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Abstract: When dealing with the haziness that is intrinsic in decision analysis-driven decision
making procedures, interval-valued intuitionistic fuzzy sets (IVIFSs) can be quite effective. Our
approach to solving the multiple attribute decision making (MADM) difficulties, where all of the
evidence provided by the decision-makers is demonstrated as interval-valued intuitionistic fuzzy
(IVIF) decision matrices, in which all of the components are distinguished by an IVIF number (IVIFN),
is based on Aczel–Alsina operational processes. We begin by introducing novel IVIFN operations
including the Aczel–Alsina sum, product, scalar multiplication, and exponential. We may then create
IVIF aggregation operators, such as the IVIF Aczel–Alsina weighted geometric operator, the IVIF
Aczel–Alsina ordered weighted geometric operator, and the IVIF Aczel–Alsina hybrid geometric
operator, among others. We present a MADM approach that relies on the IVIF aggregation operators
that have been developed. A case study is used to demonstrate the practical applicability of the
strategies proposed in this paper. By contrasting the newly developed technique with existing
techniques, the method is capable of demonstrating the advantages of the newly developed approach.
A key result of this work is the discovery that some of the current IVIF aggregation operators are
subsets of the operators reported in this article.

Keywords: MADM; Aczel–Alsina operations; IVIFNs; IVIF Aczel–Alsina geometric aggregation
operators

MSC: 90B50; 47S40

1. Introduction

The intuitionistic fuzzy set [1] was extended by Atanassov and Gargov to the IVIFS [2],
which is represented by membership and non-membership functions whose values are
intervals rather than real numbers. Due to the advantages of IVIFS, several researchers
have attempted to incorporate IVIF information generated by different kinds of operators
to generate judgments [3,4]. For instance, Xu [5] constructed several aggregation operators
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for IVIFNs, including the IVIF weighted averaging (IVIFWA) operator and the IVIF hybrid
averaging (IVIFHA) operator. Liu [6] presented two IVIF operators based on the power
average and Heronian mean operators and then integrated IVIF information using them.
Zhao and Xu [7] provided several novel IVIF aggregation operations. Yu et al. [8] created the
IVIF prioritized weighted averaging/geometric operator. Chen and Han [9,10] provided
a MADM approach that was built on the multiplication of IVIF values, in addition to
the LP and NLP methodologies. The influenced IVIF weighted and ordered weighted
geometric operators were invented by Wei et al. [11]. Li [12] suggested a MADM technique
using IVIFSs based on TOPSIS-based nonlinear programming (NLP). Xu and Gou [13]
discussed the IVIF aggregation operator in detail. Chen et al. [14] developed a variety of
MADM techniques based on IVIFSs. The influenced IVIF hybrid Choquet integral operators
developed by Meng et al. [15] were used in decision-making issues. Wang and Liu [16,17]
recommended the IVIF Einstein weighted averaging and geometric operators. IVIF MADM
has already been widely applied in a variety of fields, including hotel location selection [18],
air quality evaluation [19], solid waste management [20], hotel location selection [18],
sustainable supplier selection [21], potential partner selection [22], and weapon-group
target analysis [23].

Schweizer and Sklar pioneered the idea of triangular norms in their theory of empirical
metric spaces [24]. As it develops out, t-norms and their associated t-conorms are vital oper-
ations in fuzzification and other evolutionary computing, for instance, Lukasiewicz t-norm
and t-conorm [25], Hamacher t-norm and t-conorm [26], Einstein t-norm and t-conorm [17],
general continuous Archimedean t-norm, t-conorm [27], etc. Klement et al. [28] conducted
a thorough examination of the characteristics and concept implications of triangular norms
in the latest years.

1.1. Motivation of the Study

Generalizing the ideas of Menger [29] from 1942, Schweizer and Sklar [24] proposed in
1960 the concept of triangular norms, or t-norms. While their methodology was developed
within the context of probabilistic metric spaces for the purpose of making generalizations
the triangular inequality of metrics, however, within some years they have been considered
in several other branches, most notably fuzzy set theory (there, t-norms generate the
fuzzy conjunctions, generalizing the original proposal of Zadeh [30] considering the min
operation when introducing the intersection of fuzzy sets). Already in the framework of
probabilistic metric spaces, but later also to cover the fuzzy disjunctions, the dual operations
to t-norms, namely t-conorms were considered [31]. Later, t-norms and t-conorms have
been considered in several generalizations of the fuzzy set theory, including intuitionistic
fuzzy set theory [1], interval-valued fuzzy set theory and fuzzy type-2 theory [32], IVIFS
theory [2], etc. For more details concerning t-norms and t-conorms we highly suggest the
monograph [28] due to Klement et al.

Let F : [0, 1]2 → [0, 1] be a commutative, associative and monotone function. Then, if
e = 1 is its neutral element, F(x, 1) = F(1, x) = x for all x ∈ [0, 1], F is called a triangular
norm (t-norm in short). Similarly, if e = 0 is its neutral element, i.e., F(x, 0) = F(0, x) = x
for all x ∈ [0, 1], then F is called a triangular t-conorm (t-conorm, in short).

To have a clear distinction for t-norms and t-conorms in notation, we will consider the
traditional notation T for t-norms and S for t-conorms. Note that these two classes are dual,
i.e., for any t-norm T, the function S : [0, 1]2 → [0, 1] given by S(x, y) = 1− T(1− x, 1− y)
is a t-conorm (also called a t-conorm dual to T), and for any t-conorm S, the function
T : [0, 1]2 → [0, 1] determined by T(x, y) = 1− S(1− x, 1− y) is a t-norm (t-norm dual
to S).

It is not difficult to see that the strongest (greatest) t-norm is TM(x, y) = min(x, y)
following the notation from [28], while the smallest t-norm is the drastic product TD
which is vanishing on [0, 1]2 (clearly, if max(x, y) = 1 then for any t-norm we have
T(x, y) = min(x, y)). Two prototypical t-norms playing an important role both in theory
and applications are the product t-norm TP (standard product of reals), and the Lukasiewicz
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t-norm TL given by TL(x, y) = max(0, x + y− 1). One of the most distinguished subclasses
of the class of all t-norms is formed by the continuous Archimedean t-norms, i.e., t-norms
generated by a continuous additive generator. Their importance is clearly visible when
n-ary extensions of t-norms are considered. For deeper results and more details see [28]. In
our paper, we will deal with some specially generated t-norms, namely with strict t-norms
which are isomorphic to the product t-norm, and which are generated by decreasing bijec-
tive additive generators t : [0, 1]→ [0, ∞]. In such a case, T(x, y) = t−1(t(x) + t(y)), and,
considering the n-array extension (which is unique due to the associativity of t-norms),

T(x1, . . . , xn) = t−1(
n
∑

i=1
t(xi)). Recall that both extremal t-norms TM and TD, as well as the

product t-norm TP commute with the power functions, i.e., for any λ > 0, they satisfy the
equality T(xλ, yλ) = T(x, y)λ. Aczel and Alsina in the early 1980s [33] have characterized
all other t-norm solutions of the above functional equation, showing that these are just strict
t-norms generated by additive generators tð, ð ∈]0, ∞[, given by tð(x) = (−logx)ð. The
related t-norms are denoted as Tð

A and called (strict) Aczel–Alsina t-norms, and given by

Tð
A(x, y) =


TD(x, y), if ð = 0
min(x, y), if ð = ∞
e−((− log x)ð+(− log y)ð)1/ð

, otherwise.

Observe that including the extremal t-norms, we obtain their Aczel–Alsina family
(Tð

A), ð ∈ [0, ∞] of t-norms, which is strictly increasing and continuous in parameter ð.
Due to the duality, similar notes and examples can be introduced for t-conorms.

There, the smallest t-conorms is SM = max (dual to TM), and the greatest t-conorm is the
drastic product SD, which is constant 1 on [0, 1]2. For any t-conorm S, if min(x, y) = 0,
then S(x, y) = max(x, y). Dual t-conorm SL to TL(Lukasiewicz t-conorm, also called a
truncated sum) is given by SL(x, y) = min(1, x + y), and the dual t-conorm SP to the
product TP (called a probabilistic sum) is given by SP(x, y) = x + y − xy. Continuous
Archimedean t-conorms are also generated by additive generators (which are increasing),
and if S is dual to a continuous Archimedean t-norm T generated by an additive generator
t, then S is generated by an additive generator s given by s(x) = t(1− x). In particular,
dual t-conorms Sð

A to strict Aczel–Alsina t-noms Tð
A are generated by additive generators

sð(x) = (−log(1− x))ð, and they are given by

Sð
A(x, y) =


SD(x, y), if ð = 0
max(x, y), if ð = ∞
1− e−((− log(1−x))ð+(− log(1−y))ð)1/ð

, otherwise.

