
Citation: Chinchane, V.L.; Nale, A.B.;

Panchal, S.K.; Chesneau, C.;

Khandagale, A.D. On Fractional

Inequalities Using Generalized

Proportional Hadamard Fractional

Integral Operator. Axioms 2022, 11,

266. https://doi.org/10.3390/

axioms11060266

Academic Editor: Hans J. Haubold

Received: 20 April 2022

Accepted: 30 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On Fractional Inequalities Using Generalized Proportional
Hadamard Fractional Integral Operator
Vaijanath L. Chinchane 1 , Asha B. Nale 2 , Satish K. Panchal 2, Christophe Chesneau 3,*
and Amol D. Khandagale 2

1 Department of Mathematics, Deogiri Institute of Engineering and Management, Aurangabad 431005, India;
chinchane85@gmail.com

2 Department of Mathematics, Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India;
ashabnale@gmail.com (A.B.N.); drpanchalsk@gmail.com (S.K.P.); kamoldsk@gmail.com (A.D.K.)

3 Department of Mathematics, University of Caen-Normandie, 14000 Caen, France
* Correspondence: christophe.chesneau@unicaen.fr
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1. Introduction

Fractional calculus has a new orientation not only with respect to mathematics but
also to physics, statistics, engineering, and other applied sciences. Its birth dates back to
ancient times, and its development has been rapid in recent years, gaining new momentum,
especially with the definition of new fractional integral and derivative operators. New
fractional operators lead to useful applications and generalizations in the field, and their
kernel structures and properties give them an advantage over classical derivative and
integral operators.

Recently, many mathematicians have worked with slightly different fractional integral
formulas. For example, see [1–7] for Riemann–Liouville fractional integral operators, [8] for
Hadamard fractional integral operators, [9–12] for Saigo fractional integral operators, [13–15]
for conformable fractional integral operators, [16–18] for generalized Katugampola fractional
operators, and [19–22] for k-generalized (in terms of hypergeometric function) fractional inte-
gral operators. In [3,20], the authors investigated fractional integral inequalities for extended
Chebyshev functionals by employing Riemann–Liouville and generalized k-fractional integral
fractional integrals, respectively. Recently, many mathematicians have examined several kinds
of fractional integral and derivative operators with different types of kernels, such as loga-
rithmic kernels, non-singular exponential kernels, etc. During the past few years, numerous
analyses of real-world problems, mathematical models, and numerical methods have been
resolved by fractional derivatives and integrals [13,15,23–33]. Anber et al. [34] presented some
fractional integral inequalities similar to the Minkowski fractional integral inequality, using the
Riemann–Liouville fractional integral. In [35], Panchal et al. studied weighted fractional integral
inequalities using a generalized Katugampola fractional integral operator. In [36], Andric et al.
proposed the reverse fractional Minkowski integral inequality using the extended Mittag-Leffler
function with the corresponding fractional integral operator, which was proved together with
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several related Minkowski-type inequalities. Rahman et al. [37–39] investigated the Minkowski
inequality and some other fractional inequalities for convex functions by employing fractional
proportional integral operators. Atangana and Baleanu proposed a new fractional derivative
operator with a non-local and non-singular kernel [40]. In [41], Jarad et al. proposed fractional
conformable integral and derivative operators. In [42–44], Jarad et al. and Rahman presented the
concepts of non-local fractional proportional and generalized Hadamard proportional integrals
involving exponential functions in their kernels. In [14,45–47], the authors explored various
integral inequalities by employing conformable and generalized conformable fractional integrals.
Caputo and Fabrizio [48] introduced new fractional derivatives and integrals without singular
kernels. Later, Lasada and Niteto proposed certain properties of fractional derivatives without
a singular kernel [49]. Nale et al. and Rahaman et al. [44,50] investigated some Minkowski-
type inequalities and other integral inequalities by considering the generalized proportional
Hadamard fractional integral operator. Kukushkin [51] examined the final terms of a differential
operator with a fractional integro-differential operator composition on a bounded domain of
n-dimensional Euclidean space, as well as on the real axis. One of the central points was the
relation connecting fractional powers of m-accretive operators and fractional derivatives in
the most general sense. By virtue of such an approach, we express fractional derivatives in
terms of infinitesimal generators. In this regard, operators such as the Kipriyanov operator,
Riesz potential, and difference operator are considered. In addition, in [52], Yosida studied
the semigroup that generates the involved fractional integro-differential operators due to the
Balakrishnyan formula. We think that it would be interesting to illustrate the relevance of the
topic by presenting and comparing the well-known Chebyshev inequality in L1. In [53], the
Chebyshev functional for two integrable functions u and v on [a, b] is defined as follows:

