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Abstract: In this paper, the recursive aggregation of OWA operators for intuitionistic fuzzy numbers
(IFN) based on a non-additive measure (NAM) with σ− λ rules is constructed and investigated in
light of the σ− λ rules of a non-additive measure (NAM). Additionally, an integrator is designed by
drawing on the genetic algorithm and the process of calculation is elaborated by an example.
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1. Introduction

Since the concept of ordered weighted averaging (OWA) operators was initiated by
Yager in 1988 [1], it has received wide application in various domains, including decision
expert systems, market surveys, neural networks, analysis, fuzzy logic control, etc. [2–4].
In 2005, Yager further put forward the recursive forms of OWA operators [5]. Its fundamen-
tal basic idea is to directly derive the aggregated result of n data by using the aggregated
result of n − 1 data while keeping the orness level unchanged. However, the attribute
indexes are mostly related with each other in the process of deriving aggregation results
of n data using the existing aggregation results of n − 1 data. The main reason lies in
the fact that the existing recursive forms of OWA operators are established on the base
of the classical probability measure and Lebesgue integral integration operator [6]. That
is to say, the weight vector is not able to be measured independently, and it may also
not meet the countable additivity of the classical probability measure. Fortunately, fuzzy
measure, defined by Sugeno in 1974, can be utilized to depict the correlations of attribute
indexes [7–10]. Meanwhile, aggregation functions and aggregation operators are investi-
gated by many researchers recently [11–14]. Because of the fuzziness and uncertainty of
actual decision issues, the evaluation values involved in the decision process are not always
expressed as crisp numbers. However, Intuitionistic fuzzy number (IFN) is a critical tool
for settling imprecise information [15,16] and could offer the membership degree and the
nonmembership degree simultaneously. Thus, IFN performs more flexibly and efficiently
than a traditional fuzzy set in addressing uncertainty. In this work, recursive aggregation
of OWA operators for IFN based on a non-additive measure (NAM) with σ− λ rules is put
forward and researched.

The rest of this work is organized as follows. In Section 2, we review the non-additive
measure (NAM) with σ− λ rules and IFN and propose an OWA operator for IFN based on
a NAM with σ− λ rules. In Section 3, we derive the recursive forms of OWA operators
for IFN according to NAM with σ− λ rules while keeping the orness grade unchanged.
In Section 4, the procedure for integrator design in recursive aggregation is designed, and
the process of calculation is demonstrated by an example.

Axioms 2022, 11, 257. https://doi.org/10.3390/axioms11060257 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060257
https://doi.org/10.3390/axioms11060257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11060257
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060257?type=check_update&version=4


Axioms 2022, 11, 257 2 of 13

2. Preliminaries

Definition 1 ([7–10]). Let X be a nonempty set and A a σ− algebra on the X. A set function
µ : A→ [0,+∞] is called a fuzzy measure if

(1) µ(∅) = 0;
(2) µ(X) = 1;
(3) For each A and B ∈ A such that A ⊆ B, µ(A) ≤ µ(B).
A fuzzy measure µ is called a Sugeno measure if µ satisfies σ− λ rules, briefly denoted as gλ.

The fuzzy measure shown in this paper is a Sugeno measure.

Definition 2 ([7–10]). gλ is called a fuzzy measure based on σ− λ rules if

gλ

(
∞⋃

i=1

Ai

)
=


1
λ

{
∞

∏
i=1

[1 + λgλ(Ai)]− 1

}
, λ 6= 0,

∞

∑
i=1

gλ(Ai), λ = 0,

where λ ∈ (− 1
supµ , ∞)

⋃
{0}, {Ai} ⊂ A , Ai ∩ Aj = ∅ for all i, j = 1, 2, · · · and i 6= j.

Particularly, if λ = 0, then gλ is a classic probability measure.
In Definition 2, if n = 2, then

µ(A ∪ B) =

 µ(A) + µ(B) + λµ(A)µ(B), λ 6= 0,

µ(A) + µ(B), λ = 0.

If X is a finite set, for any subset A of X, then

gλ(A) =


1
λ

{
∏
x∈A

[1 + λgλ({x})]− 1

}
, λ 6= 0,

∑
x∈A

gλ({x}), λ = 0.

