

0
[(ψ(t′′)− ψ(s))α−1 − (ψ(t′)− ψ(s))α−1]‖u(s)‖ψ′(s)ds,

J6 := sup
s∈[0,t′ ]

‖Tα,ψ
E (t′′, s)− Tα,ψ

E (t′, s)‖‖B‖
∫ t′

0
(ψ(t′)− ψ(s))α−1‖u(s)‖ψ′(s)ds,
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J7 :=
M‖E−1‖L
Γ(α + 1)

(1 + µ1(K) + µ2(K))(ψ(t′′)− ψ(t′)α,

J8 :=
M‖E−1‖‖B‖

Γ(α)

∫ t′′

t′
(ψ(t′′)− ψ(s))α−1‖u(s)‖ψ′(s)ds.

Obviously, J7 → 0 as t′′ → t′. By Lemma 3(iv), Sα,ψ
E (t, s) and Tα,ψ

E (t, s) are continuous
in the uniform operator topology for t ≥ s ≥ 0, and u(·) is bounded by (28). Then one
can check the terms J1, J2, J4, J6, J8 → 0 as t′′ → t′. By virtue of Lebesgue’s dominated
convergence theorem, we obtain J3, J5 → 0 as t′′ → t′. Hence, PBK is equicontinuous and
bounded.

Theorem 1. Suppose that (H1)–(H7) are satisfied. Then the system (6) is controllable on J provided
that the condition (24) holds.

Proof. From Lammas 6–8 and the Arzela–Ascoli theorem, we obtain that PBK is pre-
compact in PC(J∗, X). Thus P is a completely continuous operator on PC(J∗, X). By the
Schauder fixed point theorem, P has a fixed point in BK. Each fixed point of P is a mild
solution of the system (6) on J such that (Px)(t) = x(t) ∈ X. Hence, the system (6) is
controllable on J.

Remark 1. Let ψ(t) ≡ t, and Ii(·) ≡ 0 (i = 1, 2, . . . , m), then, Theorem 1 reduces to Theorem 4.1
in Ref. [23]. That is, the classical Caputo fractional derivative and non-impulse cases in Ref. [23]
are generalized to the ψ-Caputo fractional derivative and non-impulse cases.

4. Example

An example is provided to demonstrate the controllability result for the proposed criteria.
Let X = Y = U = L2[0, π] equipped with the norm and inner product defined,

respectively, for all u, v ∈ L2[0, π] by

‖u‖ =
(∫ π

0
|u(x)|2dx

) 1
2

and 〈u, v〉 =
∫ π

0
u(x)v(x)dx.

Consider the ψ-Caputo fractional differential control system of Sobolev type
CDα,ψ

t (x(t, z)− xzz(t, z)) = xzz(t, z) + f (t, x(t, z), x(t− r, z)) + Bu(t, z), a.e. t ∈ J′, z ∈ [0, π],
x(t, 0) = x(t, π) = 0, t ∈ J := [0, 1],
∆x(tk, z) = Ik(x(tk, z)), k = 1, . . . , m,
x(t, z) = φ(t, z), (t, z) ∈ [− 1

2 , 0]× [0, π],

(27)

where α = 4
5 , ψ(t) =

√
t + 1,

f (t, x(t, z), x(t− r, z)) = e−t +
1
3

x(t, z) +
1
6

sin t
x(t− r, z)

1 + |x(t− r, z)| , (28)

and

Ik(x(tk, z) =
sin(x(tk, z))

9m(1 + |x(tk, z)|) , k = 1, 2, . . . , m. (29)

We define

D(A) = D(E) = {x ∈ X : x, xz are absolutely continuous, xzz ∈ X, x(t, 0) = x(t, π) = 0}.

Ax = xzz, Ex = x− xzz.

It follows that A has eigenvalues −n2, n ∈ N with corresponding orthogonal eigen-

vectors en(z) =
√

2
π sin(nz). From Ref. [42], A and E can be written as
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Ax :=
∞

∑
n=1

n2〈x, en〉en, x ∈ D(A),

Ex :=
∞

∑
n=1

(1 + n2)〈x, en〉en, x ∈ D(A).

