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Abstract: In this paper, we consider an approach based on the elementary matrix theory. In other
words, we take into account the generalized Gaussian Fibonacci numbers. In this context, we consider
a general tridiagonal matrix family. Then, we obtain determinants of the matrix family via the
Chebyshev polynomials. Moreover, we consider one type of tridiagonal matrix, whose determinants
are Horadam hybrid polynomials, i.e., the most general form of hybrid numbers. Then, we obtain
its determinants by means of the Chebyshev polynomials of the second kind. We provided several
illustrative examples, as well.

Keywords: Horadam sequence; Chebyshev polynomials of second kind; determinant; tridiagonal
matrices
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1. Introduction

The second-order homogeneous linear recurrence {wn ≡ wn(a, b; p, q)} is defined by
A. F. Horadam as below:

wn = pwn−1 − qwn−2 , for n > 2, (1)

with initial conditions
w0 = a and w1 = b ,

for arbitrary integers a and b (Section 3, [1]). This is one of the possible extensions of some
well-known number sequences and some of them have been listed in Table 1.

Table 1. Some subsequences of the Horadam numbers with OEIS Code.

p, q a, b Sequence OEIS Code

1,1 0,1 Fibonacci A000045
1,1 2,1 Lucas A000032
2,1 0,1 Pell (or (2,1)-Fibonacci) A000129
2,1 2,2 Pell-Lucas A002203
3,1 0,1 Bronze Fibonacci (or (3,1)-Fibonacci) A006190
3,1 2,3 Bronze Lucas A006497
1,2 0,1 Jacobsthal (or (1,2)-Fibonacci) A001045
1,2 2,1 Jacobsthal-Lucas A014551
1,3 1,1 Nickel Fibonacci (or (1,3)-Fibonacci) A006130
1,3 2,1 Nickel Lucas A075118
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Recently, by inspiring the Horadam sequence, the generalized Gaussian Fibonacci
sequence G fn+1(p, q; a, b) is defined by the following way:

G fn+1 = pG fn + qG fn−1, G f0 = a and G f1 = b,

where a and b are initial conditions, see [2,3]. Some well-known special kind of the
generalized Gaussian type sequences can be given in the Table 2.

Table 2. Some kind of Gaussian type sequences.

Notation a b p q Number

GFn i 1 1 1 Gaussian Fibonacci
GPn i 1 2 1 Gaussian Pell
GJn i/2 1 1 2 Gaussian Jacobsthal
GBn i 1 3 1 Gaussian Bronze
GNn i/3 1 1 3 Gaussian Nickel
GMn −i/2 1 3 −2 Gaussian Mersenne
GLn 2− i 1 + 2i 1 1 Gaussian Lucas
Gpn 2− 2i 2 + 2i 2 1 Gaussian Pell-Lucas
Gjn 2− i/2 1 + 2i 1 2 Gaussian Jacobsthal-Lucas

In the literature, there are a huge amount of papers that investigate distinct types
of the subsequences of the generalized Gaussian Fibonacci numbers. For example, in [4],
the authors define the nth generalized complex Fibonacci number and obtain some of their
identities. In [5], the authors introduce the concept of the complex Fibonacci numbers
and establish some quite general identities concerning them. In [6], the authors define
and study the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials. Moreover,
they give the generating function, Binet formula, explicit formula, Q matrix, determinantal
representations, and partial derivation of these polynomials. In [7], the authors consider
the generalized Gaussian Fibonacci and Lucas sequences and define the Gaussian Pell and
Gaussian Pell–Lucas sequences. Moreover they give the generating functions and Binet
formulas for them. The authors, in [8], introduce a new class of quaternions associated
with the well-known Mersenne numbers. They extend the usual definitions into a wider
structure by using arbitrary Mersenne numbers. In [9], the authors extend the Bronze
Fibonacci number to the Gaussian Bronze Fibonacci number. Moreover, they obtain Binet
formula, generating function and some identities for them. In [10], the authors define
generalized k-Mersenne numbers and give a formula of generalized Mersenne polynomials
and further they define Gaussian Mersenne numbers and obtain some identities.

Table 3 presents recurrence relations and some values of some kinds of the generalized
Gaussian Fibonacci numbers.