If X is a finite set, then the parameter λ of a regular Sugeno measure based on σ− λ
rules is determined by the equation

1 + λ =
n

∏
i=1

(1 + λgλ(xi)).

Definition 3 ([15,16]). (IFNs) Suppose X be a universe of discourse. An INF in A over X is
expressed by:

A = {〈x, µA(x), νA(x)〉|x ∈ X},

where
µA → [0, 1], νA → [0, 1],

with the condition 0 ≤ µ(x) + ν(x) ≤ 1, ∀x ∈ X. µ(x), ν(x) and π(x) = 1− µ(x) − ν(x)
denote the membership function, the non-membership function, and hesitation functions of the
element x to the set A, respectively. The class Ẽ represents the set of all INFs in A.

Definition 4 ([16]). (IFNs Score Function) Suppose α̃ = (µ, ν) be an IFN, a score function S(α̃)
of an INF can be represented below

S(α̃) =
µα̃ − να̃

2
, S(α̃) ∈ [−1, 1],
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to evaluate the degree of the score of the intuitionistic fuzzy number α̃, where S(α̃) ∈ [−1, 1].
(IFNs Accuracy Function). Suppose α̃ = (µ, ν) be an intuitionistic fuzzy number, an accuracy

function H(α̃) of an IFN can be defined below

H(α̃) =
µα̃ + να̃

2
, H(α̃) ∈ [−1, 1],

to evaluate the degree of accuracy of the IFN α̃, where H(α̃) ∈ [−1, 1].

In the light of the two mentioned functions in Definition 4, Xu and Yager proposed the
order relation below [16]:

(1) If S(α̃1) < S(α̃2), then α̃1 < α̃2;
(2) If S(α̃1) = S(α̃2), then

(i) If H(α̃1) = H(α̃2), then α̃1 = α̃2;
(ii) If H(α̃1) < H(α̃2), then α̃1 < α̃2;
(iii) If H(α̃1) > H(α̃2), then α̃1 > α̃2.

Definition 5 ([16]). Let α̃1 = (µα̃1 , να̃1) and α̃2 = (µα̃2 , να̃2) be two IFNs, then
(1) α̃1 ⊕ α̃2 = (µα̃1 + µα̃2 − µα̃1 µα̃2 , να̃1 να̃2);
(2) α̃1 ⊗ α̃2 = (µα̃1 µα̃2 , να̃1 + να̃2 − να̃1 να̃2);
(3) λα̃ = (1− (1− µα̃)λ, νλ

α̃ ), λ > 0;
(4) α̃λ = (µλ

α̃ , 1− (1− να̃)λ), λ > 0.

3. The OWA Operator for Intuitionistic Fuzzy Numbers (IFNs) on a Non-Additive
Measure (NAM) with σ − λ Rules

In the following discussion, we will always default to gλ(A0) = 0 unless other-
wise specified.

Definition 6. Let gλ be a fuzzy measure satisfying σ − λ rules, Ai = {x1, x2, · · · , xi}, i =
1, 2, · · · , n. An OWA operator of dimension n for INFs based on a NAM with σ− λ rules is a
mapping F̃n : Ẽ1 × Ẽ2 × · · · × Ẽn → Ẽ defined as

F̃n(α̃1, α̃2, · · · , α̃n) =
n⊕

i=1

(gλ(Ai)− gλ(Ai−1)) · β̃i, (1)

where β̃i is the i-th largest value out of α̃ = (α̃1, α̃2, · · · , α̃n) (i.e., β̃1 ≥ β̃2 ≥ · · · ≥ β̃n).

By Definitions 5 and 6, we can easily obtain the result below.

Theorem 1. Let gλ be fuzzy measure satisfying σ − λ rules, denote Ai = {x1, x2, · · · , xi},
i = 1, 2, · · · , n, F̃n(α̃1, α̃2, · · · , α̃n) be an OWA operator of dimension n for IFNs based on a NAM
with σ− λ rules. Then,

F̃n(α̃1, α̃2, · · · , α̃n) (2)

=
n⊕

i=1

(1− (1− µβ̃i
)gλ(Ai)−gλ(Ai−1), ν

gλ(Ai)−gλ(Ai−1)

β̃i
)

= (1−
n

∏
i=1

(1− µβ̃i
)gλ(Ai)−gλ(Ai−1),

n

∏
i=1

ν
gλ(Ai)−gλ(Ai−1)

β̃i
).



