Article

On r-Ideals and m - k-Ideals in $B N$-Algebras

Sri Gemawati ${ }^{1, *}$, Musnis Musraini ${ }^{1}$, Abdul Hadi ${ }^{1}$, La Zakaria ${ }^{2}$ © and Elsi Fitria ${ }^{1}$
1 Department of Mathematics, Faculty of Mathematics and Sciences, University of Riau, Pekanbaru 28293, Indonesia; musraini@lecturer.unri.ac.id (M.M.); abdul.hadi@unri.ac.id (A.H.); elsi.fitria8244@grad.unri.ac.id (E.F.)
2 Department of Mathematics, Faculty of Mathematics and Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia; lazakaria.1969@fmipa.unila.ac.id
* Correspondence: sri.gemawati@lecturer.unri.ac.id

Abstract

A $B N$-algebra is a non-empty set X with a binary operation " $*$ " and a constant 0 that satisfies the following axioms: $(B 1) x * x=0,(B 2) x * 0=x$, and $(B N)(x * y) * z=(0 * z) *(y * x)$ for all $x, y, z \in X$. A non-empty subset I of X is called an ideal in $B N$-algebra X if it satisfies $0 \in X$ and if $y \in I$ and $x * y \in I$, then $x \in I$ for all $x, y \in X$. In this paper, we define several new ideal types in $B N$-algebras, namely, r-ideal, k-ideal, and m - k-ideal. Furthermore, some of their properties are constructed. Then, the relationships between ideals in $B N$-algebra with r-ideal, k-ideal, and m - k-ideal properties are investigated. Finally, the concept of r-ideal homomorphisms is discussed in $B N$-algebra.

Keywords: ideal; r-ideal; k-ideal; m - k-ideal; $B N$-algebra; homomorphism
MSC: 06F35

Citation: Gemawati, S.; Musraini, M.; Hadi, A.; Zakaria, L.; Fitria, E. On r-Ideals and m - k-Ideals in BN-Algebras. Axioms 2022, 11, 268.
https: / /doi.org/10.3390/
axioms11060268
Academic Editors: Eunsuk Yang and Xiaohong Zhang

Received: 10 April 2022
Accepted: 26 May 2022
Published: 2 June 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

J. Neggers and H.S. Kim introduced the B-algebra, which is a non-empty set X with a binary operation $*$ and a constant 0 , denoted by $(X ; *, 0)$, that fulfills the axioms (B1) $x * x=0,(B 2) x * 0=x$, and (B3) $(x * y) * z=x *(z *(0 * y))$ for all $x, y, z \in X$ (see [1]). H.S. Kim and H.G. Park discuss a special form of B-algebra, called 0 -commutative B-algebra, which also satisfies a further axiom, namely, $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$ (see [2]). Furthermore, C. B. Kim constructed the related $B N$-algebra, which is an algebra $(X ; *, 0)$ that satisfies axioms (B1) and (B2), as well as (BN) $(x * y) * z=(0 * z) *(y * x)$ for all $x, y, z \in X$ (see [3]). For example, let $X=\{0,1,2\}$ be a set with a binary operation " $*$ " on X as shown in Table 1.

Table 1. Cayley's table for $(X ; *, 0)$.

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

Then, $(X ; *, 0)$ is a $B N$-algebra.
A $B N$-algebra $(X ; *, 0)$ that satisfies $(x * y) * z=x *(z * y)$ for all $x, y, z \in X$ is said to be a $B N$-algebra with condition D. A. Walendziak introduced another special form of $B N$ algebra, namely, a $B N_{1}$-algebra, which is a $B N$-algebra $(X ; *)$ that satisfies $x=(x * y) * y$ for all $x, y \in X$ (see [4]). Furthermore, the new $Q M$ - $B Z$-algebras were proposed by Y. Du and X . Zhang (see [5]). The relationship between B-algebra and $B N$-algebra is that every

0 -commutative B-algebra is a $B N$-algebra, and a $B N$-algebra with condition D is a B-algebra. The relationship between a $B N$-algebra and other algebras can be seen in Figure 1.