T[u(x), v(x)] =
1

b− a

∫ b

a
u(x)v(x)dx− 1

b− a

( ∫ b

a
u(x)dx

)
1

b− a

( ∫ b

a
v(x)dx

)
. (1)

Many applications and several inequalities related to Chebyshev functionals can be
found in [6,54–56]. Let us now consider the following extended Chebyshev functional [3]:

T[u(x), v(x), p(x), q(x)] =
∫ b

a
q(x)dx

∫ b

a
p(x)u(x)v(x)dx +

∫ b

a
p(x)dx

∫ b

a
q(x)u(x)v(x)dx

−
( ∫ b

a
p(x)u(x)dx

)( ∫ b

a
q(x)v(x)dx

)
−
( ∫ b

a
q(x)u(x)dx

)( ∫ b

a
p(x)v(x)dx

)
,

(2)

where u and v are two integrable functions on [a, b], and p and q are positive integrable
functions on [a, b]. In order to present a famous inequality for this function, let us now
introduce the concept of synchronous (asynchronous) functions.

Definition 1. Two functions u and v are called synchronous (asynchronous) functions on [a, b] if(
u(τ)− u(σ)

)(
v(τ)− v(σ)

)
≥ (≤)0, τ, σ ∈ [a, b]. (3)

Hence, if u an v are synchronous on [a, b], then T[u(x), v(x), p(x), q(x)] ≥ 0.
Motivated by [3,19,34,38,39,43,44], our purpose in this paper is to obtain fractional

integral inequalities for the extended Chebyshev functional and other fractional inequalities,
using the generalized Hadamard proportional integral. The assumption of synchronous
(asynchronous) functions will sometimes be made.
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The paper has been organized as follows. in Section 2, we recall basic definitions,
remarks, and lemmas related to generalized Hadamard proportional integrals. In Section 3,
we obtain fractional integral inequalities for extended Chebyshev functionals using gen-
eralized Hadamard proportional integrals. In Section 4, we present some other fractional
integral inequalities using generalized Hadamard proportional integrals. In Section 5, we
give the concluding remarks.

2. Preliminary

Here, we present some important definitions, remarks, and lemmas of the generalized
proportional Hadamard fractional integral operator, which will be used throughout this pa-
per. Recently, Rahman et al. [43] presented the left and right-sided generalized proportional
integral operators as follows:

Definition 2. The left- and right-sided generalized proportional fractional integrals are, respec-
tively, defined by

aJ
α,β[z(x)](x) =

1
βαΓ(α)

∫ x

a
e
[

β−1
β (x−t)

]
(x− t)α−1z(t)dt, a < x (4)

(here, the first x between the brackets refers to the variable of the function z(x), and the second x
between the brackets refers to the integral upper bound; other notations are possible), and

J
α,β
b [z(x)](x) =

1
βαΓ(α)

∫ b

x
e
[

β−1
β (t−x)

]
(t− x)α−1z(t)dt, x < b, (5)

where the proportionality index is β ∈ (0, 1], α ∈ C with R(α) > 0, and Γ(α) is the classical
well-known gamma function.