Axioms 2022, 11, 257 4 of 13

That is to say,

µF̃n
= 1−

n

∏
i=1

(1− µβ̃i
)gλ(Ai)−gλ(Ai−1), (3)

νF̃n
=

n

∏
i=1

ν
gλ(Ai)−gλ(Ai−1)

β̃i
,

where β̃i = (µβ̃i
, νβ̃i

) is the i-th largest value out of α̃ = (α̃1, α̃2, · · · , α̃n) (i.e., β̃1 ≥ β̃2 ≥ · · · ≥ β̃n).

Proof. By Definitions 5 and 6, we easily obtain the result below. As

β̃1 ⊕ β̃2 = (µβ̃1
+ µβ̃2

− µβ̃1
µβ̃2

, νβ̃1
νβ̃2

) = (1− (1− µβ̃1
)(1− µβ̃2

), νβ̃1
νβ̃2

)

and
β̃1 ⊕ β̃2 ⊕ β̃3 = (1− (1− µβ̃1

)(1− µβ̃2
)(1− µβ̃3

), νβ̃1
νβ̃2

νβ̃3
),

we have

F̃n(α̃1, α̃2, · · · , α̃n)

=
n⊕

i=1

(1− (1− µβ̃i
)gλ(Ai)−gλ(Ai−1), ν

gλ(Ai)−gλ(Ai−1)

β̃i
)

= (1−
n

∏
i=1

(1− µβ̃i
)gλ(Ai)−gλ(Ai−1),

n

∏
i=1

ν
gλ(Ai)−gλ(Ai−1)

β̃i
).

It follows that

µF̃n
= 1−

n

∏
i=1

(1− µβ̃i
)gλ(Ai)−gλ(Ai−1),

νF̃n
=

n

∏
i=1

ν
gλ(Ai)−gλ(Ai−1)

β̃i
,

Theorem 2. When λ = 0, and β̃i is an IFN, then the OWA operator for a series of INFs based on
a NAM with σ− λ rules would degenerate to the classic OWA operator form for a series of IFNs.
In fact, based on countable additivity, we have

F̃n(α̃1, α̃2, · · · , α̃n) =
n⊕

i=1

(gλ(Ai)− gλ(Ai−1)) · β̃i (4)

= g1 β̃1
⊕

g2 β̃2
⊕
· · ·

⊕
gn β̃n

= ω1 β̃1
⊕

ω2 β̃2
⊕
· · ·

⊕
ωn β̃n

=
n⊕

i=1

(1− (1− µβ̃i
)ωi , ν

ωi
β̃i
)

= (1−
n

∏
i=1

(1− µβ̃i
)ωi ,

n

∏
i=1

ν
ωi
β̃i
).

and
n

∑
i=1

ωi =
n

∑
i=1

(gλ(Ai)− gλ(Ai−1)) = gλ(An) = 1.



Axioms 2022, 11, 257 5 of 13

Corollary 1. When λ = 0, and β̃i is a special IFN, namely, real number, i = 1, 2, 3, · · · then the
OWA operator for a series of IFN based on a NAM with σ− λ rules degenerates to the classic OWA
operator in Reference [2].

Definition 7. Let gλ be fuzzy measure meeting δ − λ rules. Denote Ai = {x1, x2, · · · , xi},
i = 1, 2, · · · , n, A0 = ∅. The measure of orness involved with an OWA operator F̃n of dimension n
for IFNs based on a NAM with σ− λ rules can be defined by

orness(g(n)λ ) =
n

∑
i=1

n− i
n− 1

(g(n)λ (Ai)− g(n)λ (Ai−1)),

The measure of andness associated with the OWA operator F̃n of dimension n for IFNs based
on a NAM with σ− λ rules can be further defined by

andness(g(n)λ ) = 1− orness(g(n)λ ) =
n

∑
i=1

i− 1
n− 1

(g(n)λ (Ai)− g(n)λ (Ai−1)).

