Article

Total Rainbow Connection Number of Some Graph Operations

Hengzhe Li ${ }^{1, *}$, Yingbin Ma ${ }^{1}$ and Yan Zhao ${ }^{2}$
1 College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China; mayingbincw@htu.edu.cn
2 Department of Mathematics, Taizhou University, Taizhou 225300, China; zhaoyan326@tzu.edu.cn
* Correspondence: lhz@htu.cn

Citation: Li, H.; Ma, Y.; Zhao Y. Total Rainbow Connection Number of Some Graph Operations. Axioms 2022, 11, 254. https://doi.org/ 10.3390/axioms11060254

Academic Editor: Elena Guardo

Received: 25 April 2022
Accepted: 21 May 2022
Published: 26 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In a graph H with a total coloring, a path Q is a total rainbow if all elements in $V(Q) \cup E(Q)$, except for its end vertices, are assigned different colors. The total coloring of a graph H is a total rainbow connected coloring if, for any $x, y \in V(H)$, there is a total rainbow path joining them. The total rainbow connection number $\operatorname{trc}(H)$ of H is the minimum integer r such that there is a total rainbow-connected coloring of H using r colors. In this paper, we study the total rainbow connection number of several graph operations (specifically, adding an edge, deleting an edge, and the Cartesian product) for which the total rainbow connection number is upper-bounded by a linear function of its radius.

Keywords: total coloring; total rainbow connection number; Cartesian product

MSC: 05C15; 05C40

1. Introduction

Each graph is simple, undirected, and finite in this paper. Let H be a graph.
The distance $d_{H}(x, y)$ from x to y in H is the number of edges of a shortest path joining x and y. The eccentricity $\operatorname{ecc}_{H}(x)$ of a vertex x is $\max _{y \in V(H)} d_{H}(x, y)$. The radius rad (H) and diameter $\operatorname{diam}(H)$ of H are, respectively, $\min _{u \in V(G)} \operatorname{ecc}_{G}(u)$ and $\max _{u \in V(G)} \operatorname{ecc}_{G}(u)$. A vertex x is a center of H if $\operatorname{ecc}_{H}(x)=\operatorname{rad}(H)$.

An edge coloring of a graph H is a mapping $c: E(H) \rightarrow A$, where A is a set of colors. A graph H with an edge coloring c is an edge-colored graph, and denoted by (H, c). A total coloring of a graph H is a mapping $c: V(H) \cup E(H) \rightarrow A$, where A is a set of colors. A graph H with a total coloring c is a total-colored graph, and denoted by (H, c). In an edgecolored graph (H, c), a path Q is rainbow if $c\left(f_{1}\right) \neq c\left(f_{2}\right)$ for $f_{1}, f_{2} \in E(Q)$ with $f_{1} \neq f_{2}$. An edge coloring is a rainbow-connected edge coloring for H if H has a rainbow path joining x and y for $x, y \in V(H)$. Such a graph H is called rainbow connected. The rainbow connection number $r c(H)$ of H is the minimum value r for which H has a rainbow-connected edge coloring using r colors.

McKeon and Zhang in [1] introduced and studied the rainbow connection number, which has applications in transferring high-security information in multicomputer networks [2,3]. We refer the readers to [4-6] for more results.

As one can see, the above involves the edge coloring of a graph. A natural idea is to generalize it to a concept that involves total coloring.

In a graph H with a total coloring, a path Q is total rainbow if all elements in $V(Q) \cup$ $E(Q)$, except for its end vertices, are assigned different colors. A total coloring of a graph H is a total rainbow-connected coloring if for any $x, y \in V(H)$, there is a total rainbow path joining them. The total rainbow connection number $\operatorname{trc}(H)$ of H is the minimum integer r such that there is a total rainbow connected coloring of H using r colors.