Remark 1. If we consider β = 1 in Equations (4) and (5), then we obtain the well-known left- and
right-sided Riemann–Liouville integrals, which are, respectively, defined by

aJ
α[z(x)](x) =

1
Γ(α)

∫ x

a
(x− t)α−1z(t)dt, a < x (6)

and

Jα
b [z(x)](x) =

1
Γ(α)

∫ b

x
(t− x)α−1z(t)dt, x < b, (7)

where α ∈ C with R(α) > 0.

On the other hand, recently, Rahman et al. [44] proposed the following generalized
Hadamard proportional fractional integrals.

Definition 3. The left-sided generalized Hadamard proportional fractional integral of order α > 0
and proportional index β ∈ (0, 1] is defined by

aHα,β[z(x)](x) =
1

βαΓ(α)

∫ x

a
e
[

β−1
β (ln x−ln t)

]
(ln x− ln t)α−1 z(t)

t
dt, a < x. (8)

Definition 4. The right-sided generalized Hadamard proportional fractional integral of order α > 0
and proportional index β ∈ (0, 1] is defined by

Hα,β
b [z(x)](x) =

1
βαΓ(α)

∫ b

x
e
[

β−1
β (ln t−ln x)

]
(ln t− ln x)α−1 z(t)

t
dt, x < b. (9)
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Remark 2. If we consider a = 1 in Equation (8), then we obtain

1Hα,β[z(x)](x) =
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln t)

]
(ln x− ln t)α−1 z(t)

t
dt, x > 1. (10)

Hereafter, to lighten the notation, we setHα,β
1,x [z(x)] =1 Hα,β[z(x)](x).

Remark 3. If we consider β = 1, then Equations (8)–(10) will lead to the following well known
Hadamard fractional integrals, indicated as

aHα[z(x)](x) =
1

Γ(α)

∫ x

a
(ln x− ln t)α−1 z(t)

t
dt, a < x, (11)

Hα
b [z(x)](x) =

1
Γ(α)

∫ b

x
(ln t− ln x)α−1 z(t)

t
dt, x < b, (12)

and

Hα,β
1,x [z(x)] =

1
Γ(α)

∫ x

1
(ln x− ln t)α−1 z(t)

t
dt, x > 1. (13)

One can easily prove the following results.

Lemma 1. With the special function: z(x) = e
[

β−1
β (ln x)

]
(ln x)λ−1, we have

Hα,β
1,x

[
e
[

β−1
β (ln x)

]
(ln x)λ−1

]
=

Γ(λ)
βαΓ(α + λ)

e
[

β−1
β (ln x)

]
(ln x)α+λ−1, (14)

and the following semigroup property holds:

Hα,β
1,x

[
Hλ,β

1,x [z(x)]
]
= Hα+λ,β

1,x [z(x)]. (15)

Remark 4. If β = 1, then Equation (14) reduces to the result of [57] as defined by

Hα
1,x

[
(ln x)λ−1

]
=

Γ(λ)
Γ(α + λ)

(ln x)α+λ−1. (16)

3. Fractional Integral Inequalities for Extended Chebyshev Functional

In this section, we establish a fractional integral inequality involving generalized
proportional Hadamard fractional integral operators. We now prove the following lemma.

Lemma 2. Let f and g be two integrable and synchronous functions on [1, ∞), and u, v : [1, ∞)→
[0, ∞). Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

Hα,β
1,x [u(x)]Hα,β

1,x [v f g(x)] +Hα,β
1,x [v(x)]Hα,β

1,x [u f g(x)] ≥

Hα,β
1,x [u f (x)]Hα,β

1,x [vg(x)] +Hα,β
1,x [v f (x)]Hα,β

1,x [ug(x)].
(17)

It is understood that, for instance, v f g(x) = v(x) f (x)g(x).