Figure 1. The relationship of $B N$-algebra with other algebras.
In 2017, E. Fitria et al. discussed the concept of prime ideals in B-algebras, which produces a definition and various prime ideals and their properties in B-algebras, including that a non-empty subset I is said to be ideal in a B-algebra X if it satisfies $0 \in X$ and if $y \in I$, $x * y \in I$ applies to $x \in I$ for all $x, y \in X$ (see [6]). Moreover, I is called a prime ideal of X if it satisfies $A \cap B \subseteq I$; then, $A \subseteq I$ or $B \subseteq I$ for all A and B are two ideals in X. The concept of the ideal was also discussed in $B N$-algebras by G. Dymek and A. Walendziak, and the resulting definition of an ideal in $B N$-algebras is the same as in B-algebras, but their properties differ (see [7]).

In [3], the definition of a homomorphism in $B N$-algebras was given: for two $B N$ algebras $(X ; *, 0)$ and $(Y ; *, 0)$, a mapping $\varphi: X \rightarrow Y$ is called a homomorphism of X to Y if it satisfies $\varphi(x * y)=\varphi(x) * \varphi(y)$ for all $x, y \in X$. In [7], G. Dymek and A. Walendziak stated that the kernel of φ is an ideal of X. In addition, G. Dymek and A. Walendziak also investigated the kernel by letting X and Y be a $B N$-algebra and a $B M$-algebra, respectively, such that the kernel φ is a normal ideal. The concepts of ideals are also discussed in [8].

In 2020, S. Gemawati et al. discussed the concept of a complete ideal (briefly, c-ideal) of $B N$-algebra and introduced the concept of an n-ideal in $B N$-algebra (see [9]). From this research, several interesting properties were obtained that showed the relationship between an ideal, c-ideal, and n-ideal, as well as the relationship between a subalgebra and a normal with a c-ideal and n-ideal in $B N$-algebras. The research also discussed the concepts of a c-ideal and n-ideal in a homomorphism of $B N$-algebra and $B M$-algebra. In 2016, M. A. Erbay et al. defined the concept of an r-ideal in commutative semigroups (see [10]). Furthermore, M. M. K. Rao defined the concept of an r-ideal and m - k-ideal in an incline (see [11]). An incline is a non-empty set M with two binary operations, addition (+) and multiplication (\cdot), satisfying certain axioms. For example, let $M=[0,1]$ be subject to a binary operation " + " defined by $a+b=\max \{a, b\}$ for all $a, b \in M$, and multiplication defined by $x y=\min \{x, y\}$ for all $x, y \in M$. Then, M is an incline. However, interesting properties were obtained from the concepts of an r-ideal and m - k-ideal in an incline, such as a relationship between an ideal, r-ideal, and $m-k$-ideal in an incline, as well as properties of these ideals in a homomorphism of incline.

Based on this description, the concepts of an r-ideal, a k-ideal, and a $m-k$-ideal in $B N$-algebras are discussed and their properties determined, followed by the properties of homomorphism in $B N$-algebras.

2. Preliminaries

In this section, some definitions that are needed to construct the main results of the study are given. We start with some definitions and theories about B-algebra and $B N$-algebra. Then, we give the concepts of an r-ideal in a semigroup, and a k-ideal and m - k-ideal in an incline, as discussed in [1-4,6,10,11].

Definition 1 ([1]). A B-algebra is a non-empty set X with a constant0 and a binary operation " $*$ " that satisfies the following axioms for all $x, y, z \in X$:
(B1) $x * x=0$;
(B2) $x * 0=x$;
(B3) $(x * y) * z=x *(z *(0 * y))$.

Definition 2 ([3]). A BN-algebra is a non-empty set X with a constant0 and a binary operation " $*$ " that satisfies axioms $(B 1)$ and (B2), as well as $(B N)(x * y) * z=(0 * z) *(y * x)$, for all x, y, $z \in X$.

Theorem 1 ([3]). Let $(X ; *, 0)$ be a BN-algebra, then for all $x, y, z \in X$:
(i) $0 *(0 * x)=x$;
(ii) $y * x=(0 * x) *(0 * y)$
(iii) $(0 * x) * y=(0 * y) * x$;
(iv) If $x * y=0$, then $y * x=0$;
(v) If $0 * x=0 * y$, then $x=y$;
(vi) $(x * z) *(y * z)=(z * y) *(z * x)$.

Let $(X ; *, 0)$ be an algebra. A non-empty set S is called a subalgebra or $B N$-subalgebra of X if it satisfies $x * y \in S$ for all $x, y \in S$, and a non-empty set N of X is called normal in X if it satisfies $(x * a) *(y * b) \in N$ for all $x * y, a * b \in N$. Let $(X ; *, 0)$ and $(Y ; *, 0)$ be $B N$ algebras. A map $\varphi: X \rightarrow Y$ is called a homomorphism of X to Y if it satisfies $\varphi(x * y)=$ $\varphi(x) * \varphi(y)$ for all $x, y \in X$. A homomorphism of X to itself is called an endomorphism.