Theorem 3. Let gλ be the fuzzy measure meeting δ− λ rules. Denote Ai = {x1, x2, · · · , xi},
i = 1, 2, · · · , n, A0 = ∅. F̃n is an OWA operator for IFNs based on a NAM with σ− λ rules, then

(1) The measure of orness associated with an OWA operator F̃n of dimension n for IFNs based
on a NAM with σ− λ rules is defined as

orness(g(n)λ ) =
1

n− 1

n−1

∑
i=1

g(n)λ (Ai), (5)

(2) The measure of andness associated with the OWA operator F̃n of dimension n for IFN based
on a NAM with σ− λ rules is defined as

andness(g(n)λ ) = 1− orness(g(n)λ ) = 1− 1
n− 1

n−1

∑
i=1

g(n)λ (Ai). (6)

Proof.

(1) orness(g(n)λ ) =
n

∑
i=1

n− i
n− 1

(g(n)λ (Ai)− g(n)λ (Ai−1))

=
1

n− 1
[(n− 1)(g(n)λ (A1)− g(n)λ (A0)) + (n− 2)(g(n)λ (A2)− g(n)λ (A1))

+ · · ·+ (g(n)λ (An−1)− g(n)λ (An−2))]

=
1

n− 1
(g(n)λ (A1) + g(n)λ (A2) + · · ·+ g(n)λ (An−1))

=
1

n− 1

n−1

∑
i=1

g(n)λ (Ai),
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(2) andness(g(n)λ ) =
n

∑
i=1

i− 1
n− 1

(g(n)λ (Ai)− g(n)λ (Ai−1))

=
1

n− 1
[(g(n)λ (A2)− g(n)λ (A1)) + 2(g(n)λ (A3)− g(n)λ (A2))

+ · · ·+ (n− 1)(g(n)λ (An)− g(n)λ (An−1))]

=
1

n− 1
(−g(n)λ (A1)− g(n)λ (A2)− · · · − g(n)λ (An−1) + (n− 1))

=
1

n− 1
(−

n−1

∑
i=1

g(n)λ (Ai) + (n− 1))

= 1− 1
n− 1

n−1

∑
i=1

g(n)λ (Ai).

The proof is complete.

Remark 1. When λ = 0, the measure of orness associated with an OWA operator F̃n of dimension
n for IFNs based on a NAM with σ− λ rules degenerates to the classic case [5].

Remark 2. When λ = 0, and the weighting vector is (1, 0, · · · , 0), then orness(g(n)λ ) = 1.

Remark 3. When λ = 0, and the weighting vector is (0, 0, · · · , 1), then orness(g(n)λ ) = 0.

Remark 4. When λ = 0, and the weighting vector is ( 1
n , 1

n , · · · , 1
n ), then orness(g(n)λ ) = 1

2 .

4. Recursive Aggregation of the OWA Operator for Intuitionistic Fuzzy Numbers
(INFs) Based on a Non-Additive Measure (NAM) with σ − λ Rules

In this part, we will derive recursive aggregation of the OWA operator for INFs based
on a NAM with σ− λ rules under the condition that the orness grade remains unchanged.

Lemma 1. Suppose α̃1 = (µα̃1 , να̃1) and α̃2 = (µα̃2 , να̃2) be two IFNs, and λ1, λ2 ≥ 0, then
(1)λ1α̃⊕ λ2α̃ = (λ1 + λ2)α̃;
(2)λ1(λ2α̃) = (λ1λ2)α̃.