Proof. Since f and g are synchronous functions on [1, ∞), for all τ ≥ 0 and σ ≥ 0, the
following inequality holds:(

f (τ)− f (σ)
)(

g(τ)− g(σ)
)
≥ 0. (18)
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Then, Equation (18) becomes

f (τ)g(τ) + f (σ)g(σ) ≥ f (τ)g(σ) + f (σ)g(τ). (19)

Let us now consider

ψ(x, τ) =
1

βαΓ(α)τ
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1. (20)

We can clearly state that the function ψ(x, τ)u(τ) remains positive, because for all
τ ∈ (1, x), (x > 1), α, β > 0. Multiplying both sides of Equation (19) by ψ(x, τ), then
integrating the resulting identity with respect to τ from 1 to x, we obtain

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (τ)g(τ)

dτ

τ

+
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (σ)g(σ)

dτ

τ

≥ 1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (τ)g(σ)

dτ

τ

+
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (σ)g(τ)

dτ

τ
.

(21)

Consequently,

Hα,β
1,x [u f g(x)] + f (σ)g(σ)Hα,β

1,x [u(x)]

≥ g(σ)Hα,β
1,x [u f (x)] + f (σ)Hα,β

1,x [ug(x)].
(22)

Taking both sides of Equation (22) and multiplying them by ψ(x, σ)v(σ), which remains
positive because for all σ ∈ (1, x), (x > 1), α, β > 0, then integrating the resulting identity
with respect to σ from 1 to x, we obtain

Hα,β
1,x [u f g(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ)

dσ

σ

+Hα,β
1,x [u(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ) f (σ)g(σ)

dσ

σ

≥ Hα,β
1,x [u f (x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ)g(σ)

dσ

σ

+Hα,β
1,x [ug(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ) f (σ)

dσ

σ
.

(23)

This completes the proof of Inequality (17).

We present below the major result of the paper.

Theorem 1. Let f and g be two integrable and synchronous functions on [1, ∞), and r, p, q :
[1, ∞)→ [0, ∞) (so are positive). Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

2Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
+

2Hα,β
1,x [p(x)]Hα,β

1,x [q(x)]Hα,β
1,x [r f g(x)] ≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
+

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
+

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [pg(x)] +Hα,β

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(24)



Axioms 2022, 11, 266 6 of 13

Proof. To prove this theorem, we put u = p and v = q into Lemma 2, and we obtain

Hα,β
1,x [p(x)]Hα,β

1,x [q f g(x)] +Hα,β
1,x [q(x)]Hα,β

1,x [p f g(x)] ≥

Hα,β
1,x [p f (x)]Hα,β

1,x [qg(x)] +Hα,β
1,x [q f (x)]Hα,β

1,x [pg(x)].
(25)

Now, multiplying both sides of Equation (25) byHα,β
1,x [r(x)], we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
.

(26)

Again, putting u = r and v = q, into Lemma 2, we obtain

Hα,β
1,x [r(x)]Hα,β

1,x [q f g(x)] +Hα,β
1,x [q(x)]Hα,β

1,x [r f g(x)] ≥

Hα,β
1,x [r f (x)]Hα,β

1,x [qg(x)] +Hα,β
1,x [q f (x)]Hα,β

1,x [rg(x)],
(27)

Multiplying both sides of Equation (27) byHα,β
1,x [p(x)], we have

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
.

(28)

With the same arguments as in Equations (26) and (28), we can write

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r(x)]Hα,β
1,x [p f g(x)] +Hα,β

1,x [p(x)]Hα,β
1,x [r f g](x)

]
≥

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [pg(x)] +Hα,β

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(29)

Adding Inequalities (26), (28) and (29), we obtain Inequality (24).