Observe that including the extremal t-conorms, we obtain their Aczel–Alsina family
(Sð

A), ð ∈ [0, ∞] of t-conorms, which is strictly decreasing and continuous in parameter ð.
Aczel-Alsina [33] came up with two new operations called Aczel–Alsina t-norm and

Aczel-Alsina t-conorm. These operations have a good relationship with the deployment
of parameters. Wang et al. [34] used the Aczel-Alsina triangular norm (AA t-norm)
to come up with a score level convolution neural network that increases the distance
between imposters and legitimate at the same time. Senapati et al. [35–38] came up with
Aczel—Alsina operations depending on intuitionistic fuzzy, IVIF, hesitant fuzzy, picture
fuzzy aggregation operators, and they used them to solve MADM problems. The primary
objective of this insightful article is to illustrate several geometric aggregation operators
using IVIF data, known to as IVIF Aczel–Alsina geometric aggregations, for the purpose of
identifying the successfully guide of decisions made utilizing decision-making techniques.
Unaware of the previously existing unique ways that have been developed in this domain,
we have fully examined every possibility to exhibit our proposed approach, in order for it
to exceed all past attempts to apprehend the system assessment problem.
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1.2. Structure of This Study

The framework of the study is presented in Figure 1. The following details are
presented: The next section discusses several basic concepts relating to IVIFSs. Section 3
discusses the Aczel–Alsina operational laws governing the IVIFNs. Section 4 discusses the
IVIF Aczel–Alsina weighted geometric (IVIFAAWG) operator, the IVIF Aczel–Alsina order
weighted geometric (IVIFAAOWG) operator, and the IVIF Aczel–Alsina hybrid geometric
(IVIFAAHG) operator, as well as a few particular instances. In Section 5, we demonstrate
how to use the IVIFAAWG operator to construct particular approaches for resolving
multiple attribute decision-making challenges in which support and understanding are
represented as IVIF values. Section 6 shows the overall methodology with a genuine
scenario. Section 7 investigates the effect of a parameter on the outcome of decision-
making. Section 8 provides a comparison investigation of alternative important strategies
to substantiate the suggested technique’s sufficiency. Section 9 concludes this analysis and
identifies potential future concerns.

Figure 1. The framework of the study.

2. Preliminaries

This section will summarize some major themes that will be discussed throughout the
remainder of this work.

Definition 1 ([2]). Assuming F is a recognized universe of discourse, an IVIFS in F is an expression
Ẽ given by

Ẽ = {〈 f , β̃E( f ), δ̃E( f )〉 : f ∈ F} (1)
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where β̃E( f ) : F → D[0, 1], δ̃E( f ) : F → D[0, 1] and D[0, 1] is the set of all subintervals
of [0, 1]. The intervals β̃E( f ) and δ̃E( f ) denote the intervals of the degree of membership and
degree of non-membership of the element f in the set Ẽ, where β̃E( f ) = [βL

E( f ), βU
E ( f )] and

δ̃E( f ) = [δL
E( f ), δU

E ( f )], for all f ∈ F, including the condition 0 ≤ βU
E ( f ) + δU

E ( f ) ≤ 1.
πE( f ) = [πL

E( f ), πU
E ( f )] denotes the indeterminacy degree of element f that belongs to Ẽ, where

πL
E( f ) = 1− βU

E ( f )− δU
E ( f ) and πU

E ( f ) = 1− βL
E( f )− δL

E( f ).

Assume that Ẽ = {〈 f , β̃E( f ), δ̃E( f )〉 : f ∈ F} and W̃ = {〈 f , β̃W( f ), δ̃W( f )〉 : f ∈ F}
are two IFSs over the universe F. The next relations and operations concerning two IVIFSs
were described as follows [2,25]:

(i) Ẽ ⊆ W̃, if βL
E( f ) ≤ βL

W( f ), βU
E ( f ) ≤ βU

W( f ), δL
E( f ) ≥ δL

W( f ), and δU
E ( f ) ≥ δU

W( f ) for
all f ∈ F;

(ii) Ẽ = W̃ iff Ẽ ⊆ W̃ and W̃ ⊆ Ẽ;
(iii) ẼC = {〈 f , δ̃E( f ), β̃E( f )〉| f ∈ F} for all f ∈ F;
(iv) Ẽ∩T,S W̃ = {〈 f , [T{βL

E( f ), βL
W( f )}, T{βU

E ( f ), βU
W( f )}], [S{δL

E( f ), δL
W( f )}, S{δU

E ( f ), δU
W

( f )}]〉| f ∈ F};
(v) Ẽ∪S,T W̃ = {〈 f , [S{βL

E( f ), βL
W( f )}, S{βU

E ( f ), βU
W( f )}], [T{δL

E( f ), δL
W( f )}, T{δU

E ( f ), δU
W

( f )}]〉| f ∈ F};
where any pair (T, S) can be utilized, T indicates a t-norm and S a so-called t-conorm dual
to the t-norm T, characterized by S(x, y) = 1− T(1− x, 1− y).

For convenience, Xu [5] called ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]) an IVIFN, where [βL
∂ , βU

∂ ] ∈
D[0, 1], [δL

∂ , δU
∂ ] ∈ D[0, 1] and βU

∂ + δU
∂ ≤ 1.

For any three IVIFNs ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]), ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 =

([βL
∂2

, βU
∂2
], [δL

∂2
, δU

∂2
]), Xu [5] and Xu and Chen [39] stated a few operations as follows:

(i) ∂̃1 ∩ ∂̃2 = ([min{βL
∂1

, βL
∂2
}, min{βU

∂1
, βU

∂2
}], [max{δL

∂1
, δL

∂2
}, max{δU

∂1
, δU

∂2
}]);

(ii) ∂̃1 ∪ ∂̃2 = ([max{βL
∂1

, βL
∂2
}, max{βU

∂1
, βU

∂2
}], [min{δL

∂1
, δL

∂2
}, min{δU

∂1
, δU

∂2
}]);

(iii) ∂̃1 ⊕ ∂̃2 = ([βL
∂1
+ βL

∂2
− βL

∂1
βL

∂2
, βU

∂1
+ βU

∂2
− βU

∂1
βU

∂2
], [δL

∂1
δL

∂2
, δU

∂1
δU

∂2
]);

(iv) ∂̃1 ⊗ ∂̃2 = ([βL
∂1

βL
∂2

, βU
∂1

βU
∂2
], [δL

∂1
+ δL

∂2
− δL

∂1
δL

∂2
, δU

∂1
+ δU

∂2
− δU

∂1
δ∂2 ]);

(v) ϕ · ∂̃ = ([1− (1− βL
∂ )

ϕ, 1− (1− βU
∂ )

ϕ], [(δL
∂ )

ϕ, (δU
∂ )ϕ]), ϕ > 0;

(vi) ∂̃ϕ = ([(βL
∂ )

ϕ, (βU
∂ )

ϕ], [1− (1− δL
∂ )

ϕ, 1− (1− δU
∂ )ϕ]), ϕ > 0.

Several indices [5,40] were used to characterize IVIFN.

Definition 2 ([40]). For any IVIFN ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]), the score function Sco(∂̃), accuracy
function Acc(∂̃), membership uncertainty index Mui(∂̃) and hesitation uncertainty index Hui(∂̃)
of ∂ be defined as follows:

Sco(∂̃) =
1
2
(βL

∂ + βU
∂ − δL

∂ − δU
∂ ), (2)

Acc(∂̃) =
1
2
(βL

∂ + βU
∂ + δL

∂ + δU
∂ ), (3)

Mui(∂̃) = βU
∂ + δL

∂ − βL
∂ − δU

∂ , (4)

Hui(∂̃) = βU
∂ + δU

∂ − βL
∂ − δL

∂ . (5)

Based on these indices of IVIFNs, the total ordering [40] on IVIFNs was defined
as follows.