Theorem 4. Let gλ be the fuzzy measure meeting δ− λ rules. Denote Ai = {x1, x2, · · · , xi},
i = 1, 2, · · · , n. (g(n)λ (Ai)− g(n)λ (Ai−1)) is the i-th element for the weighting vector of dimension

n. P(n)
L denotes the correlation coefficient. The Left Recursive Form (LRF) of the OWA operator for

IFNs based on a NAM with σ− λ rules can be expressed as:

F̃n =P(n)
L · (

n−1⊕
i=1

(g(n−1)
λ (Ai)− g(n−1)

λ (Ai−1)) · β̃i)
⊕

(g(n)λ (An)− g(n)λ (An−1)) · β̃n (7)

=P(n)
L · F̃n−1

⊕
(1− g(n)λ (An−1)) · β̃n,

where

P(n)
L = 1− (1− g(n)λ (An−1)) = g(n)λ (An−1), (8)

g(n)λ (Ai)− g(n)λ (Ai−1) = P(n)
L · (g(n−1)

λ (Ai)− g(n−1)
λ (Ai−1)),

n−1

∑
i=1

(g(n−1)
λ (Ai)− g(n−1)

λ (Ai−1)) = 1.
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For a fixed level of orness α, we have

P(n)
L =

(n− 1)α

1 +
n−2
∑

i=1
g(n−1)

λ (Ai)

,

g(n)λ (A1) = g(n−1)
λ (A1) · P

(n)
L ,

· · ·

g(n)λ (An−2) = g(n−1)
λ (An−2) · P

(n)
L ,

g(n)λ (An−1) = P(n)
L .

Furthermore, β̃i is the i-th largest value out of α̃ = (α̃1, α̃2, · · · , α̃n) (i.e., β̃1 ≥ β̃2 ≥ · · · ≥ β̃n).

Proof. The simplest aggregation is for two elements, as

F̃2 = (g(2)λ (A1)− g(2)λ (A0)) · β̃1
⊕

(g(2)λ (A2)− g(2)λ (A1)) · β̃2 = g(2)λ (A1) · β̃1
⊕

(1− g(2)λ (A1)) · β̃2,

orness(g(2)λ ) = g(2)λ (A1) = α, andness(g(2)λ ) = 1− g(2)λ (A1) = 1− α.

Let us now consider the aggregation F̃3. In this case,

orness(g(3)λ ) =
1
2

2

∑
i=1

g(3)λ (Ai) = α.

This leads to the system of independent equations
g(3)λ (A1) + g(3)λ (A2) = 2α,

(g(3)λ (A1)− 0) + (g(3)λ (A2)− g(3)λ (A1)) + (g(3)λ (A3)− g(3)λ (A2)) = 1,

g(3)λ (A1) = g(2)λ (A1) · P
(3)
L ,

(g(3)λ (A2)− g(3)λ (A1)) = (1− g(2)λ (A1)) · P
(3)
L .

The solution is

P(3)
L =

2α

1 + g(2)λ (A1)
,

g(3)λ (A1) = g(2)λ (A1) · P
(3)
L ,

g(3)λ (A2) = P(3)
L .

More generally, in the case of n arguments, we obtain the system of n + 1 indepen-
dent equations 

n−1
∑

i=1
g(n)λ (Ai) = (n− 1)α,

n
∑

i=1
(g(n)λ (Ai)− g(n)λ (Ai−1)) = 1,

g(n)λ (A1) = g(n−1)
λ (A1) · P

(n)
L ,

· · ·
g(n)λ (An−1) = g(n−1)

λ (An−1) · P
(n)
L ,
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whose solution is

P(n)
L =

(n− 1)α

1 +
n−2
∑

i=1
g(n−1)

λ (Ai)

,

g(n)λ (A1) = g(n−1)
λ (A1) · P

(n)
L ,

· · ·

g(n)λ (An−2) = g(n−1)
λ (An−2) · P

(n)
L ,

g(n)λ (An−1) = P(n)
L .

The proof is complete.

Theorem 5. Let gλ be the fuzzy measure meeting σ− λ rules, and let Ai = {x1, x2, · · · , xi},
i = 1, 2, · · · , n, F̃n(α̃1, α̃2, · · · , α̃n) be an OWA operator of dimension n for IFNs based on a NAM
with σ− λ rules. P(n)

L denotes the correlation coefficient. F̃n = (µF̃n
, νF̃n

), β̃n = (µβ̃n
, νβ̃n

). Then,

F̃n = (1− (1− µF̃n−1
)P(n)

L (1− µβ̃n
)1−g(n)λ (An−1), ν

P(n)
L

F̃n−1
ν

1−g(n)λ (An−1)