Lemma 3. Let f and g be two integrable and synchronous functions on [1, ∞), and u, v : [1, ∞)→
[0, ∞). Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [u(x)]Hφ,ϕ

1,x [v f g(x)] +Hφ,ϕ
1,x [v(x)]Hα,β

1,x [u f g(x)] ≥

Hα,β
1,x [u f (x)]Hφ,ϕ

1,x [vg(x)] +Hφ,ϕ
1,x [v f (x)]Hα,β

1,x [ug(x)].
(30)

Proof. Multiplying both sides of Equation (22) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1,

σ ∈ (1, x), x > 1, φ, ϕ > 0, which remains positive (in view of the argument mentioned
above in the proof of Lemma 2). Then, integrating the resulting identity with respect to σ
from 1 to x, we have

Hα,β
1,x [u f g(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ)

dσ

σ

+Hα,β
1,x [u(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ) f (σ)g(σ)

dσ

σ

≥ Hα,β
1,x [u f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ)g(σ)

dσ

σ

+Hα,β
1,x [ug(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ) f (σ)

dσ

σ
.

(31)

This completes the proof of Inequality (30).
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Theorem 2. Let f and g be two integrable and synchronous functions on [1, ∞), and r, p, q :
[1, ∞)→ [0, ∞). Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [q(x)]Hφ,ϕ
1,x [p f g(x)] + 2Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q f g(x)]

+ Hφ,ϕ
1,x [q(x)]Hα,β

1,x [p f g(x)]
]

+
[
Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q(x)] + Hφ,ϕ

1,x [p(x)]Hα,β
1,x [q(x)]

]
Hα,β

1,x [r f g(x)] ≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
+

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
+

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [pg(x)] + Hφ,ϕ

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(32)

Proof. To prove this theorem, we put u = p and v = q into Lemma 3, and we obtain

Hα,β
1,x [p(x)]Hφ,ϕ

1,x [q f g(x)] + Hφ,ϕ
1,x [q(x)]Hα,β

1,x [p f g(x)] ≥

Hα,β
1,x [p f (x)]Hφ,ϕ

1,x [qg(x)] + Hφ,ϕ
1,x [q f (x)]Hα,β

1,x [pg(x)].
(33)

Now, multiplying both sides of Equation (33) byHα,β
1,x [r(x)], we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q f g(x)] + Hφ,ϕ

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
,

(34)

Now, putting u = r and v = q into Lemma 3, we obtain

Hα,β
1,x [r(x)]Hφ,ϕ

1,x [q f g(x)] + Hφ,ϕ
1,x [q(x)]Hα,β

1,x [r f g(x)] ≥

Hα,β
1,x [r f (x)]Hφ,ϕ

1,x [qg(x)] + Hφ,ϕ
1,x [q f (x)]Hα,β

1,x [rg(x)].
(35)

Multiplying both sides of Equation (35) byHα,β
1,x [p(x)], we have

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r(x)]Hφ,ϕ
1,x [q f g(x)] + Hφ,ϕ

1,x [q(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
.

(36)

Arguing as for Equations (34) and (36), we obtain

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r(x)]Hφ,ϕ
1,x [p f g(x)] + Hφ,ϕ

1,x [p(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [pg(x)] + Hφ,ϕ

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(37)

Adding Inequalities (34), (36) and (37), we obtain Inequality (32).

Remark 5. We assume f , g, r, p and q satisfy the following conditions:

1. the functions f and g are asynchronous on [1, ∞);
2. the functions r, p, q are negative on [1, ∞);
3. two of the functions r, p, q are positive and the third is negative on [1, ∞).

Then, Inequalities (24) and (32) are reversed.
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4. Some Other Fractional Integral Inequalities

Now, we give some other fractional integral inequalities using generalized propor-
tional Hadamard fractional integral operators.