Definition 3. Let ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
, δU

∂2
]) be two IVIFNs, then

(1) if Sco(∂̃1) < Sco(∂̃2), then ∂̃1 < ∂̃2,
(2) if Sco(∂̃1) = Sco(∂̃2), then

(a) if Acc(∂̃1) < Acc(∂̃2), then ∂̃1 < ∂̃2,
(b) if Acc(∂̃1) = Acc(∂̃2), then
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(I) if Mui(∂̃1) < Mui(∂̃2), then ∂̃1 < ∂̃2,
(II) if Mui(∂̃1) = Mui(∂̃2), then

(i) if Hui(∂̃1) < Hui(∂̃2), then ∂̃1 < ∂̃2,
(ii) if Hui(∂̃1) = Hui(∂̃2), then ∂̃1 and ∂̃2 are same, i.e., βL

∂1
= βL

∂2
, βU

∂1
= βU

∂2
,

δL
∂1

= δL
∂2

and δU
∂1

= δU
∂2

, denoted by ∂̃1 = ∂̃2.

Definition 3 defines a way to compare two IVIFNs by prioritizing the functions of
score, accuracy, membership uncertainty index, and hesitation uncertainty index. Because
once two IVIFNs are analyzed, the sequencing is examined in the following order: general
belonging degree, accuracy or hesitation level, membership uncertainty index, and hesi-
tation uncertainty index. This comparative procedure is repeated unless one of the four
functions defined in Definition 3 recognizes the two IVIFNs. When these two IVIFNs are
distinguished at a particular level of severity, the computation is completed and functions
with lower value levels are not computed.

Deschrijver et al. [41] designed the concept of the notion of non-empty intervals. They
denoted by L the lattice of non-empty intervals L = {[m, n]|(m, n) ∈ [0, 1]2, m ≤ n} with
the partial order ≤L determined as [m, n] ≤L [p, q] ⇔ m ≤ p and n ≤ q. The inferior and
superior elements are denoted by the symbol 0L = [0, 0] and 1L = [1, 1], respectively.

In this specific situation, Wang and Liu [16,17] meant by L? the lattice of non-empty IV-
IFNs L? = {〈[m, n], [p, q]〉|[m, n], [p, q] ∈ D[0, 1], n + q ≤ 1} with the partial order ≤L? char-
acterized as 〈[m1, n1], [p1, q1]〉 ≤L? 〈[m2, n2], [p2, q2]〉 ⇔ [m1, n1] ≤L [m2, n2]&[p2, q2] ≤L
[p1, q1]⇔ m1 ≤ m2, n1 ≤ n2, p1 ≥ p2 and q1 ≥ q2, where the inferior and superior elements
are 0L? = 〈0L, 1L〉 = 〈[0, 0], [1, 1]〉 and 1L? = 〈1L, 0L〉 = 〈[1, 1], [0, 0]〉, respectively.

Remark 1. If α ≤L? ν, then α ≤ ν, i.e., the total order consists of the standard partial order on L?.

Definition 4. gL? : (L?)} → L? is an aggregation function if it is monotone with respect to ≤L?

and satisfies gL?(0L? , . . . , 0L?) = 0L? and gL?(1L? , . . . , 1L?) = 1L? .

Currently, a wide number of operators are now being developed for accumulating IVIF
data in L? [42,43]. The IVIF weighted geometric (IVIFWG) operator and the IVIF ordered
weighted geometric (IVIFOWG) operator are probably the most frequently acknowledged
operators for accumulating inputs, and they are discussed in details in the following.

Definition 5. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ξ = (ξ1, ξ2, . . . , ξ})
T is the weight vector of ∂ζ (ζ = 1, 2, . . . ,}) so as ξζ ∈ [0, 1], ζ = 1, 2, . . . ,}

and
}
∑

ζ=1
ξζ = 1. Therefore, the IVIF weighted geometric (IVIFWG) operator of dimension } is a

function IVIFWG : (L?)} → L? and IVIFWG(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃ζ)

ξζ

=
([ }

∏
ζ=1

(βL
∂ζ
)ξζ ,

}
∏

ζ=1
(βU

∂ζ
)ξζ

]
,
[
1−

}
∏

ζ=1
(1− δL

∂ζ
)

ξζ , 1−
}
∏

ζ=1
(1− δU

∂ζ
)

ξζ
])

.

Definition 6. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be a collection of IVIFNs and

ξ = (ξ1, ξ2, . . . , ξ})
T is the weight vector of ∂ζ (ζ = 1, 2, . . . ,}) so as ξζ ∈ [0, 1], ζ = 1, 2, . . . ,}

and
}
∑

ζ=1
ξζ = 1. Then, the IVIF ordered weighted geometric (IVIFOWG) operator of dimension } is

a function IVIFOWG : (L?)} → L? and IVIFOWG(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃$(j))

ξζ

=
([ }

∏
ζ=1

(βL
∂$(j)

)ξζ ,
}
∏

ζ=1
(βU

∂$(j)
)ξζ

]
,
[
1−

}
∏

ζ=1
(1− δL

∂$(j)
)

ξζ , 1−
}
∏

ζ=1
(1− δU

∂$(j)
)

ξζ
])

.
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3. Aczel–Alsina Operations of IVIFNs

This section will introduce the Aczel–Alsina operations on IVIFNs and discuss some
of its fundamental properties.

If you let the t-norm T be the Aczel–Alsina product TA and the t-conorm S be the
Aczel–Alsina sum SA, the generalized intersection and union over two IVIFNs E and W
are the Aczel–Alsina product (E⊗W) and Aczel–Alsina sum (E⊕W) over two IVIFNs E
and W, respectively, which can be seen:

E⊗W =
〈[

TA{βL
E, βL

W}, TA{βU
E , βU

W}
]
,
[
SA{δL

E, δL
W}, SA{δU

E , δU
W}
]〉

E⊕W =
〈[

SA{βL
E, βL

W}, SA{βU
E , βU

W}
]
,
[

TA{δL
E, δL

W}, TA{δU
E , δU

W}
]〉

.

Proposition 1. Let ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
, δU

∂2
]) be two IVIFNs,

ð ∈ [0, ∞] and ϕ > 0. Then, the Aczel–Alsina t-norm and t-conorm operations of IVIFNs are
assigned as:

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

,

(ii) ∂̃1 ⊗ ∂̃2 =
〈[

e−((− log βL
∂1
)ð+(− log βL

∂2
)ð)1/ð

,

e−((− log βU
∂1
)ð+(− log βU

∂2
)ð)1/ð]

,
[
1− e−((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

,

1− e−((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉

,

Definition 7. Let ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , βU

∂ ]) be a IVIFN, ð ∈ [0, ∞] and ϕ > 0. Then, the following
two operations of IVIFNs are defined as:

(i) ϕ∂̃ =
〈[

1− e−(ϕ(− log(1−βL
∂ ))

ð)1/ð
, 1− e−(ϕ(− log(1−βU

∂ ))
ð)1/ð

]
,[

e−(ϕ(− log δL
∂ )

ð)1/ð
, e−(ϕ(− log δU

∂ )ð)1/ð
]〉

,

(ii) ∂̃ϕ =
〈[

e−(ϕ(− log βL
∂ )

ð)1/ð
, e−(ϕ(− log βU

∂ )
ð)1/ð

]
,
[
1− e−(ϕ(− log(1−δL

∂ ))
ð)1/ð

,

1− e−(ϕ(− log(1−δU
∂ ))ð)1/ð

〉
.

Example 1. Let ∂̃ = ([0.55, 0.60], [0.35, 0.40]), ∂̃1 = ([0.75, 0.80], [0.15, 0.20]) and ∂̃2 =
([0.35, 0.45], [0.45, 0.50]) be three IVIFNs, then applying Aczel–Alsina operation on IVIFNs as
specified in Proposition 1 and Definition 7 for ð = 3 and ϕ = 2, we get

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−0.75))3+(− log(1−0.35))3)1/3
,

1− e−((− log(1−0.80))3+(− log(1−0.45))3)1/3
]
,
[
e−((− log 0.15)3+(− log 0.45)3)1/3

,

e−((− log 0.20)3+(− log 0.50)3)1/3
]〉

= ([0.75341, 0.80534], [0.14325, 0.19182]).

(ii) ∂̃1 ⊗ ∂̃2 =
〈[

e−((− log 0.75)3+(− log 0.35)3)1/3
, e−((− log 0.80)3+(− log 0.45)3)1/3

]
,
[
1−

e−((− log(1−0.15))3+(− log(1−0.45))3)1/3
, 1− e−((− log(1−0.20))3+(− log(1−0.50))3)1/3

]〉
= ([0.34751, 0.44741], [0.45218, 0.50380]).

(iii) 2∂̃ =
〈[

1− e−(2(− log(1−0.55))3)1/3
, 1− e−(2(− log(1−0.60))3)1/3

]
,
[
e−(2(− log 0.35)3)1/3

,

e−(2(− log 0.40)3)1/3
]〉

= ([0.63434, 0.68477], [0.26642, 0.31523]).