β̃n
). (9)

That is to say,

µF̃n
= 1− (1− µF̃n−1

)P(n)
L (1− µβ̃n

)1−g(n)λ (An−1), (10)

νF̃n
= ν

P(n)
L

F̃n−1
ν

1−g(n)λ (An−1)

β̃n
,

where

P(n)
L = 1− (1− g(n)λ (An−1)) = g(n)λ (An−1),

g(n)λ (Ai)− g(n)λ (Ai−1) = P(n)
L · (g(n−1)

λ (Ai)− g(n−1)
λ (Ai−1)),

n−1

∑
i=1

(g(n−1)
λ (Ai)− g(n−1)

λ (Ai−1)) = 1.

For a fixed level of orness α, we have

P(n)
L =

(n− 1)α

1 +
n−2
∑

i=1
g(n−1)

λ (Ai)

,

g(n)λ (A1) = g(n−1)
λ (A1) · P

(n)
L ,

· · ·

g(n)λ (An−2) = g(n−1)
λ (An−2) · P

(n)
L ,

g(n)λ (An−1) = P(n)
L .

Furthermore, β̃i = (µβ̃i
, νβ̃i

) is the i-th largest value out of α̃ = (α̃1, α̃2, · · · , α̃n) (i.e., β̃1 ≥
β̃2 ≥ · · · ≥ β̃n).

Remark 5. Similar to Theorems 4 and 5, the Reft Recursive Form (RRF) and the General Recursive
Form (GRF) of the OWA operator for IFNs based on a NAM with σ− λ rules can be discussed
easily. However, the Recursive Aggregation (RA) refers to Reft Recursive Form (RRF) if it is
not emphasized.
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Remark 6. However, in practice, it is more suitable to settle some problems with a fixed level of
orness α. Thus, it is interesting to notice that P(n)

L depends on n and α, as

P(n)
L = PL(n, α) =

(n− 1)α
(n− 2)α + 1

. (11)

5. Calculation of NAM and Fusion Process Design Based on Recursive Aggregation

Theorem 6. Let α̃i = (µα̃i , vα̃i )(i = 1, 2) be two intuitionistic fuzzy numbers. The distance
measure of IFNs α̃1 and α̃2, referring to [17], is defined by

D2(α̃1, α̃2) =
1
2
((µα̃1 − µα̃2)

2 + (vα̃1 − vα̃2)
2 + (πα̃1 − πα̃2)

2).

An OWA operator for IFNs based on a NAM with σ− λ rules is a multiple input and
single output model. By solving the model, we can obtain necessary data.

Let X = {x1, x2, · · · , xk, xk+1, · · · , xn}, n ≥ 2 be a set of attributes, and A = {α1, α2, · · · ,
αm} be a set of objects. Y is the given target. Table 1 shows the evaluation information,
where α̃ij = (µα̃ij , να̃ij) is a value for i-th object with respect to attribute xj, and Ẽi =

(µẼi
, µẼi

) is an evaluation value.

Table 1. Information evaluation table.

x1 x2 · · · xk y

α1 α̃11 α̃12 α̃1k Ẽ1
α2 α̃21 α̃22 · · · α̃2k Ẽ2
· · · · · · · · · · · · · · · · · ·
αm α̃m1 α̃m2 · · · α̃mk Ẽm

Below, we present a procedure for the calculation of the fuzzy measure and integrator
design in recursive aggregation:

Step 1: According to the information evaluation table, we utilize the genetic algorithm
to gain λ and gλ({xj}).

Step 2: Evaluation function:

Eval(V) = min{ 1
m

m

∑
i=1

D2(F̃i(α̃i1, α̃i2, · · · , α̃ik), Ẽi)}

s.t 

µF̃i
= 1−

k
∏
j=1

(1− µα̃ij)
gλ(Aj)−gλ(Aj−1),

νF̃i
=

k
∏
j=1

ν
gλ(Aj)−gλ(Aj−1)
α̃ij

,

πF̃i
= 1− µF̃i

− νF̃i
,

1 + λ =
k

∏
j=1

(1 + λg(k)λ (xj)),

g(k)λ (Aj) =
1
λ (∏x∈Aj

(1 + λg(k)λ ({x}))− 1).