Theorem 3. Suppose that f , g, and h are positive and continuous functions on [1, ∞), such that

(g(τ)− g(σ))
(

f (σ)
h(σ)

− f (τ)
h(τ)

)
≥ 0, τ, σ ∈ (1, x) x > 1. (38)

Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [g f (x)]

Hα,β
1,x [gh(x)]

. (39)

Proof. Since f , g, and h are three positive and continuous functions on [1, ∞), by Equation (38)
we obtain

g(τ)
f (σ)
h(σ)

+ g(σ)
f (τ)
h(τ)

− g(σ)
f (σ)
h(σ)

− g(τ)
f (τ)
h(τ)

≥ 0, τ, σ ∈ (0, x)x > 0. (40)

Multiplying both sides of Equation (40) by h(σ)h(τ), we have

g(τ) f (σ)h(τ)− g(τ) f (τ)h(σ)− g(σ) f (σ)h(τ) + g(σ) f (τ)h(σ) ≥ 0. (41)

Now, multiplying Equation (41) by ψ(x, τ) defined by Equation (20), then integrating the
resulting identity with respect to τ from 1 to x, we obtain

f (σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1g(τ)h(τ)

dτ

τ

− h(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1g(τ) f (τ)

dτ

τ

− f (σ)g(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1h(τ)

dτ

τ

+
h(σ)g(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1 f (τ)

dτ

τ
≥ 0.

(42)

It follows from Equation (42) that

f (σ)Hα,β
1,x [gh(x)] + g(σ)h(σ)Hα,β

1,x [ f (x)]

− g(σ) f (σ)Hα,β
1,x [h(x)]− h(σ)Hα,β

1,x [g f (x)] ≥ 0. (43)

Again, let us multiply Equation (43) by ψ(x, σ) as defined by Equation (20), which remains
positive because for all σ ∈ (1, x), (x > 1), α, β > 0. Then, integrating the resulting identity
with respect to σ from 1 to x, we obtain

Hα,β
1,x [ f (x)]Hα,β

1,x [gh(x)]−Hα,β
1,x [h(x)]Hα,β

1,x [g f (x)]

− Hα,β
1,x [g f (x)]Hα,β

1,x [h(x)] +Hα,β
1,x [gh(x)]Hα,β

1,x [ f (x)] ≥ 0, (44)

which implies that

Hα,β
1,x [ f (x)]Hα,β

1,x [gh(x)] ≥ Hα,β
1,x [h(x)]Hα,β

1,x [g f (x)]. (45)

This completes the proof of the theorem.
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Theorem 4. Suppose that f , g, and h are positive and continuous functions on [1, ∞), such that

(g(τ)− g(σ))
(

f (σ)
h(σ)

− f (τ)
h(τ)

)
≥ 0, τ, σ ∈ (1, x) x > 1, (46)

Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [g f (x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [g f (x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)]
≥ 1. (47)

Proof. Multiplying Equation (43) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1, σ ∈ (1, x),

x > 1, φ, ϕ > 0, which is always positive, then integrating the resulting identity with
respect to σ from 1 to x, we have

Hα,β
1,x [hg(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1 f (σ)

dσ

σ

−Hα,β
1,x [g f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1h(σ)

dσ

σ

−Hα,β
1,x [h(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1g f (σ)

dσ

σ

+Hα,β
1,x [ f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1 f h(σ)

dσ

σ
≥ 0.

(48)

This gives us the following relation:

Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)]−Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)]

−Hφ,ϕ
1,x [g f (x)]Hα,β

1,x [h(x)] +Hφ,ϕ
1,x [gh(x)]Hα,β

1,x [ f (x)] ≥ 0. (49)

From Equation (49), we obtain

Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)] +Hφ,ϕ
1,x [gh(x)]Hα,β

1,x [ f (x)]

≥ Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)] +Hφ,ϕ
1,x [g f (x)]Hα,β

1,x [h(x)]. (50)

This yields Inequality (47). This completes the proof of the theorem.

Remark 6. If we take α = φ and β = ϕ in Theorem 4, then we obtain Theorem 3.