(iv) ∂̃2 =
〈[

e−(2(− log 0.55)3)1/3
, e−(2(− log 0.60)3)1/3

]
,
[
1− e−(2(− log(1−0.35))3)1/3

,

1− e−(2(− log(1−0.40))3)1/3
]〉

= ([0.47084, 0.52540], [0.41885, 0.47460]).
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Theorem 1. Let ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , βU

∂ ]), ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]), and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
,

δU
∂2
]) be three IVIFNs, then we have

(i) ∂̃1 ⊕ ∂̃2 = ∂̃2 ⊕ ∂̃1;
(ii) ∂̃1 ⊗ ∂̃2 = ∂̃2 ⊗ ∂̃1;
(iii) ϕ(∂̃1 ⊕ ∂̃2) = ϕ∂̃1 ⊕ ϕ∂̃2, ϕ > 0;
(iv) (ϕ1 + ϕ2)∂̃ = ϕ1∂̃⊕ ϕ2∂̃, ϕ1, ϕ2 > 0;
(v) (∂̃1 ⊗ ∂̃2)

ϕ = ∂̃
ϕ
1 ⊗ ∂̃

ϕ
2 , ϕ > 0;

(vi) ∂̃ϕ1 ⊗ ∂̃ϕ2 = ∂̃(ϕ1+ϕ2), ϕ1, ϕ2 > 0.

Proof. For the three IVIFNs ∂̃, ∂̃1 and ∂̃2, ð ∈ [0, ∞], and ϕ, ϕ1, ϕ2 > 0, as stated in
Proposition 1 and Definition 7, we can get

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

=
〈[

1− e−((− log(1−βL
∂2
))ð+(− log(1−βL

∂1
))ð)1/ð

,

1− e−((− log(1−βU
∂2
))ð+(− log(1−βU

∂1
))ð)1/ð]

,
[
e−((− log δL

∂2
)ð+(− log δL

∂1
)ð)1/ð

,

e−((− log δU
∂2
)ð+(− log δU

∂1
)ð)1/ð]〉

= ∂̃2 ⊕ ∂̃1.

(ii) It is simple.

(iii) Let t = 1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

.
Then, log(1− t) = −((− log(1− βL

∂1
))ð + (− log(1− βL

∂2
))ð)1/ð.

Using this, we get ϕ(∂̃1 ⊕ ∂̃2) = ϕ
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

=
〈[

1− e−(ϕ((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−(ϕ((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−(ϕ((− log δL

∂1
)ð+(− log δL

∂2
)ð))1/ð

,

e−(ϕ((− log δU
∂1
)ð+(− log δU

∂2
)ð))1/ð]〉

=
〈[

1− e−(ϕ(− log(1−βL
∂1
))ð)1/ð

, 1−

e−(ϕ(− log(1−βU
∂1
))ð)1/ð]

,
[
e−(ϕ(− log δL

∂1
)ð)1/ð

, e−(ϕ(− log δU
∂1
)ð)1/ð]〉

⊕
〈[

1−

e−(ϕ(− log(1−βL
∂2
))ð)1/ð

, 1− e−(ϕ(− log(1−βU
∂2
))ð)1/ð]

,
[
e−(ϕ(− log δL

∂2
)ð)1/ð

,

e−(ϕ(− log δU
∂2
)ð)1/ð]〉

= ϕ∂̃1 ⊕ ϕ∂̃2.

(iv) ϕ1∂̃⊕ ϕ2∂̃ =
〈[

1− e−(ϕ1(− log(1−βL
∂ ))

ð)1/ð
, 1− e−(ϕ1(− log(1−βU

∂ ))
ð)1/ð

]
,[

e−(ϕ1(− log δL
∂ )

ð)1/ð
, e−(ϕ1(− log δU

∂ )ð)1/ð
]〉
⊕
〈[

1− e−(ϕ2(− log(1−βL
∂ ))

ð)1/ð
,

1− e−(ϕ2(− log(1−βU
∂ ))

ð)1/ð
]
,
[
e−(ϕ2(− log δL

∂ )
ð)1/ð

, e−(ϕ2(− log δU
∂ )ð)1/ð

]〉
=
〈[

1− e−((ϕ1+ϕ2)(− log(1−βL
∂ ))

ð)1/ð
, 1− e−((ϕ1+ϕ2)(− log(1−βU

∂ ))
ð)1/ð

]
,[

e−((ϕ1+ϕ2)(− log δL
∂ )

ð)1/ð
, e−((ϕ1+ϕ2)(− log δU

∂ )ð)1/ð
]〉

= (ϕ1 + ϕ2)∂̃.

(v) (∂̃1 ⊗ ∂̃2)
ϕ =

〈[
e−((− log βL

∂1
)ð+(− log βL

∂2
)ð)1/ð

, e−((− log βU
∂1
)ð+(− log βU

∂2
)ð)1/ð]

,[
1− e−((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

, 1−

e−((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉ϕ

=
〈[

e−(ϕ((− log βL
∂1
)ð+(− log βL

∂2
)ð))1/ð

,

e−(ϕ((− log βU
∂1
)ð+(− log βU

∂2
)ð))1/ð]

,
[
1− e−(ϕ((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

,

1− e−(ϕ((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉

=
〈[

e−(ϕ(− log βL
∂1
)ð)1/ð

,
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e−(ϕ(− log βU
∂1
)ð)1/ð]

,
[
1− e−(ϕ(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ϕ(− log(1−δU
∂1
))ð)1/ð]〉

⊕
〈[

e−(ϕ(− log βL
∂2
)ð)1/ð

, e−(ϕ(− log βU
∂2
)ð)1/ð]

,
[
1− e−(ϕ(− log(1−δL

∂2
))ð)1/ð

,

1− e−(ϕ(− log(1−δU
∂2
))ð)1/ð]〉

= ∂̃
ϕ
1 ⊗ ∂̃

ϕ
2 .

(vi) ∂̃ϕ1 ⊗ ∂̃ϕ2 =
〈[

e−(ϕ1(− log βL
∂ )

ð)1/ð
, e−(ϕ1(− log βU

∂ )
ð)1/ð

]
,
[
1−

e−(ϕ1(− log(1−δL
∂ ))

ð)1/ð
, 1− e−(ϕ1(− log(1−δU

∂ ))ð)1/ð
]〉
⊗
〈[

e−(ϕ2(− log βL
∂ )

ð)1/ð
,

e−(ϕ2(− log βU
∂ )

ð)1/ð
]
,
[
1− e−(ϕ2(− log(1−δL

∂ ))
ð)1/ð

, 1− e−(ϕ2(− log(1−δU
∂ ))ð)1/ð

]〉
=
〈[

e−((ϕ1+ϕ2)(− log βL
∂ )

ð)1/ð
, e−((ϕ1+ϕ2)(− log βU

∂ )
ð)1/ð

]
,
[
1−

e−((ϕ1+ϕ2)(− log(1−δL
∂ ))

ð)1/ð
, 1− e−((ϕ1+ϕ2)(− log(1−δU

∂ ))ð)1/ð
]〉

= ∂̃(ϕ1+ϕ2).

4. IVIF Aczel–Alsina Geometric Aggregation Operators

We demonstrate some IVIF geometric aggregation operators throughout this section
using the Aczel–Alsina operations.

Definition 8. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs

and ξ = (ξ1, ξ2, . . . , ξ})
T be the weight vector associated with ∂ζ (ζ = 1, 2, . . . ,}), along with

ξζ ∈ [0, 1] and
}
∑

ζ=1
ξζ = 1. In that case an IVIF Aczel–Alsina weighted geometric (IVIFAAWG)

operator can be described as function IVIFAAWG : (L?)}→ L?, in which

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃ζ)
ξζ = (∂̃1)

ξ1
⊗

(∂̃2)
ξ2
⊗
· · ·

⊗
(∂̃})

ξ} .

Following that, we prove the associated theorem for the Aczel–Alsina operations
on IVIFNs.