Furthermore, for each x ∈ X one has

E−1x :=
∞

∑
n=1

1
1 + n2 〈x, en〉en, −AE−1x :=

∞

∑
n=1

−n2

1 + n2 〈x, en〉en,

and

T(t)x =
∞

∑
n=1

e
−n2

1+n2 t〈x, en〉en.

Obviously, E−1 is compact, ‖E−1‖ ≤ 1. We also have −AE−1, which generates the
above strongly continuous semigroup T(t) on Z with ‖T(t)‖ ≤ e−t ≤ 1. So, the two
characterized operators Sα,ψ

E (·, ·) and Tα,ψ
E (·, ·) have the following formulas

Sα,ψ
E (t, s) :=

∫ ∞

0
E−1ξ 4

5
(θ)T((

√
t + 1−

√
s + 1)

4
5 θ)dθ,

and

Tα,ψ
E (t, s) :=

4
5

∫ ∞

0
E−1θξ 4

5
(θ)T((

√
t + 1−

√
s + 1)

4
5 θ)dθ.

Clearly,

‖Sα,ψ
E (t, s)‖ ≤ 1, ‖Tα,ψ

E (t, s)‖ ≤ 1
Γ( 4

5 )
, 0 ≤ s ≤ t ≤ 1.

Let B = ωI : U → Z (ω > 0), then defined W : U → D(E) by

Wu := ω
∫ 1

0

(ψ(1)− ψ(s))−
1
5

2
√

s + 1
Tα,ψ

E (1, s)u(s, z)ds.

Since α = 4
5 ∈

(
1
2 , 1
)

, we take U := L2(J, U), and

Kα,ψ =
(ψ(1)− ψ(0))2α−1

2α− 1
γ =

5
6
(
√

2− 1)
3
5 = 0.4911.

Next, let u(t, z) := x(z) ∈ U. Thus,

Wu = ω
∫ 1

0

(ψ(1)− ψ(s))−
1
5

2
√

s + 1
4
5

∫ ∞

0
E−1θξ 4

5
(θ)T((

√
2−
√

s + 1)
4
5 θ)dθxds

= ω
∫ 1

0

(ψ(1)− ψ(s))−
1
5

2
√

s + 1
4
5

∫ ∞

0
E−1θξ 4

5
(θ)

∞

∑
n=1

e
−n2

1+n2 (
√

2−
√

s+1)
4
5 θ〈x, en〉endθds

= ω
∫ ∞

0
E−1ξ 4

5
(θ)

∞

∑
n=1

∫ 1

0

4
5

θ
(
√

2−
√

s + 1)−
1
5

2
√

s + 1
e
−n2

1+n2 (
√

2−
√

s+1)
4
5 θds〈x, en〉endθ

= ω
∫ ∞

0
ξ 4

5
(θ)

∞

∑
n=1

∫ 1

0

4
5(1 + n2)

θ
(
√

2−
√

s + 1)−
1
5

2
√

s + 1
e
−n2

1+n2 (
√

2−
√

s+1)
4
5 θds〈x, en〉endθ

= ω
∫ ∞

0
ξ 4

5
(θ)

∞

∑
n=1

∫ 1

0

1
n2

d
ds

[
e
−n2

1+n2 (
√

2−
√

s+1)
4
5 θ

]
ds〈x, en〉endθ
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= ω
∫ ∞

0
ξ 4

5
(θ)

∞

∑
n=1

1
n2

[
1− e

−n2

1+n2 (
√

2−1)
4
5 θ

]
〈x, en〉endθ

= ω
∞

∑
n=1

1
n2

[
1− E 4

5

(
− n2

1 + n2 (
√

2− 1)
4
5

)]
〈x, en〉en, (30)

where

E 4
5

(
− n2

1 + n2 (
√

2− 1)
4
5

)
:=
∫ ∞

0
e
−n2

1+n2 (
√

2−1)
4
5 θ

ξ 4
5
(θ)dθ,

is a Mittag–Leffler function (see [43]).