Definition 3 ([7]). A non-empty subset I of BN-algebra X is called an ideal of X if satisfies
(i) $0 \in I$;
(ii) $x * y \in I$ and $y \in I$ implies $x \in I$, for all $x, y \in X$.

An ideal I of a $B N$-algebra X is called a closed ideal if $a * b \in I$ for all $a, b \in I$. In the following, some properties of ideals in $B N$-algebra are as given in [7].

Proposition 1. If I is a normal ideal in BN-algebra A, then I is a subalgebra of A.
Proposition 2. Let A be a $B N$-algebra and $S \subseteq A$. S is a normal subalgebra of A if and only if S is a normal ideal.

Definition 4 ([3]). An algebra $(X ; *, 0)$ is called 0 -commutative if, for all $x, y \in X$,

$$
x *(0 * y)=y *(0 * x)
$$

A semigroup is a non-empty set G, together with an associative binary operation, we can write $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ for all $x, y, z \in G$. An ideal of semigroup G is a subset A of G such that $A \cdot G$ and $G \cdot A$ is contained in G. Any element x of G is a zero divisor if $\operatorname{ann}(x)=\{g \in G: g \cdot x=0\} \neq 0$.

Definition 5 ([10]). Let G be a semigroup. A proper ideal A of G is said to be an r-ideal of G if when $x \cdot y \in A$ with ann $(x)=0$, then $y \in A$ for allx, $y \in G$.

Definition 6 ([11]). An incline is a non-empty set M with two binary operations, namely, addition $(+)$ and multiplication (\cdot), satisfying the following axioms for all $x, y, z \in X$:
(i) $x+y=y+x$;
(ii) $x+x=x$;
(iii) $x+x y=x$;
(iv) $y+x y=y$;
(v) $x+(y+z)=(x+y)+z$;
(vi) $x(y z)=(x y) z$;
(vii) $x(y+z)=x y+x z$;
(viii) $(x+y) z=x z+y z$;
(ix) $x 1=1 x=x$;
(x) $x+0=0+x=x$.

A subincline of an incline M is a non-empty subset I of M that is closed under addition and multiplication. Note that $x \leq y$ iff $x+y=y$ for all $x, y \in M$.

Definition 7 ([11]). Let M be an incline and I a subincline of M. I is called an ideal of M if when $x \in I, y \in M$, and $y \leq x$, then $y \in I$.

Definition 8 ([11]). Let M be an incline and I a subincline of M. I is said to be a left r-ideal of M if $M I \subseteq I$ and I is said to be a right r-ideal of M if $I M \subseteq I$. If I is a left and right r-ideal of M, then I is called an r-ideal of M.

Definition 9 ([11]). Let M be an incline and I be a subincline of M. I is said to be a k-ideal of M if when $x+y \in I$ and $y \in I$, then $x \in I$.

Definition 10 ([11]). Let M be an incline and I be an ideal of M. I is said to be an m - k-ideal of M if $x y \in I, x \in I$, and $1 \neq y \in M$, then $y \in I$.

3. r-Ideal in $B N$-Algebra

In this section, the main results of the study are given. Starting from the definition of an r-ideal in $B N$-algebras, which was constructed based on the concept of r-ideal in a semigroup. Then, some properties of r-ideals in $B N$-algebras are investigated.

Definition 11. Let $(X ; *, 0)$ be a $B N$-algebra and I be a proper ideal of X. I is called an r-ideal of X if when $x * y \in I$ and $0 * x=0$, then $y \in I$ for all $x, y \in X$.

Example 1. Let $A=\{0,1,2,3\}$ be a set. Define a binary operation " $*$ " with the Table 2.
Table 2. Cayley's table for $(A ; *, 0)$.

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then, $(A ; *, 0)$ is a $B N$-algebra. We obtain that $I_{1}=\{0,2\}, I_{2}=\{0,3\}$, and $I_{3}=\{0,2,3\}$ are r-ideals in A.