Theorem 2. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ð ∈ [0, ∞], then aggregated value of them utilizing the IVIFAAWG operator is also a IVIFNs, and

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃ζ)
ξζ

=

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

, (6)

[
1− e

−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

where ξ = (ξ1, ξ2, . . . , ξ}) function as weight vector associated with ∂̃ζ (ζ = 1, 2, . . . ,}) so that

ξζ ∈ [0, 1], and
}
∑

ζ=1
ξζ = 1.
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Proof. We may prove Theorem 2 using the following mathematical induction method:
(i) When } = 2, rely upon Aczel–Alsina operations of IVIFNs, we acquire

(∂̃1)
ξ1 =

〈[
e−(ξ1(− log βL

∂1
)ð)1/ð

, e−(ξ1(− log βU
∂1
)ð)1/ð]

,[
1− e−(ξ1(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ξ1(− log(1−δU
∂1
))ð)1/ð〉

,

(∂̃2)
ξ2 =

〈[
e−(ξ2(− log βL

∂2
)ð)1/ð

, e−(ξ2(− log βU
∂2
)ð)1/ð]

,[
1− e−(ξ2(− log(1−δL

∂2
))ð)1/ð

, 1− e−(ξ2(− log(1−δU
∂2
))ð)1/ð〉

.

Depending on Definition 7 and Proposition 1, we get

IVIFAAWGξ(∂̃1, ∂̃2) = (∂̃1)
ξ1
⊗
(∂̃2)

ξ2 =
〈[

e−(ξ1(− log βL
∂1
)ð)1/ð

, e−(ξ1(− log βU
∂1
)ð)1/ð]

,[
1− e−(ξ1(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ξ1(− log(1−δU
∂1
))ð)1/ð〉⊗ 〈[

e−(ξ2(− log βL
∂2
)ð)1/ð

,

e−(ξ2(− log βU
∂2
)ð)1/ð]

,
[
1− e−(ξ2(− log(1−δL

∂2
))ð)1/ð

, 1− e−(ξ2(− log(1−δU
∂2
))ð)1/ð〉

=

〈[
e
−
(

ξ1(− log βL
∂1
)ð+ξ2(− log βL

∂2
)ð
)1/ð

, e
−
(

ξ1(− log βU
∂1
)ð+ξ2(− log βU

∂2
)ð
)1/ð]

,
[

1−

e
−
(

ξ1(− log(1−δL
∂1
))ð+ξ2(− log(1−δL

∂2
))ð
)1/ð

, 1− e
−
(

ξ1(− log(1−δU
∂1
))ð+ξ2(− log(1−δU

∂2
))ð
)1/ð]〉

=

〈[
e
−
(

2
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

2
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,
[

1− e
−
(

2
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

,

1− e
−
(

2
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

. Hence, (6) is true for } = 2.

(ii) Assume that (6) is true for } = k, then we have

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃k) =
k⊗

ζ=1

(∂̃ζ)
ξζ

=

〈[
e
−
(

k
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

.

Now for } = k + 1, then

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃k, ∂̃k+1) =
k⊗

ζ=1
(∂̃ζ)

ξζ
⊗
(∂̃k+1)

ξk+1

=

〈[
e
−
(

k
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

⊗〈[
e
−
(

ξk+1(− log βL
∂k+1

)ð
)1/ð

, e
−
(

ξk+1(− log βU
∂k+1

)ð
)1/ð]

,
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[
1− e

−
(

ξk+1(− log(1−δL
∂k+1

))ð
)1/ð

, 1− e
−
(

ξk+1(− log(1−δU
∂k+1

))ð
)1/ð]〉

=

〈[
e
−
(

k+1
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k+1
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k+1
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k+1
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

.

Thus, (6) is true for } = k + 1.
Therefore, from (i) and (ii), we may conclude that (6) holds for any }.

Theorem 3. (Idempotency) If all ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) are equal, i.e.,

∂̃ζ = ∂̃ for all ζ, then IVIFAAWGξ (∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃.

Proof. Since ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}), then we have by Equation (6),

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃ζ)

ξζ =

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

,

e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

=

〈[
e
−
(
(− log βL

∂ )
ð
)1/ð

, e
−
(
(− log βU

∂ )
ð
)1/ð]

,

[
1− e

−
(
(− log(1−δL

∂ ))
ð
)1/ð

, 1−

e
−
(
(− log(1−δU

∂ ))ð
)1/ð]〉

=

〈[
elog βL

∂ , elog βU
∂

]
,

[
1− elog(1−δL

∂ ), 1− elog(1−δU
∂ )

]〉
= ([βL

∂ , βU
∂ ], [δ

L
∂ , δU

∂ ]) = ∂̃. Thus, IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃ holds.

Theorem 4. (Boundedness) Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumula-

tion of IVIFNs. Let ∂̃− = min(∂̃1, ∂̃2, . . . , ∂̃}) and ∂̃+ = max(∂̃1, ∂̃2, . . . , ∂̃}). Then, ∂̃− ≤
IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Proof. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

Let ∂̃− = min(∂̃1, ∂̃2, . . . , ∂̃}) = ([βL−
∂ , βU−

∂ ], [δL−
∂ , δU−

∂ ]) and ∂̃+ = max(∂̃1, ∂̃2, . . . , ∂̃}) =

([βL+
∂ , βU+

∂ ], [δL+
∂ , δU+

∂ ]). We have, βL−
∂ = min

ζ
{βL

∂ζ
}, βU−

∂ = min
ζ
{βU

∂ζ
}, δL−

∂ = max
ζ
{δL

∂ζ
},

δU−
∂ = max

ζ
{δU

∂ζ
}, βL+

∂ = max
ζ
{βL

∂ζ
}, βU+

∂ = max
ζ
{βU

∂ζ
}, δL+

∂ = min
ζ
{δL

∂ζ
}, and δU+

∂ =

min
ζ
{δU

∂ζ
}. Hence, there have the subsequent inequalities,
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e
−
(

}
∑

ζ=1
ξζ (− log βL−

∂ )ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βL+

∂ )ð
)1/ð

,

e
−
(

}
∑

ζ=1
ξζ (− log βU−

∂ )ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βU+

∂ )ð
)1/ð

,

1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL+

∂ ))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL−

∂ ))ð
)1/ð

,

1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU+

∂ ))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU−

∂ ))ð
)1/ð

.

Therefore, ∂̃− ≤ IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Theorem 5. (Monotonicity) Let ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) be two sets of IVIFNs, if ∂̃ζ ≤ ∂̃

′
ζ for

all ζ, then IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ IVIFAA- WGξ(∂̃
′
1, ∂̃

′
2, . . . , ∂̃

′
}).

Proof. The proof is straightforward.

Now, we present IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator.

Definition 9. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

An IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator of dimension } is a
mapping IVIFAAOWG : (L?)} → L? with the corresponding vector ξ = (ξ1, ξ2, . . . , ξ})

T such

that ξζ ∈ [0, 1], and
}
∑

ζ=1
ξζ = 1, as

IVIFAAOWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃$(ζ))
ξζ

= (∂̃$(1))
ξ1
⊗

(∂̃$(2))
ξ2
⊗
· · ·

⊗
(∂̃$(}))

ξ} ,

where ($(1), $(2), . . . , $(})) are the permutation of (ζ = 1, 2, . . . ,}), for which ∂̃$(ζ−1) ≥ ∂̃$(ζ)

for all ζ = 1, 2, . . . ,}.

We generate the following theorem on IVIFNs based on the Aczel–Alsina product.

Theorem 6. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

An IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator of dimension } is a
mapping IVIFAAOWG : (L?)} → L? with the associated vector ϑ = (ϑ1, ϑ2, . . . , ϑ})

T such that

ϑζ ∈ [0, 1], and
}
∑

ζ=1
ϑζ = 1. Then,
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IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃$(ζ))
ϑζ

=

〈[
e
−
(

}
∑

ζ=1
ϑζ

(
−log βL

∂$(ζ)

)ð)1/ð

, e
−
(

}
∑

ζ=1
ϑζ

(
−log βU

∂$(ζ)

)ð)1/ð]
,

[
1−

e
−
(

}
∑

ζ=1
ϑζ

(
−log

(
1−δL

∂$(ζ)

))ð)1/ð

, 1− e
−
(

}
∑

ζ=1
ϑζ

(
−log

(
1−δU

∂$(ζ)

))ð)1/ð]〉

where ($(1), $(2), . . . , $(})) are the permutation of (ζ = 1, 2, . . . ,}), for which ∂̃$(ζ−1) ≥ ∂̃$(ζ)

for all ζ = 1, 2, . . . ,}.

Proof. Like Theorem 2, Theorem 6 is simply obtained.

The following characteristics can be proven well by employing the IVIFAAOWG operator.

Property 1. (Idempotency) If ∂̃ζ (ζ = 1, 2, . . . ,}) are identical, i.e., ∂̃ζ = ∂̃ for every ζ, then
IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃.