Theorem 5. Suppose that f and h are two positive continuous functions such that f ≤ h on [1, ∞).
If f

h is decreasing and f is increasing on [1, ∞), then, for any p ≥ 1, x > 1, α > 0 and β ∈ (0, 1],
we have

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [ f p(x)]

Hα,β
1,x [h

p(x)]
. (51)

Proof. Now, by taking g = f p−1 in Theorem 3, we obtain

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [ f f p−1(x)]

Hα,β
1,x [h f p−1(x)]

. (52)

Since f ≤ h on [1, ∞), we have
h f p−1 ≤ hp. (53)
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Multiplying Equation (53) by ψ(x, τ) defined by Equation (20), then integrating the result-
ing identity with respect to τ from 1 to x, we obtain

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1 f p−1h(τ)

dτ

τ
(54)

≤ 1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1hp(τ)

dτ

τ
, (55)

which implies that
Hα,β

1,x [h f p−1(x)] ≤ Hα,β
1,x [h

p(x)]. (56)

Thus, we have
Hα,β

1,x [ f f p−1(x)]

Hα,β
1,x [h f p−1(x)]

≥
Hα,β

1,x [ f p(x)]

Hα,β
1,x [h

p(x)]
. (57)

From Equations (52) and (57), we obtain Equation (51).

Theorem 6. Suppose that f and h are two positive continuous functions such that f ≤ h on [1, ∞).
If f

h is decreasing and f is increasing on [1, ∞), then, for any p ≥ 1, x > 1, β, ϕ ∈ (0, 1], α, φ > 0,
we have

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)] +Hφ,ϕ

1,x [ f (x)]Hα,β
1,x [h

p(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1. (58)

Proof. Taking g = f p−1 in Theorem 4, we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1, (59)

then, by hypothesis, f ≤ h on [1, ∞), which implies that

h f p−1 ≤ hp. (60)

Now, multiplying both sides of Equation (60) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1,

σ ∈ (1, x), x > 1, φ, ϕ > 0, which remains positive. Then, integrating the resulting identity
with respect to σ from 1 to x, we have

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1h f p−1(σ)

dσ

σ

≤ 1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1hp(σ)

dσ

σ
.

(61)

Integrating both sides of Equation (61) with respect to σ over 1 to x, we have

Hφ,ϕ
1,x [h f p−1(x)] ≤ Hφ,ϕ

1,x [h
p(x)]. (62)

Multiplying both sides of Equation (62) byHα,β
1,x [ f (x)], we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] ≤ Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)]. (63)

Hence, from Equations (56) and (63), we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

≤ Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)] +Hφ,ϕ

1,x [ f (x)]Hα,β
1,x [h

p(x)]. (64)
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From Equations (59) and (64), we obtain Equation (58). This ends the proof of the theorem.

5. Concluding Remarks

In [42], the authors proposed the concept of generalized proportional fractional integral
operators with exponential kernels. Following this, Rahman et al. [44] worked on these
operators and established some fractional inequalities for convex functions by considering
Hadamard proportional fractional integrals. In this study, we obtained some fractional
integral inequalities for the extended Chebyshev function by considering the generalized
proportional Hadamard fractional integral operator. The inequalities investigated in this
paper represent novel contributions in the fields of fractional calculus and generalized
proportional Hadamard fractional integral operators. They are also expected to lead to some
applications for determining the uniqueness of fractional differential equation solutions. We
also believe that the findings of this study will help to solve additional practical problems
in mathematical physics, statistics, and approximation theory.
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36. Andrić, M.; Farid, G.; Pećarić, J.; Siddique, U. Generalized Minkowski-type fractional inequalities involving extended Mittag-Leffler
function. J. Indian Math. Soc. 2020, 3–4, 137–147. [CrossRef]

37. Rahman, G.; Abdejawad, T.; Khan, A.; Nisar, K.S. Some fractional proportional integral inequalities. J. Inequal. Appl. 2019, 2019,
244. [CrossRef]

38. Rahman, G.; Khan, A.; Abdejawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral
operators. Adv. Differ. Equ. 2019, 2019, 287. [CrossRef]

39. Rahman, G.; Nisar, K.S.; Abdejawad, T.; Ullah, S. Certain fractional proportional integral inequalities via convex functions.
Mathematics 2020, 8, 222. [CrossRef]

40. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat
transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]

41. Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16. [CrossRef]
42. Jarad, F.; Abdejawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur.