Step 3: Employ g(k)λ (Aj) =
1
λ (∏x∈Aj

(1 + λg(k)λ ({x}))− 1) to derive g(k)λ (Aj).
Step 4: Utilize RA for IFNs based on a NAM with σ− λ rules proposed in this work

to obtain g(k+1)
λ (Aj) with the condition of increasing the attribute index xk+1.

Step 5: When a new object i gives values to the k + 1 attributes, we can utilize the
presented OWA operator to obtain F̃k(i). Then, utilize RF for IFNs based on a NAM with
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σ− λ rules to directly obtain aggregation results F̃k+1(i) of k + 1 attributes from aggregation
results F̃k(i) of k attributes.

Step 6: Similarly, when adding, in turn, the attribute index to evaluation, we can
always utilize the old aggregation results F̃n−1(i) of n− 1 attributes to directly derive the
final aggregation results F̃n(i) of n attributes.

Example 1. Online shopping is prevalent in e-commercial area. Thus, making a relatively accurate
and reasonable evaluation for online shopping is very useful. An online shop’s management
randomly chooses five customers for a satisfaction evaluation of online shop. The evaluation value is
denoted as ãij, and ãij is an IFN. The attributes are x1: logistics, x2: service attitude, x3: price, x4:
product quality in satisfaction evaluation, and the results are shown in Table 2. When customers
further consider “after-sale service” or “payment security”, the online shop management want to
obtain a new evaluation result.

Step 1: Collecting the evaluation values of the customers for a good in Table 2.
The IFNs in Table 2 shows that the evaluation values of the customers for the attributes of
the good. That is to say, the satisfaction evaluation and dissatisfaction evaluation of the
customer for the attribute of a good.

Step 2: According to Table 3, we utilize the genetic algorithm to gain λ and
g(4)λ ({xj})(j = 1, 2, 3, 4). The genetic algorithm is shown in Algorithm 1.

Algorithm 1: The genetic algorithm to gain λ and g(4)λ ({xj})(j = 1, 2, 3, 4).

Step 1: Build an evaluation function file in Matlab software, save it as fit.m file and
store it in the appropriate directory.

Step 2: Genetic algorithm toolbox is executed in the command window of Matlab
R2014a to enter the GUI interface of the genetic algorithm and set relevant
parameters in the corresponding column. Fitness function is @fit, variables
numbers are five. The parameters of the genetic algorithm used in this paper are
shown in Table 4. Stopping Generation is 149, and we use the default values for
others. The GUI running interface of the genetic algorithm toolbox is shown in
Figure 1.

Step 3: After setting the parameters, click “Start” in the GUI running interface of
the genetic algorithm toolbox. λ and g(4)λ ({xj})(j = 1, 2, 3, 4) are shown in
Table 5, and the operation result diagram is shown in Figure 2.

Step 3: Utilizing g(4)λ (Aj) =
1
λ (∏x∈Aj

(1 + λg(4)λ ({x}))− 1) to derive g(4)λ (Aj).

g(4)λ (A1) = g(4)λ ({x1}) = 0.3740; g(4)λ (A2) =
1
λ [(1 + λg(4)λ ({x1}))(1 + λg(4)λ ({x2}))− 1] = 0.6335;

g(4)λ (A3) =
1
λ [(1 + λg(4)λ ({x1}))(1 + λg(4)λ ({x2}))(1 + λg(4)λ ({x3}))− 1] = 0.7477.

Step 4: Utilizing LRF for IFNs based on a NAM with σ − λ rules proposed in this
paper to obtain g(5)λ (Aj) with the attribute index “after-sale service” increasing, we have

α = orness(g(4)λ ) = 1
3

3
∑

j=1
g(4)λ (Aj) = 0.5850; P(5)

L = (n−1)α
(n−2)α+1 = 4α

3α+1 = 0.8494;

g(5)λ (A1) = P(5)
L · g(4)λ (A1) = 0.3177; g(5)λ (A2) = P(5)

L · g(4)λ (A2) = 0.5381;

g(5)λ (A3) = P(5)
L · g(4)λ (A3) = 0.6351; g(5)λ (A4) = P(5)

L = 0.8494.