In the following, the properties of an r-ideal in $B N$-algebras are given.
Theorem 2. Let $(X ; *, 0)$ be a BN-algebra. If I is a closed ideal of X, then I is an r-ideal of X.
Proof. Since I is an ideal of X, then $0 \in I$; furthermore, if $y \in I$ and $x * y \in I$, then $x \in I$ for all $x, y \in X$. Let $x * y \in I$ and $0 * x=0$ for all $x, y \in X$. Since I is closed, if we can prove that $x \in I$, then it shows that $y \in I$. By Theorem 1 (ii) and Axiom B2, we obtain

$$
\begin{equation*}
x * y=(0 * y) *(0 * x)=(0 * y) * 0=0 * y \tag{1}
\end{equation*}
$$

Furthermore, by (1), Theorem 1 (i), and by all axioms of $B N$-algebra, we obtain

$$
\begin{equation*}
y * x=(y * x) * 0=(0 * 0) *(x * y)=0 *(0 * y)=y \tag{2}
\end{equation*}
$$

By (1) and (2), we obtain $x=0 \in I$. Thus, we obtain $y \in I$. Therefore, I is an r-ideal of X.
The converse of Theorem 2 does not hold in general. In Example $1, I_{1}$ and I_{2} are two closed ideals in A, and thus, I_{1} and I_{2} are clearly r-ideals. Meanwhile, $I_{3}=\{0,2,3\}$ is an ideal in A, but it is not a closed ideal. However, I_{3} is an r-ideal in A. It should be noted that not all ideals are r-ideals. To be clear, consider the following example.

Example 2. Let $X=(\mathbb{Z} ;-, 0)$ be a set of integers \mathbb{Z} with a subtraction operation. Then, X is a $B N$-algebra. Let subset \mathbb{Z}^{+}of X be positive integers, then $I=\mathbb{Z}^{+} \cup\{0\}$ is an ideal of X, but I is not a closed ideal and it is not an r-ideal of X.

Theorem 3. Let $(X ; *, 0)$ be a BN-algebra. If I is a normal ideal of X, then I is a normal r-ideal of X.
Proof. Since I is a normal ideal of X, then, by Proposition 1, we have that I is a $B N$ subalgebra of X, which for all $x, y \in I, x * y \in I$ implies that I is closed. Furthermore, by Theorem 2, we obtain that I is an r-ideal of X. Since I is normal, then I is a normal r-ideal of X.

Theorem 4. Let $(X ; *, 0)$ be a $B N$-algebra and f be an endomorphism of X. If I is an r-ideal of X, then $f(I)$ is an r-ideal of X.

Proof. Let I be an r-ideal of X, then clearly $I \subset X$ and I is a proper ideal of X such that $0 \in I$ and $f(I) \subset X$. Since f is an endomorphism of X and by Axiom B1, for all $x \in I$, we obtain

$$
f(0)=f(x * x)=f(x) * f(x)=0 \in I
$$

Let $f(y) \in f(I)$ and $f(x * y) \in f(I)$. Since I is an ideal of X, then $x \in I$; consequently, $f(x) \in f(I)$. Thus, $f(I)$ is an ideal of X. Let $f(x * y) \in f(I)$ and $0 * f(x)=0$. Since I is an r-ideal of X, then $y \in I$ implies $f(y) \in f(I)$. Therefore, $f(I)$ is an r-ideal of X.

The converse of Theorem 4 does hold in general.
Corollary 1. Let $(X ; *, 0)$ be a $B N$-algebra andf be an endomorphism of X. If I is a closed r-ideal of X, then $f(I)$ is a closed r-ideal of X.

Proof. Follows directly from Theorem 4.
Example 3. Let $A=\{0,1,2,3\}$ be aBN-algebra in Example 1. Define a map $f: A \rightarrow A$ by

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x=0 \\
1 \text { if } x=1 \\
3 \text { if } x=2 \\
2 \text { if } x=3
\end{array}\right.
$$

Then, f is an endomorphism. By Example 1, we obtain that $I_{1}=\{0,2\}, I_{2}=\{0,3\}$, and $I_{3}=\{0,2,3\}$ are r-ideals in A. It easy to check that $f\left(I_{1}\right)=\{0,3\}$ and $f\left(I_{2}\right)=\{0,2\}$ are two closed r-ideals of A. However, $f\left(I_{3}\right)=\{0,2,3\}$ is an r-ideal of A, but it is not closed.

4. m - k-Ideals in BN-Algebras

This section gives the main results of the study. We start by defining the concepts of k-ideal and m - k-ideal in a $B N$-algebra, which is constructed based on the concept of a
k-ideal and m - k-ideal in an incline. The properties of k-ideals and m - k-ideals in a $B N$-algebra are given.