Note that 0 < 1− e
−n2

1+n2 (
√

2−1)
4
5 θ

< 1− e−θ for θ > 0. Thus one has

1− E 4
5

(
−1

2
(
√

2− 1)
4
5

)
≤ 1− E 4

5

(
− n2

1 + n2 (
√

2− 1)
4
5

)
≤ 1− E 4

5

(
−(
√

2− 1)
4
5

)
. (31)

By (30) and (31), we have W is surjective. Denoted W−1 : D(E)→ U by

(W−1x)(t, z) :=
1
ω

∞

∑
n=1

n2〈x, en〉en[
1− E 4

5

(
− n2

1+n2 (
√

2− 1)
4
5

)] ,

for x = ∑∞
n=1〈x, en〉en. Moreover, we can obtain that

‖(W−1x)(t, ·)‖ = 1
ω

√√√√√ ∞

∑
n=1

n4〈x, en〉2[
1− E 4

5

(
− n2

1+n2 (
√

2− 1)
4
5

)]2

≤ 1

ω
[
1− E 4

5

(
− 1

2 (
√

2− 1)
4
5

)]√ ∞

∑
n=1

(1 + n2)2〈x, en〉2

=
1

ω
[
1− E 4

5

(
− 1

2 (
√

2− 1)
4
5

)]‖Ex‖

=
1

ω
[
1− E 4

5

(
− 1

2 (
√

2− 1)
4
5

)]‖x‖D(E).

Since W−1x is independent of t ∈ J∗, we have

‖W−1‖ ≤ 1

ω
[
1− E 4

5

(
− 1

2 (
√

2− 1)
4
5

)] .

By utilizing the integral representation formula (34) in [44], we define

Eα(−z) :=
sin(απ)

π

∫ ∞

0

sα−1

1 + 2sα cos(απ) + s2α
e−z

1
α sds

For α = 4
5 and z = 1

2 (
√

2− 1)
4
5 , a numerical computation in Matlab shows

E 4
5

(
−1

2
(
√

2− 1)
4
5

)
=

sin
(

4π
5

)
π

∫ ∞

0

s−
1
5

1 + 2s
4
5 cos

(
4π
5

)
+ s

8
5

e
−
√

2−1

2
5
4

s
ds .

= 0.7366.



Axioms 2022, 11, 283 17 of 19

Thus, ‖W−1‖ ≤ 3.7965
ω . From (28) and (29), it is easy to know that

m
∑

i=1
ki =

1
9 , L = 1,

and Λ = 1
2 . Then

ρ = M
m

∑
i=1

ki +
M‖E−1‖LΛ

Γ(α + 1)
(ψ(b)− ψ(0))α

+
M2‖W−1‖B‖

Γ(α)
Kα,ψ
√

b

(
n

∑
i=1

ki +
L‖E−1‖Λ
Γ(α + 1)

(ψ(b)− ψ(0))α

)

≤ 1
9
+

1
2

Γ( 9
5 )

(
√

2− 1)
4
5 +

ω

Γ( 4
5 )
· 0.4911 · 3.7965

ω

(
1
9
+

1
2

Γ( 9
5 )

(
√

2− 1)
4
5

)
= 0.9789 < 1,

that is, (24) holds. Thus, all the assumptions in Theorem 1 are satisfied. Therefore the
system (27) is controllable on J.

5. Conclusions

In this study, we constructed a mild solution for a class of impulsive Caputo fractional
evolution equations of Sobolev type based on generalized Laplace transform with respect
to the ψ-function. By using the boundedness and compactness of two new introduced
characteristic solution operators and the fixed point technique, we derive some new con-
trollability results for ψ-fractional impulsive functional evolution equations of Sobolev
type. The obtained results generalized the non-impulse and classical Caputo fractional
derivative cases. Finally, an example is given to illustrate the effectiveness and feasibility of
our criterion.

In the future, we will consider the nonlinear impulsive ψ-Hilfer fractional evolution
equations of Sobolev type, and study the controllability of the mild solution for such equations.
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