Property 2. (Boundedness) Let ∂̃ζ (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs. Let ∂̃− =

min
s

∂̃ζ , ∂̃+ = max
s

∂̃ζ . Then, ∂̃− ≤ IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Property 3. (Monotonicity) Suppose that ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) are two sets of IVIFNs and

∂̃ζ ≤ ∂̃
′
ζ for every ζ, then IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ IVIFAAOWGϑ(∂̃

′
1, ∂̃

′
2, . . . , ∂̃

′
}).

Property 4. (Commutativity) Let ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) be two sets of IVIFNs, then

IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) = IVIFAAOWGϑ(∂̃
′
1, ∂̃

′
2, . . . , ∂̃

′
}) where ∂̃

′
ζ (ζ = 1, 2, . . . ,}) is

any permutation of ∂̃ζ (ζ = 1, 2, . . . ,}).

As defined in Definition 8, the IVIFAAWG operator measures only the IVIFNs, and as
defined in Definition 9, the IVIFAAOWG operator measures only the IVIFNs’ consistent
positions. Following that, weights represent different aspects of both the IVIFAAWG
and IVIFAAOWG operators. Nevertheless, both the operators think about just one of
them. To overcome this disadvantage, in the following we will exhibit IVIF Aczel–Alsina
hybrid geometric (IVIFAAHG) operator, which weights both the given IVIFN and its
ordered position.

Definition 10. Let ∂̃ζ (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs. An IVIFAAHG operator
of dimension } is a function IVIFAAHG : (L?)} → L?, such that

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

( ˙̃∂$(ζ))
ϑζ

= ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

where ϑ = (ϑ1, ϑ2, . . . , ϑ})
T is the weighting vector associated with the IVIFAAHG operator, with

ϑζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}
ζ=1 ϑζ = 1; ˙̃∂ζ = ∂̃

}ξζ

ζ , ζ = 1, 2, . . . ,}, ( ˙̃∂$(1),
˙̃∂$(2), . . . , ˙̃∂$(}))

is any permutation of a collection of the weighted IVIFNs ( ˙̃∂1, ˙̃∂2, . . . , ˙̃∂}), such that ˙̃∂$(ζ−1) ≥
˙̃∂$(ζ) (ζ = 1, 2, . . . ,}); ξ = (ξ1, ξ2, . . . , ξ})

T is the weight vector of ∂̃ζ (ζ = 1, 2, . . . ,}), with
ξζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}

ζ=1 ξζ = 1, and } is the balancing coefficient, which plays a role
of balance.
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The following theorem can be deduced using Aczel–Alsina operations on
IVIFNs information.

Theorem 7. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ð ∈ [0, ∞]. Their aggregated value by IVIFAAHG operator is still a IVIFN, and

IVIFAAHGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

( ˙̃∂$(ζ))
ξζ =

〈[
e
−
(

}
∑

ζ=1
ξζ

(
−log β̇L

∂$(ζ)

)ð)1/ð

, e
−
(

}
∑

ζ=1
ξζ

(
−log β̇U

∂$(ζ)

)ð)1/ð]
,

[
1−

e
−
(

}
∑

ζ=1
ξζ

(
−log

(
1−δ̇L

∂$(ζ)

))ð)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ

(
−log

(
1−δ̇U

∂$(ζ)

))ð)1/ð]〉

where ϑ = (ϑ1, ϑ2, . . . , ϑ})
T is the weighting vector associated with the IVIFAAHG operator, with

ϑζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}
ζ=1 ϑζ = 1; ˙̃∂ζ = ∂̃

}ξζ

ζ , ζ = 1, 2, . . . ,}, ( ˙̃∂$(1),
˙̃∂$(2), . . . , ˙̃∂$(}))

is any permutation of a collection of the weighted IVIFNs ( ˙̃∂1, ˙̃∂2, . . . , ˙̃∂}), such that ˙̃∂$(ζ−1) ≥
˙̃∂$(ζ) (ζ = 1, 2, . . . ,}); ξ = (ξ1, ξ2, . . . , ξ})

T is the weight vector of ∂̃ζ (ζ = 1, 2, . . . ,}), with
ξζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}

ζ=1 ξζ = 1, and } is the balancing coefficient, which plays a role
of balance.

Proof. Like Theorem 2, Theorem 7 is simply obtained.

Theorem 8. The IVIFAAWG and IVIFAAOWG operators are both variants of the IVIFAAHG operator.

Proof. (1) Assume ϑ = (1/}, 1/}, . . . , 1/})T . Then,

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

= ( ˙̃∂$(1))
(1/})⊗( ˙̃∂$(2))

(1/})⊗ · · ·
⊗

( ˙̃∂$(}))
(1/})

= (∂̃1)
ξ1
⊗

(∂̃2)
ξ2
⊗
· · ·

⊗
(∂̃})

ξ}

= IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}),

(2) Let ξ = (1/}, 1/}, . . . , 1/})T . Then, ˙̃∂ζ = ∂̃ζ (ζ = 1, 2, . . . ,}) and

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

= (∂̃$(1))
ϑ1
⊗

(∂̃$(2))
ϑ2
⊗
· · ·

⊗
(∂̃$(}))

ϑ}

= IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}),

which completes the proof.

5. MADM Methods Influenced by IVIFAAWG Operator

In this section, we shall take advantage of the IVIFAAWG operator to create a way for
addressing MADM difficulties with IVIF information.

For a MADM issue, let Φ = {Φ1, Φ2, . . . , Φψ} function as the set of alternatives
and J = {J1, J2, . . . , J}} function as the set of attributes, and attributes weight vector is

ξ = (ξ1, ξ2, . . . , ξ})
T , fulfilling ξζ ∈ [0, 1] and

}
∑

ζ=1
ξζ = 1. We explicit the assessment infor-

mation of the alternative Φ℘ concerning the criterion Jζ by Υ̃℘ζ = ([βL
∂℘ζ

, βU
∂℘ζ

], [δL
∂℘ζ

, δU
∂℘ζ

]),
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and Γ =
(
Υ̃℘ζ

)
ψ×} is definitely an IVIF decision matrix. Hence, the MADM issue with

IVIFNs may be discussed in the following matrix form, acknowledged by Equation (7).

Γ =
(
Υ̃℘ζ

)
ψ×} =

J1 J2 · · · J}
Φ1
Φ2
...

Φψ


([βL

∂11
, βU

∂11
], [δL

∂11
, δU

∂11
]) ([βL

∂12
, βU

∂12
], [δL

∂12
, δU

∂12
]) · · · ([βL

∂1}
, βU

∂1}
], [δL

∂1}
, δU

∂1}
])

([βL
∂21

, βU
∂21

], [δL
∂21

, δU
∂21

]) ([βL
∂22

, βU
∂22

], [δL
∂22

, δU
∂22

]) · · · ([βL
∂2}

, βU
∂2}

], [δL
∂2}

, δU
∂2}

])
...

...
. . .

...
([βL

∂ψ1
, βU

∂ψ1
], [δL

∂ψ1
, δU

∂ψ1
]) ([βL

∂ψ2
, βU

∂ψ2
], [δL

∂ψ2
, δU

∂ψ2
]) · · · ([βL

∂ψ}
, βU

∂ψ}
], [δL

∂ψ}
, δU

∂ψ}
])

 (7)

where every one of the components Υ̃℘ζ = ([βL
∂℘ζ

, βU
∂℘ζ

], [δL
∂℘ζ

, δU
∂℘ζ

]) is certainly an IVIFN,

where [βL
∂℘ζ

, βU
∂℘ζ

] is the positive membership degree because of which alternative Φ℘ fulfills

the attribute Jζ that has been appropriated by the decision-makers, and [δL
∂℘ζ

, δU
∂℘ζ

] gave the
degree that the alternative Φ℘ does not fulfill the attribute Jζ that has been distributed by the
decision-maker, where [βL

∂℘ζ
, βU

∂℘ζ
] ⊂ D[0, 1], [δL

∂℘ζ
, δU

∂℘ζ
] ⊂ D[0, 1] and 0 ≤ βU

∂℘ζ
+ δU

∂℘ζ
≤ 1,

(℘ = 1, 2, . . . , ψ).
The methodology dependent on IVIFAAWG operator to find out the MADM difficul-

ties with IVIF data explicitly incorporates these steps:

Step 1. Modify decision matrix Γ =
(
Υ̃℘ζ

)
ψ×} into the normalization matrix Γ =

(
Υ̃℘ζ

)
ψ×}.