On the other hand, the connection between particular cases of the Horadam sequence
and the Chebyshev polynomials of the several kinds, has been a topic of research for
decades. Note that,

Tn =


p 1

q
. . . . . .
. . . . . . 1

q p


n×n

,

we have (cf., e.g., [11,12])

det Tn = (
√

q)n Un

(
p

2
√

q

)
,

and the first explicit formula to the Horadam sequence in terms of Chebyshev polynomials
of the second kind is given below [13]:
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wn = (
√

q)n
(

b
√

q
Un−1

(
p

2
√

q

)
− a Un−1

(
p

2
√

q

))
, (2)

where {Un(x)}n>0 are the Chebyshev polynomials of the second kind satisfying the three-
term recurrence relations

Un+1(x)− 2xUn(x) + Un−1(x) = 0 , for n = 0, 1, 2, . . . ,

with initial conditions U−1(x) = 0 and U0(x) = 1. One of the most well-known explicit
formulas for these polynomials is

Un(x) =
sin(n + 1)θ

sin θ
, with x = cos θ (0 6 θ < π),

for all n = 0, 1, 2 . . .. The Chebyshev polynomials of the third kind can be stated by means
of the Chebyshev polynomials of the second kind as below:

Vn(x) = Un(x)−Un−1(x).

The rest of the paper is organized as follows. In Section 2, we take into account the
generalized Gaussian Fibonacci numbers. In this context, we consider a general form of
tridiagonal matrix. Then, we obtain their determinants by exploiting the Chebyshev poly-
nomials of the second kind. Subsequently, we give relationships between the determinants
of some special forms of these matrices and some types of generalized Gaussian Fibonacci
numbers. In Section 3, we consider the Horadam hybrid polynomials which is the most
general form of the hybrid numbers. In this circumstance, it is known that the Horadam
hybrid polynomials can be obtained by means of the determinants of tridiagonal matrices.
By considering these type of matrices, we give the Horadam hybrid polynomials by means
of the Chebyshev polynomials of the second kind. In other words, we represent good
relationships between tridiagonal matrices, Chebyshev polynomials and the generalized
Gaussian Fibonacci numbers and the Horadam hybrid polynomials. Finally, we give some
illustrative examples.

Table 3. Some recurrences and their values.

Recurrence Relation 0 1 2 3 4

GFn = GFn + GFn−1 i 1 1 + i 2 + i 3 + 2i
GLn = GLn + GLn−1 2− i 1 + 2i 3 + i 4 + 3i 7 + 4i
GPn = 2GPn + GPn−1 i 1 2 + i 5 + 2i 12 + 5i
Gpn = 2Gpn + Gpn−1 2− 2i 2 + 2i 6 + 2i 14 + 6i 34 + 14i
GJn = GJn + 2GJn−1

i
2 1 1 + i 3 + i 5 + 3i

Gjn = Gjn + 2Gjn−1 2− i
2 1 + 2i 1 + i 3 + i 5 + 3i

GMn = 3GMn − 2GMn−1 − i
2 1 3 + i 7 + 3i 15 + 7i

GBn = 3GBn + GBn−1 i 1 3 + i 10 + 3i 33 + 10i
GNn = GNn−1 + 3GNn−2

i
3 1 1 + i 4 + i 7 + 4i

2. On Generalized Gaussian Fibonacci Numbers

At this section, we consider the generalized Gaussian Fibonacci numbers. Let us
define a tridiagonal matrix in the following form:

Tn(a, b, c) =



1 a
−1 c b

−1 c
. . .

. . . . . . b
−1 c

.
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Here our first aim is to obtain the determinants of the matrix Tn(a, b, c) by exploit-
ing the Chebyshev polynomials and give its relationship with generalized Gaussian Fi-
bonacci numbers.

Lemma 1 ([14]). Let {Hn, n = 1, 2, . . .} be a sequence of tridiagonal matrices of the form:

Hn =



h11 h12
h21 h22 h23

h32 h33
. . .

. . . . . . hn−1,1
hn,n−1 hn,n

.

Then, the successive determinants of Hn are given by the recursive formula:

|H1| = h11 ,

|H2| = h11h22 − h12h21 ,

|Hn| = hn,n|Hn−1| − hn−1,nhn,n−1|Hn−2| .

Theorem 1. The determinant of the matrix Tn(a, b, c) is

detTn(a, b, c) = (−i
√

b)n−1
(

Un−1

(
ic

2
√

b

)
+ i
√

bUn−2

(
ic

2
√

b

)
a
b

)
.

Proof. Taking into account the Lemma 1 and exploiting some perturbations of tridiagonal
matrices, see [11,15,16], the proof can be verified.