Step 5: When a new customer (6) gives values to logistics, service attitude, price,
product quality, as listed in Table 2. We can utilize the OWA operator proposed in this
paper to obtain F̃4(6). Then, utilize LRF to directly derive aggregation results F̃5(6) of
5 attributes from aggregation results F̃4(6) of 4 attributes.
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F̃4(6) = (g(4)λ (A1))⊗ (0.90, 0.60)⊕ (g(4)λ (A2)− g(4)λ (A1))⊗ (0.60, 0.20)⊕ (g(4)λ (A3)− g(4)λ (A2))⊗ (0.30, 0.60)⊕ (1−
g(4)λ (A3))⊗ (0.20, 0.70) = (0.6975, 0),

F̃5(6) = P(5)
L ⊗ F̃4(6) ⊕ (1− g(5)λ (A4))⊗ (0.40, 0.50) = (0.6646, 0).

Step 6: When a new customer (7) gives values to the attributes, as listed in Table 2,
F̃6(7) = P(6)

L ⊗ F̃5(7) ⊕ (1− g(6)λ (A5))⊗ (0.50, 0.45) = (0.6476, 0.2989).

Table 2. The satisfaction evaluation.

Customer Logistics Service
Attitude Price Product

Quality
After-Sale

Service

1 (0.00, 0.90) (0.10, 0.80) (0.30, 0.50) (1.00, 0.00)
2 (0.30, 0.60) (0.80, 0.15) (0.50, 0.30) (0.60, 0.30)
3 (0.70, 0.20) (0.90, 0.05) (1.00, 0.00) (0.70, 0.2)
4 (0.10, 0.85) (0.00, 0.90) (0.40, 0.50) (0.30, 0.50)
5 (0.50, 0.35) (0.40, 0.40) (0.50, 0.50) (0.60, 0.20)
6 (0.30, 0.60) (0.90, 0.00) (0.60, 0.20) (0.20, 0.70) (0.40, 0.50)
7 (0.30, 0.70) (0.90, 0.10) (0.60, 0.20) (0.20, 0.70) (0.40, 0.60)

Customer Payment
Security Evaluation

1 (0.20, 0.65)
2 (0.50, 0.45)
3 (0.80, 0.10)
4 (0.10, 0.85)
5 (0.40, 0.50)
6 ?
7 (0.50, 0.45) ?

Table 3. The triangular fuzzy number changed into the interval number.

Customer Logistics Service
Attitude Price Product

Quality Evaluation

1 (0.00, 0.90) (0.10, 0.80) (0.30, 0.50) (1.00, 0.00) (0.20, 0.65)
2 (0.30, 0.60) (0.80, 0.15) (0.50, 0.30) (0.60, 0.30) (0.50, 0.45)
3 (0.70, 0.20) (0.90, 0.05) (1.00, 0.00) (0.70, 0.20) (0.80, 0.10)
4 (0.10, 0.85) (0.00, 0.90) (0.40, 0.50) (0.30, 0.50) (0.10, 0.85)
5 (0.50, 0.35) (0.40, 0.40) (0.50, 0.50) (0.60, 0.20) (0.40, 0.50)

Table 4. The parameters of the genetic algorithm.

Parameter Population Size Initial Rang Elite Count Crossover
Probability

80 [0; 1] 2 0.75

Table 5. Results of Step 2.

Point Set λ gλ Error Hereditary
Algebra

{x1} 0.0160 0.3740 0.0040 149
{x2} 0.2580
{x3} 0.1130
{x4} 0.0020
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Figure 1. The GUI running interface of the genetic algorithm toolbox.

Figure 2. The operation result diagram of Step 2.

6. Conclusions

In this paper, we propose an OWA operator for IFN based on a NAM with σ− λ rules
and derive the Recursive Forms of OWA operators for IFN according to NAM with σ− λ
rules while keeping the orness grade unchanged. Furthermore, the procedure for integrator
design in recursive aggregation is designed and the process of calculation is demonstrated
by an example.
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