Definition 12. Let $(X ; *, 0)$ be a $B N$-algebra and I be a $B N$-subalgebra of X. I is called a k-ideal in X if when $y \in I, x \in X$, and $x * y \in I$, then $x \in I$.

Example 4. Let $B=\{0,1,2,3,4,5,6,7\}$ be a set. Define a binary operation " *" with the Table 3.

Table 3. Cayley's table for $(B ; *, 0)$.

$*$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Then $(B ; *, 0)$ is a $B N$-algebra. It is easy to check that $I_{1}=\{0,1\}, I_{2}=\{0,2\}$, $I_{3}=\{0,3\}, I_{4}=\{0,4\}, I_{5}=\{0,5\}, I_{6}=\{0,6\}, I_{7}=\{0,7\}$, and $I_{8}=\{0,1,2,3\}$ are closed ideals in B and also $B N$-subalgebras in B. Thus, we can prove that they are k-ideals in B.

Some properties of a k-ideal in BN -algebras are given.
Theorem 5. Let $(X ; *, 0)$ be a BN-algebra. If I is a closed ideal of X, then I is a k-ideal of X.
Proof. Let $(X ; *, 0)$ be a $B N$-algebra. Let I be a closed ideal of X. Then, I is a $B N$-subalgebra of X, and if $y \in I, x \in X$, and $x * y \in I$, then $x \in I$. Therefore, I is a k-ideal of X.

Theorem 6. Let $(X ; *, 0)$ be a $B N$-algebra. If I is a k-ideal of X, then I is a closed ideal of X.
Proof. Let $(X ; *, 0)$ be a $B N$-algebra. Since I is a k-ideal of X, then I is a $B N$-subalgebra of X. Consequently, I is closed and for all $x \in I, x * x=0 \in I$. Moreover, since I is a k-ideal of X that is obtained when $y \in I, x \in X$, and $x * y \in I$, then $x \in I$. Thus, I is a closed ideal of X.

Corollary 2. Let $(X ; *, 0)$ be a BN-algebra. I is a closed ideal of X if and only if I is a k-ideal of X.
Proof. Follows directly from Theorems 5 and 6.
Theorem 7. Let $(X ; *, 0)$ be a $B N$-algebra. If N is a normal $B N$-subalgebra of X, then N is a normal k-ideal of X.

Proof. Since N is a normal $B N$-subalgebra of X, then, by Proposition 2, it is obtained that N is a normal ideal of X. We know that N is a $B N$-subalgebra such that it is a closed ideal of X. Consequently, by Theorem 5 , it is obtained that N is a k-ideal of X. Since N is normal, then N is a normal k-ideal of X.

Definition 13. Let $(X ; *, 0)$ be a BN-algebra and I be an ideal of X. I is called an m-k-ideal of X if when $x \in I, 0 \neq y \in X$, and $x * y \in I$, then $y \in I$.

Theorem 8. Let $(X ; *, 0)$ be a $B N$-algebra. If I is a k-ideal of X, then I is an m-k-ideal.
Proof. Let $(X ; *, 0)$ be a $B N$-algebra. Since I is a k-ideal of X, then by Theorem $6, I$ is a closed ideal of X such that if $y \in I, x \in X$, and $x * y \in I$, then $x \in I$. Furthermore, since I is closed, it must be the case that if $x \in I, \quad 0 \neq y \in X$, and $x * y \in I$, then $y \in I$. Hence, we prove that I is an m - k-ideal of X.

The converse of Theorem 8 does not hold in general. Let $A=\{0,1,2,3\}$ be a $B N$ algebra in Example 1. It is easy to check that $I_{1}=\{0,2\}$ and $I_{2}=\{0,3\}$ are k-ideals and m - k-ideals of A. Meanwhile, $I_{3}=\{0,2,3\}$ is an m - k-ideal in A, but I_{3} is not k-ideal because it is not a $B N$-subalgebra of A.

Theorem 9. Let $(X ; *, 0)$ be a $B N$-algebra. If I is a closed ideal of X, then I is an m-k-ideal.
Proof. Follows directly from Theorems 5 and 8.
Theorem 10. Let $(X ; *, 0)$ be a $B N$-algebra. If I is a k-ideal of X, then I is an r-ideal.
Proof. Since I is a k-ideal of X, by Theorem 6, we obtain that I is a closed ideal of X such that by Theorem 2, we obtain that I is an r-ideal of X.