Theorem 2. For n > 1,

GFn = (−i)n−1Vn−1

(
i
2

)
,

GPn = (−i)n−1Vn−1(i) ,

GBn = (−i)n−1Vn−1

(
3i
2

)
,

where Vn is the nth Chebyshev polynomial of third kind.

Proof. Taking into account (1), (2) and substituting some values for a, b, and c in Theorem 1,
one can see the determinants as below:

detTn(i, 1, 1) = (−i)n−1
(

Un−1

(
i
2

)
−Un−2

(
i
2

))
= (−i)n−1Vn−1

(
i
2

)
= GFn ,

detTn(i, 1, 2) = (−i)n−1(Un−1(i)−Un−2(i)) = (−i)n−1Vn−1(i) = GPn ,

detTn(i, 1, 3) = (−i)n−1
(

Un−1

(
3i
2

)
−Un−2

(
3i
2

))
= (−i)n−1Vn−1

(
3i
2

)
= GBn .

Corollary 1. For n > 2,

detTn(i,−2, 3) = (
√

2)n−1
(

Un−1

(
3

2
√

2

)
+

i
2

√
2Un−2

(
3

2
√

2

))
= GMn ,

detTn(i, 2, 1) = (−i
√

2)n−1
(

Un−1

(
i

2
√

2

)
− 1√

2
Un−2

(
i

2
√

2

))
= GJn .

Proof. It is clear from (1), (2) and Theorem 1.
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As an illustration of the Theorem 2, we analyze some particular cases of the matrix.
Let us consider the matrix Tn(i, 1, 1). In other words, it corresponds the following matrix:

Example 1. Let us consider T6(i, 1, 1),

T6(i, 1, 1) =



1 i 0 0 0 0
−1 1 1 0 0 0
0 −1 1 1 0 0
0 0 −1 1 1 0
0 0 0 −1 1 1
0 0 0 0 −1 1


then

det T6(i, 1, 1) = (−i)5V5

(
i
2

)
= 32

(
i
2

)5
− 16

(
i
2

)4
− 32

(
i
2

)3
+ 12

(
i
2

)2
+ 6
(

i
2

)
− 1

= 8 + 5i = GF6 ,

where GF6 denotes the 6th Gaussian Fibonacci number.

Example 2. Let us consider T5(i, 1, 2),

T5(i, 1, 2) =


1 i 0 0 0
−1 2 1 0 0
0 −1 2 1 0
0 0 −1 2 1
0 0 0 −1 2


then

det T5(i, 1, 2) = (−i)4V4(i) = 16i4 − 8i3 − 12i2 − 4i + 1 = 29 + 12i = GP5 ,

where GP5 denotes the 5th Gaussian Pell number.

Example 3. Let us consider T5(i,−2, 3),

T5(i,−2, 3) =


1 i 0 0 0
−1 3 −2 0 0
0 −1 3 −2 0
0 0 −1 3 −2
0 0 0 −1 3


then

detT5(i, 1, 3) = (−i)4V4

(
3i
2

)
= 16

(
3i
2

)4
− 8
(

3i
2

)3
− 12

(
3i
2

)2
− 4
(

3i
2

)
+ 1

= 109 + 33i = GB5 ,

where GB5 denotes the 5th Gaussian Bronze number.
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3. A General Identity for Horadam Hybrid Numbers

Recently, the geometric and physical applications of complex, hyperbolic, and dual
numbers have been thoroughly studied. In [17], M. Özdemir introduced the hybrid num-
bers as

Z = a + bi + cε + dh,

where a, b, c ∈ R with i, ε, h satisfying

i2 = −1 , ε2 = 0 , h2 = 1 , ih = −hi = ε + i .

Considering this extension, new results have been published in the literature. The reader
is referred to [18–24] and the references therein.

In [25], the nth Horadam hybrid number, denoted by Hn, was introduced and several
properties discussed. Its definition is

Hn = Wn + iWn+1 + εWn+2 + hWn+3 ,

where Wn is the nth Horadam number.
Finally, in [26], the author introduced the so-called Horadam hybrinomials. For n ≥ 1,

the nth Horadam hybrinomial is defined by

Hn(x) = hn(x) + hn+1(x)i + hn+2(x)ε + hn+3(x)h .

Moreover, Horadam hybrinomials stated via determinant of matrices, as below:

det Mn(x) = Hn+1(x) ,

where

Mn(x) =



H2(x) H1(x)
−q px 1

−q px 1
. . . . . . . . .
−q px 1

−q px


.