Υ̃℘ζ =

{
Υ̃℘ζ for benefit attribute Jζ

(Υ̃℘ζ)
c for cost attribute Jζ

(8)

where (Υ̃℘ζ)
c is the complement of Υ̃℘ζ , such that (Υ̃℘ζ)

c = ([δL
∂℘ζ

, δU
∂℘ζ

], [βL
∂℘ζ

, βU
∂℘ζ

]).

In fact, if all the attributes Jζ (ζ = 1, 2, . . . ,}) are the same type, then there is no need
to normalize them, but if it is found that there are two types of attributes then we will
convert cost attributes to benefit attributes. Then, Γ =

(
Υ̃℘ζ

)
ψ×} will be transformed into

IVIF decision matrix Γ =
(
Υ̃℘ζ

)
ψ×}.

Step 2. Make use of the decision data expressed in matrix Γ, and the operator IVIFAAWG
to get the overall preference values Υ̃℘ (℘ = 1, 2, . . . , ψ) of the alternative Φ℘, i.e.,

Υ̃℘ = IVIFAAWGξ(Υ̃℘1, Υ̃℘2, . . . , Υ̃℘}) =
}⊗

ζ=1
(Υ̃℘ζ)

ξζ

=

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1−

e
−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

. (9)

Step 3. Rank all of the alternatives in order of preference. Make use of the method in
Definition 3 to rank the entire rating values Υ̃℘ (℘ = 1, 2, . . . , ψ) and rank all the
alternatives Φ℘ (℘ = 1, 2, . . . , ψ) as per ~Υ̃℘ (℘ = 1, 2, . . . , ψ) in descending order.
Lastly, we choose the advantageous alternative(s) with the highest rating value.

Step 4. End.

6. Numerical Example

This section contains an interesting explanation demonstrating the systematic method-
ology for choosing an appropriate car.
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6.1. Problem Description

Consider a consumer who is considering purchasing a car. There are five distinct
types of cars (alternatives) Φ℘ (℘ = 1, 2, . . . , 5). The consumer considers six attributes
while deciding which vehicle to buy (adapted from Herrera and Martinez [44]): J1: Fuel
economy; J2: Aerod degree; J3: Price; J4: Comfort; J5: Design; and J6: Security. The weight
vector of the attributes Jζ (ζ = 1, 2, . . . , 6) is ξ = (0.15, 0.25, 0.14, 0.16, 0.20, 0.10)T . Expect
that the features of the alternatives Φ℘ (℘ = 1, 2, . . . , 5) are addressed by the IVIFNs, as
demonstrated in the IVIF decision matrix Γ =

(
Υ̃℘ζ

)
6×5 (Table 1).

Table 1. IVIF decision matrix.

Φ1 Φ2 Φ3 Φ4 Φ5

J1 ([0.56,0.66],[0.26,0.31]) ([0.38,0.47],[0.34,0.44]) ([0.56,0.63],[0.23,0.32]) ([0.64,0.73],[0.16,0.27]) ([0.48,0.63],[0.26,0.36])
J2 ([0.78,0.88],[0.07,0.12]) ([0.47,0.56],[0.27,0.37]) ([0.51,0.57],[0.16,0.26]) ([0.65,0.75],[0.13,0.20]) ([0.64,0.69],[0.21,0.31])
J3 ([0.61,0.82],[0.11,0.18]) ([0.79,0.84],[0.11,0.16]) ([0.51,0.56],[0.36,0.44]) ([0.54,0.64],[0.25,0.36]) ([0.79,0.84],[0.08,0.16])
J4 ([0.82,0.91],[0.02,0.07]) ([0.55,0.65],[0.22,0.32]) ([0.63,0.74],[0.21,0.25]) ([0.65,0.75],[0.20,0.25]) ([0.60,0.73],[0.17,0.27])
J5 ([0.44,0.56],[0.32,0.42]) ([0.68,0.78],[0.17,0.22]) ([0.35,0.45],[0.35,0.45]) ([0.59,0.69],[0.25,0.30]) ([0.45,0.54],[0.35,0.45])
J6 ([0.70,0.83],[0.08,0.17]) ([0.53,0.58],[0.31,0.36]) ([0.76,0.83],[0.07,0.17]) ([0.41,0.51],[0.36,0.42]) ([0.56,0.66],[0.22,0.32])

6.2. The IFAAWG Operator-Based Technique

To determine one of most perfect car Φ℘ (℘ = 1, 2, . . . , 5), we employ the IFAAWG
operator to construct a MADM theory using intuitionistic fuzzy information, which is
frequently evaluated as follows:

• Step 1. Because the attributes are classified into two types, we begin by converting
the attribute of the cost type into the attribute of the benefit type by employing
Equation (8). At that point, Γ =

(
Υ̃℘ζ

)
6×5 is changed into the normalized decision

matrix Γ =
(
Υ̃℘ζ

)
6×5 (Table 2).

• Step 2. Assume that ð = 1. The IVIFAAWG operator is used to know the overall
alternative values Υ̃℘ for five alternatives Φ℘ (℘ = 1, 2, . . . , 5),
Υ̃1 = ([0.637689, 0.762041], [0.154922, 0.224767]),
Υ̃2 = ([0.547075, 0.633999], [0.237723, 0.318131]),
Υ̃3 = ([0.516381, 0.595996], [0.241492, 0.328694]),
Υ̃4 = ([0.591841, 0.691298], [0.212673, 0.286312]),
Υ̃5 = ([0.574598, 0.669233], [0.226311, 0.324705]).

• Step 3. We evaluate the score values K̂(Υ̃℘) (℘ = 1, 2, . . . , 5) of the universal IVIFNs
Υ̃℘ (℘ = 1, 2, . . . , 5) utilizing Equation (2) as K̂(Υ̃1) = 0.510021, K̂(Υ̃2) = 0.312610,
K̂(Υ̃3) = 0.271095, K̂(Υ̃4) = 0.392077, K̂(Υ̃5) = 0.346408.

• Step 4. Ranking these five alternatives Φ℘ (℘ = 1, 2, . . . , 5) according to the score
values K̂(Υ̃℘) (℘ = 1, 2, . . . , 5) of the overall IVIFNs as Φ1 � Φ4 � Φ5 � Φ2 � Φ3.

• Step 5. Thus, the best car is Φ1.

Table 2. Normalized IVIF decision matrix.

Φ1 Φ2 Φ3 Φ4 Φ5

J1 ([0.56,0.66],[0.26,0.31]) ([0.38,0.47],[0.34,0.44]) ([0.56,0.63],[0.23,0.32]) ([0.64,0.73],[0.16,0.27]) ([0.48,0.63],[0.26,0.36])
J2 ([0.78,0.88],[0.07,0.12]) ([0.47,0.56],[0.27,0.37]) ([0.51,0.57],[0.16,0.26]) ([0.65,0.75],[0.13,0.20]) ([0.64,0.69],[0.21,0.31])
J3 ([0.61,0.82],[0.11,0.18]) ([0.79,0.84],[0.11,0.16]) ([0.51,0.56],[0.36,0.44]) ([0.54,0.64],[0.25,0.36]) ([0.79,0.84],[0.08,0.16])
J4 ([0.82,0.91],[0.02,0.07]) ([0.55,0.65],[0.22,0.32]) ([0.63,0.74],[0.21,0.25]) ([0.65,0.75],[0.20,0.25]) ([0.60,0.73],[0.17,0.27])
J5 ([0.44,0.56],[0.32,0.42]) ([0.68,0.78],[0.17,0.22]) ([0.35,0.45],[0.35,0.45]) ([0.59,0.69],[0.25,0.30]) ([0.45,0.54],[0.35,0.45])
J6 ([0.70,0.83],[0.08,0.17]) ([0.53,0.58],[0.31,0.36]) ([0.76,0.83],[0.07,0.17]) ([0.41,0.51],[0.36,0.42]) ([0.56,0.66],[0.22,0.32])
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7. The Impact of the Parameter ð in This Technique

To show how the different values of the parameter ð affect the alternatives, we use
different values of the parameter ð to categorize the alternatives. The IVIFAAWG operator
is used to rank the alternatives Φ℘ (t = 1, 2 . . . , 5), and they are shown in Table 3 and
shown in Figure 2. Clearly, when the value of ð for IVIFAAWG operator starts growing,
the score values of the possible alternatives decrease, but the ranking stays the same:
Φ1 � Φ4 � Φ5 � Φ2 � Φ3. Thus, the most important alternative is Φ1.