The converse of Theorem 10 does not hold in general since, in Example 1, we have I_{3} as an r-ideal in A, but it is not a k-ideal.

Theorem 11. Let $(X ; *, 0)$ be a $B N$-algebra. If I is a closed r-ideal of X, then I is a k-ideal.
Proof. Since I is an r-ideal of X, clearly I is a proper ideal of X. Since I is closed, then by Theorem 5, we obtain that I is a k-ideal of X.

By Theorem 10, we know that the converse of Theorem 11 does hold in general. In Example 1, I_{1} and I_{2} are two closed r-ideals in A and also k-ideals.

Proposition 3. Let $(X ; *, 0)$ be a $B N$-algebra and f be an endomorphism of X. If I is a k-ideal of X, then $f(I)$ is an r-ideal of X.

Proof. Follows directly from Theorems 4 and 10.
The converse of Proposition 3 does not hold in general.
Proposition 4. Let $(X ; *, 0)$ be a BN-algebra and f be an endomorphism of X. If $f(I)$ is a closed r-ideal of X, then I is a k-ideal of X.

Proof. Follows directly from Corollary 1 and Theorem 11.

5. Conclusions and Future Work

In this paper, we defined the concepts of an r-ideal, k-ideal, and m - k-ideal in $B N$ algebras and investigated several properties. We obtained the relationships between a closed ideal, r-ideal, k-ideal, and m - k-ideal in a $B N$-algebra. Some of its properties are every closed ideal in $B N$-algebras is an r-ideal, a k-ideal, and an m - k-ideal. Every k-ideal is an r-ideal and an m - k-ideal of $B N$-algebras. Moreover, if I is an r-ideal or k-ideal of a $B N$-algebra, then $f(I)$ is an r-ideal, where f is an endomorphism of the $B N$-algebra.

We did this research to build complete concepts of an r-ideal, k-ideal, and m - k-ideal in $B N$-algebras. These results can be used by researchers in the field of abstract algebra to discuss more deeply about types of ideals in $B N$-algebras.

In future work, we will consider the concept of an r-ideal and m - k-ideal in $Q M$-BZalgebra and quasi-hyper BZ-algebra, investigating several properties and the relationship between an r-ideal and m - k-ideal in a QM-BZ-algebra and quasi-hyper BZ-algebra.

Author Contributions: Created and conceptualized ideas, S.G.; writing-original draft preparation, S.G., M.M. and A.H.; writing-review and editing, A.H., L.Z. and E.F. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by DIPA LPPM Universitas Riau, 699/UN.19.5.1.3/PT.01.03/2021.
Acknowledgments: The authors wish to thank the anonymous reviewers for their valuable suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Neggers, J.; Kim, H.S. On B-algebras. Mat. Vesn. 2002, 54, 21-29.
2. Kim, H.S.; Park, H.G. On 0-commutative B-algebras. Sci. Math. Jpn. 2015, 18, 31-36.
3. Kim, C.B. On BN-algebras. Kyungpook Math. 2013, 53, 175-184. [CrossRef]
4. Walendziak, A. Some results on BN_{1}-algebras. Sci. Math. Jpn. 78 2015, 3, 335-342.
5. Du, Y.; Zhang, X. QM-BZ-Algebras and quasi-hyper BZ-algebras. Axioms 2022, 11, 93. [CrossRef]
6. Fitria, E.; Gemawati, S.; Kartini. Prime ideals in B-algebras. Int. J. Algebr. 2017, 11, 301-309. [CrossRef]
7. Dymek, G.; Walendziak, A. (Fuzzy) Ideals of BN-algebras. Sci. World J. 2015, 2015, 925040. [CrossRef] [PubMed]
8. Ozturk, M.A.; Yilmas, D.; Jun, Y.B. Semigroup structures and communitative ideals of BCK-algebra based on crossing cubic set structures. Axioms 2022, 11, 25. [CrossRef]
9. Gemawati, S.; Fitria, E.; Hadi, A.; Musraini, M. Complete ideal and n-ideal of BN-algebras. Int. J. Math. Trends Technol. 2020, 66, 52-59.
10. Erbay, M.A.; Tekir, U.; Koc, S. r-Ideals of commutative semigroups. Int. J. Algebr. 2016, 10, 525-533. [CrossRef]
11. Rao, M.M.K. r-Ideals and m-k-ideals in inclines. Gen. Algebr. Appl. 2020, 40, 297-309. [CrossRef]