The connection between particular cases of the Horadam sequence and the Chebyshev
polynomials are well-known. The reader is referred, for example, to [13,27]. Here, we
consider the matrix Mn(x) , we can represent the Horadam hybrid polynomials, by means
of the Chebyshev polynomials of the second kind, as

Hn+1(x) = (−i
√

q)n−1
(

Un−1

(
ipx
2
√

q

)
H2(x) + i

√
qUn−2

(
ipx
2
√

q

)
H1(x)

)
,

where

H1(x) = a + bxi + (pbx2 + qa)ε + (p2bx3 + [pqa + qb]x)h ,

H2(x) = bx + (pbx2 + qa)i + (p2bx3 + [pqa + qb]x)ε

+ ([p2bx3 + (pqa + qb)x2]px + q[pbx2 + qa])h .

Some special cases of Horadam hybrinomials are given in the Table 4.
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Table 4. Some special cases for Hn(x).

a b p q

FHn(x) 1 1 1 1
LHn−1(x) 2 1 1 1
PHn(x) 1 2 2 1

QHn−1(x) 2 2 2 1

Notice that if x = 1, then

(i) FHn(1) is the nth Fibonacci hybrid number,
(ii) LHn−1(1) is the (n− 1)th Lucas hybrid number,
(iii) PHn(1) is the nth Pell hybrid number,
(iv) QHn−1(1) is the (n− 1)th Pell-Lucas hybrid number.

As an illustrative example, setting n = 15, a = 1, b = 1, p = 1, and q = 1, we obtain
the Fibonacci hybrid polynomial FH15(x). In other words,

FH15(x) = H16(x)

= (−i
√

q)14
(

U14

(
ipx
2
√

q

)
H2(x) + i

√
qU13

(
ipx
2
√

q

)
H1(x)

)
= (−i)14

(
U14

(
ix
2

)
H2(x) + iU13

(
ix
2

)
H1(x)

)
,

where

H1(x) = 1 + xi + (x2 + 1)ε + (x3 + 2x)h,

H2(x) = x + (x2 + 1)i + (x3 + 2x)ε + (x4 + 3x2 + 1)h .

If we make x = 1, then the above equation gives the 15th Fibonacci hybrid number.
By following the same way, for n = 5, a = 1, b = 2, p = 2, and q = 1, the Pell hybrid
polynomials are represented by

PH5(x) = H6(x)

= (−i)4
(

U4

(
2ix
2

)
H2(x) + iU3

(
2ix
2

)
H1(x)

)
= (1 + 20x2 + 32x4) + (6x + 48x3 + 64x5)i + (1 + 32x2 + 128x4 + 128x6)ε

+ (112x3 + 8x + 320x5 + 256x7)h ,

where

H1(x) = 1 + 2xi + (4x2 + 1)ε + (8x3 + 4x)h ,

H2(x) = 2x + (4x2 + 1)i + (8x3 + 4x)ε + (16x4 + 12x2 + 1)h .

4. Conclusions

In this paper, we initially focus on general form of tridiagonal matrices and express
their determinants by exploiting Chebyshev polynomials of second kind. Then, we consider
the most general form of the several Gaussian Fibonacci numbers that is the generalized
Gaussian Fibonacci numbers and the most general form of hybrid numbers that is the Ho-
radam hybrid polynomials. Substituting various values into the statements of the matrices
Tn(a, b, c) and Mn(x), one can obtain distinct subsequences of the generalized Gaussian
Fibonacci numbers and Horadam hybrid numbers. Finally, we give some illustrative exam-
ples. To sum up, we obtain relationships between general types of tridiagonal matrices and
the generalized Gaussian Fibonacci numbers and the Horadam hybrid polynomials which
are the most general forms of their well-known subsequences.



Axioms 2022, 11, 255 8 of 8

Author Contributions: The authors F.Y. and M.Ö. contributed equally to this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Horadam, A.F. Generating Functions for Powers of A Certain Generalised Sequence of Numbers. Duke Math. J. 1965, 68, 437–446.

[CrossRef]
2. Pethe, S.; Horadam, A.F. Generalized Gaussian Fibonacci Numbers. Bull. Aust. Math. Soc. 1986, 33, 37–48. [CrossRef]
3. Arslan, H. Gaussian Pell and Gaussian Pell-Lucas Quaternions. Filomat 2021, 35, 1609–1617. [CrossRef]
4. Horadam, A.F. Complex Fibonacci Numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [CrossRef]
5. Jordan, H. Gaussian Fibonacci and Lucas Numbers. Fibonacci Q. 1965, 3, 315–318.
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