Table 3. Ranking order of the alternatives with various parameter ð by IVIFAAWG operator.

ð K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5) Ranking Order

1 0.510021 0.312610 0.271095 0.392077 0.346408 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
2 0.432522 0.274768 0.232654 0.369262 0.315391 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
3 0.374209 0.245251 0.200569 0.344796 0.289366 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
4 0.332473 0.222023 0.174023 0.319924 0.267292 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
5 0.302133 0.203274 0.152149 0.295960 0.248489 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
6 0.279331 0.187738 0.134129 0.273905 0.232478 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
7 0.261630 0.174584 0.119238 0.254265 0.218860 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
8 0.247512 0.163268 0.106868 0.237122 0.207273 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
9 0.236003 0.153420 0.096520 0.222303 0.197390 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

10 0.226454 0.144778 0.087797 0.209530 0.188927 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

ð = 1 ð = 3 ð = 5 ð = 8 ð = 10
0

0.1

0.2

0.3

0.4

0.5

Φ1 Φ2 Φ3 Φ4 Φ5

Figure 2. Score values belonging to the alternatives for various values ð by IVIFAAWG operator.

Additionally, Figure 2 reveals that when the value of ð is changed in the example, the
ranking results remain identical, demonstrating the resilience of the IVIFAAWG operators.

8. Sensitivity Analysis (SA) of Criteria Weights

To investigate the effect of criteria weights on ranking order, we present a sensitivity
investigation. This is done using 24 different weight sets, namely—Q1, Q2, . . . , Q24 (Table 4)
formed by considering all possible combinations of the criteria weights η1 = 0.15, η2 = 0.25,
η3 = 0.14, η4 = 0.16, η5 = 0.20, and η6 = 0.10. This is especially valuable for achieving a
more broad scope of criteria weights for taking a gander at the affectability of the created
model. The scores of alternatives are accumulated in Figure 3, and their respective ranking
orders are indexed in Table 5. Upon examining the ranking order of alternatives, it is seen
that Φ1 holds the first rank in 100% of the scenarios when the IVIFWG operator (taking
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ð = 2) is applied. Hence, the priority of alternatives acquired by utilizing our developed
method is credible.

Table 4. Various weight sets of criteria.

Weight Sets η1 η2 η3 η4 η5 η6 Weight Sets η1 η2 η3 η4 η5 η6

Q1 0.15 0.25 0.14 0.16 0.20 0.10 Q13 0.16 0.20 0.25 0.15 0.14 0.10
Q2 0.15 0.14 0.16 0.20 0.10 0.25 Q14 0.16 0.25 0.15 0.14 0.10 0.20
Q3 0.15 0.16 0.20 0.10 0.25 0.14 Q15 0.16 0.15 0.14 0.10 0.20 0.25
Q4 0.15 0.20 0.10 0.25 0.14 0.16 Q16 0.16 0.14 0.10 0.20 0.25 0.15
Q5 0.25 0.15 0.14 0.20 0.10 0.16 Q17 0.20 0.25 0.10 0.14 0.15 0.16
Q6 0.25 0.14 0.20 0.10 0.16 0.15 Q18 0.20 0.10 0.14 0.15 0.16 0.25
Q7 0.25 0.20 0.10 0.16 0.15 0.14 Q19 0.20 0.14 0.15 0.16 0.25 0.10
Q8 0.25 0.10 0.16 0.15 0.14 0.20 Q20 0.20 0.15 0.16 0.25 0.10 0.14
Q9 0.14 0.16 0.15 0.20 0.10 0.25 Q21 0.10 0.14 0.15 0.16 0.20 0.25

Q10 0.14 0.15 0.20 0.10 0.25 0.16 Q22 0.10 0.15 0.16 0.20 0.25 0.14
Q11 0.14 0.20 0.10 0.25 0.16 0.15 Q23 0.10 0.16 0.20 0.25 0.14 0.15
Q12 0.14 0.10 0.25 0.16 0.15 0.20 Q24 0.10 0.20 0.25 0.14 0.15 0.16

Figure 3. Utility values of alternatives for distinct sets of weighted criteria.

Table 5. Priority order of alternatives for diverse weight sets.

Ranking Order Ranking Order Ranking Order

Q1 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q9 Φ1 � Φ5 � Φ3 � Φ4 � Φ2 Q17 Φ1 � Φ4 � Φ5 � Φ3 � Φ2
Q2 Φ1 � Φ5 � Φ3 � Φ4 � Φ2 Q10 Φ1 � Φ4 � Φ2 � Φ5 � Φ3 Q18 Φ1 � Φ5 � Φ4 � Φ3 � Φ2
Q3 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q11 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q19 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Q4 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q12 Φ1 � Φ5 � Φ2 � Φ4 � Φ3 Q20 Φ1 � Φ5 � Φ4 � Φ3 � Φ2
Q5 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q13 Φ1 � Φ5 � Φ4 � Φ2 � Φ3 Q21 Φ1 � Φ5 � Φ2 � Φ4 � Φ3
Q6 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q14 Φ1 � Φ5 � Φ4 � Φ3 � Φ2 Q22 Φ1 � Φ4 � Φ2 � Φ5 � Φ3
Q7 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q15 Φ1 � Φ5 � Φ4 � Φ2 � Φ3 Q23 Φ1 � Φ5 � Φ4 � Φ2 � Φ3
Q8 Φ1 � Φ5 � Φ4 � Φ3 � Φ2 Q16 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q24 Φ1 � Φ5 � Φ4 � Φ2 � Φ3

9. Comparison Study

Following that, we will compare and contrast our proposed approach with some other
conventional methods such as the IVIF weighted averaging (IVIFWA) operator [5], the
IVIF weighted geometric (IVIFWG) operator [39], the IVIF Einstein weighted geometric
(IVIFWGε) operator [16], and the IVIF Einstein weighted averaging (IVIFWAε) opera-
tor [17]. The comparison findings are given in Tables 6 and 7, and they are depicted in
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Figure 4 visually. If you look at Tables 3 and 6, you can see that the IVIFWG operator is a
special case of the IVIFAAWG operator, and that this happens when ð = 1.

As a consequence, our recommended procedures for resolving IVIF MADM problems
are frequently more extensive and adaptable than some of the techniques now in use.

Table 6. Comparative assessment using a few popular methodologies.

Techniques K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5) Preference Order

Xu [5] 0.605185 0.370086 0.326785 0.375578 0.391143 Φ1 � Φ5 � Φ4 � Φ2 � Φ3
Xu & Chen [39] 0.510021 0.312610 0.271095 0.392077 0.346408 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Wang & Liu [16] 0.523568 0.321157 0.279447 0.396147 0.352904 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Wang & Liu [17] 0.597400 0.362337 0.319370 0.413345 0.385472 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

Proposed method 0.226454 0.144778 0.087797 0.209530 0.188927 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

Table 7. Qualitative evaluations of the current methods.

Techniques Whether It Is More Straightforward Whether It Should Make Information
to Express Ambiguous Data Aggregation More Parameter-Adjustable

Xu [5] Yes No
Xu & Chen [39] Yes No
Wang & Liu [16] Yes No
Wang & Liu [17] Yes No

Proposed method Yes Yes

K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5)

0.2

0.4

0.6

IVIFWA operator
IVIFWG operator

IVIFWGε operator
IVIFWAε operator

Proposed IVIFAAWG operator

Figure 4. Comparison analysis with a few prevailing techniques.

10. Conclusions

We began this study by extending the Aczel–Alsina t-norm and t-conorm to IVIF
scenarios, defining and examining a few additional working principles for IVIFNs. Then,
in light of these new operating laws, different new aggregation operators, such as the IVI-
FAAWG operator, the IVIFAAOWG operator, and the IVIFAAHG operator, were devised
to accommodate situations in which the specified assertions are IVIFNs. The fundamental
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characteristics of the recommended operators are examined, as well as their specific situa-
tions. We provide a realistic approach to MADM difficulties with IVIFNs depending on the
IFAAWG operator. Furthermore, an exemplary scenario of choosing suitable cars is utilized
to demonstrate the developed model, and a comparative study with some other methods is
undertaken to show the recommended operators’ distinct advantages. In future studies,
we plan to extend the challenge further by introducing new characteristics, including the
use of probabilistic aggregations. Additionally, we will discuss additional decision-making
aspects like cluster analysis, performance analysis [45], sustainable city logistics [46], risk in-
vestment assessment [47], Wireless Sensor Networks [48], capital budgeting techniques [49],
home buying process [50], and other domains in uncertain environment [51–58].
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