Phys. J. Spec. Top. 2017, 226, 3457–3471. [CrossRef]
43. Rahman, G.; Nisar, K.S.; Abdejawad, T. Certain Hadamard proportional fractional integral inequalities. Mathematics 2020, 8, 504.

[CrossRef]
44. Rahman, G.; Abdejawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional

integral operators. Adv. Differ. Equ. 2019, 2019, 454. [CrossRef]
45. Nisar, K.S.; Rahman, G.; Mehrez, K. Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl.

2019, 245, 1–9. [CrossRef]
46. Nisar, K.S.; Tassadiq, A.; Rahman, G.; Khan, A. Some inequalities via fractional conformable integral operators. J. Inequal. Appl.

2019, 2019, 271. [CrossRef]
47. Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Samraiz, M. Certain fractional conformable inequalities for the weighted and the extended

Chebyshev functionals. Adv. Differ. Equ. 2020, 96, 1–9. [CrossRef]
48. Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1,

73–85.

http://dx.doi.org/10.18311/jims/2018/15490
http://dx.doi.org/10.18576/pfda/030305
http://dx.doi.org/10.2478/amns.2020.2.00002
http://dx.doi.org/10.2478/amns.2020.2.00071
http://dx.doi.org/10.3390/fractalfract6020092
http://dx.doi.org/10.2478/amns.2021.2.00026
http://dx.doi.org/10.1016/j.cjph.2021.01.012
http://dx.doi.org/10.1088/1402-4896/ac607b
http://dx.doi.org/10.1016/j.aej.2021.07.015
http://dx.doi.org/10.2478/amns.2021.2.00096
http://dx.doi.org/10.1016/j.chaos.2022.112050
http://dx.doi.org/10.2478/amns.2021.1.00095
http://dx.doi.org/10.2478/amns.2021.2.00116
http://dx.doi.org/10.7153/fdc-2020-10-16
http://dx.doi.org/10.18311/jims/2020/24607
http://dx.doi.org/10.1186/s13660-019-2199-z
http://dx.doi.org/10.1186/s13662-019-2229-7
http://dx.doi.org/10.3390/math8020222
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1186/s13662-017-1306-z
http://dx.doi.org/10.1140/epjst/e2018-00021-7
http://dx.doi.org/10.3390/math8040504
http://dx.doi.org/10.1186/s13662-019-2381-0
http://dx.doi.org/10.1186/s13660-019-2197-1
http://dx.doi.org/10.1186/s13660-019-2170-z
http://dx.doi.org/10.1186/s13662-020-2543-0


Axioms 2022, 11, 266 13 of 13

49. Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92.
50. Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Some Minkowski-type inequalities using generalized proportional Hadamard fractional

integral operators. Filomat 2021, 35, 2973–2984. [CrossRef]
51. Kukushkin, M.V. Abstract fractional Calculus for m-accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [CrossRef]
52. Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980.
53. Chebyshev, P.L. Sur les expressions approximatives des intégrales définies par les autes entre les mêmes limites. Proc. Math. Soc.

Charkov 1882, 2, 93–98.
54. Anastassiou, G.A.; Hooshmandasl, M.R.; Ghasemi A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and

related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 97.
55. Belarbi, S.; Dahmani, Z. On some new fractional integral inequality. J. Inequal. Pure Appl. Math. 2009, 10, 86.
56. Dragomir, S.S. Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 2002, 31, 397–415.
57. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative Theory and Application; Gordon and Breach: Yverdon,

Switzerland, 1993.

http://dx.doi.org/10.2298/FIL2109973N
http://dx.doi.org/10.12732/ijam.v34i1.1

	Introduction
	Preliminary
	Fractional Integral Inequalities for Extended Chebyshev Functional
	Some Other Fractional Integral Inequalities
	Concluding Remarks
	References