Uchizawa et al. introduced total rainbow connected coloring in [7]. For a total-colored graph (H, c), the rainbow total-connectivity problem is designed to determine whether H
is total rainbow connected. Uchizawa et al. [7] showed that the rainbow total-connectivity problem is strongly NP-complete even for outerplanar graphs. Chen et al. [8] showed that deciding whether a total-colored graph H is total rainbow connected is NP-complete. Jiang et al. [9] studied the upper bound of the total rainbow connection number of a graph with respect to its order and minimum degree. Liu et al. [10] studied the minimum number of colors required to color G, such that each pair of distinct vertices of G are connected by r internally vertex-disjoint total rainbow paths. Ma [11] studied the total rainbow connection number of a graph by some property of its complementary graph. Ma et al. [12] determined the total rainbow connection number of circular ladders and Möbius ladders. Sun [13] determined the rainbow total-connection numbers of complete graphs, trees, cycles and wheels. Sun [14] studied the upper bound of the total rainbow connection number of a graph with respect to its size.

We will study the total rainbow connection number of several graph operations. In Section 2, we how the total rainbow connection number of a graph G will change if we add (or delete) an edge in G. In Section 3, we study the total rainbow connection number of Cartesian product graphs.

2. Adding an Edge or Deleting an Edge

In this section, we shall investigate how the rainbow vertex connection number of a graph G will change if we add (or delete) an edge in G.

First, we need some new notations. A path with n vertices is denoted by P_{n}. A path Q is called an a - b path, denoted by $P_{a b}$, if a and b are its endpoints. Let H be a graph. For an integer $r \geq 1$ and subset $A \subseteq V(H)$, the r-step open neighborhood $N_{H}^{r}(A)$ is $\left\{y \in V(H): d_{H}(A, y)=r\right\}$. We simply write $N_{H}(A)$ for $N_{H}^{1}(A)$ and $N_{A}^{r}(x)$ for $N_{H}^{r}(\{x\})$. Similarly, the r-step closed neighborhood $N_{H}^{r}[A]$ is $\{y \in V(H): d(A, y) \leq r\}$. We simply write $N_{H}[A]$ for $N_{H}^{1}[A]$ and $N_{H}^{r}[x]$ for $N_{H}^{r}[\{x\}]$. For $A, B \subseteq V(H)$, let $E_{H}[A, B]$ denote $\{a b: a \in A, b \in B, a b \in E(H)\}$. For a graph H and an edge $a b \in E(G)$, we use $G-a b$ to denote the graph obtained from G by delating $a b$. For a graph H and two vertices $a, b \in V(H)$ such that $a b \notin E(H)$, we use $H+a b$ to denote the graph obtained from H by adding $x y$. We refer to the book [15] for notation and terminology not described here.

Let $Q_{v_{0} v_{k}}=v_{0} v_{1} \cdots v_{k}$ be a total coloring path in (G, c). We define four sets of colors as follows.

$$
\begin{aligned}
& c\left(Q_{v_{0} v_{k}}\right)=\left\{c(f): f \in E\left(Q_{v_{0} v_{k}}\right)\right\} \cup\left\{c(w): w \in V\left(Q_{v_{0} v_{k}}\right) \backslash\left\{v_{0}, v_{k}\right\}\right\}, \\
& c\left[Q_{v_{0} v_{k}}\right)=\left\{c(f): f \in E\left(Q_{v_{0} v_{k}}\right)\right\} \cup\left\{c(w): w \in V\left(Q_{v_{0} v_{k}}\right) \backslash\left\{v_{k}\right\}\right\}, \\
& c\left(Q_{v_{0} v_{k}}\right]=\left\{c(f): f \in E\left(Q_{v_{0} v_{k}}\right)\right\} \cup\left\{c(w): w \in V\left(Q_{v_{0} v_{k}}\right) \backslash\left\{v_{0}\right\}\right\}, \\
& c\left[Q_{v_{0} v_{k}}\right]=\left\{c(f): f \in E\left(Q_{v_{0} v_{k}}\right)\right\} \cup\left\{c(w): w \in V\left(Q_{v_{0} v_{k}}\right)\right\} .
\end{aligned}
$$

We can see that the following observations hold.
Observation 1. For any connected graph $H, \operatorname{trc}(H)=1$ if and only if H is complete, and otherwise, $\operatorname{trc}(H) \geq 3$.

Observation 2. For any connected graph H,

$$
\operatorname{trc}(H) \geq 2 \operatorname{diam}(H)-1
$$

Observation 3. Let H and H^{\prime} be two connected graphs. If H^{\prime} is a spanning subgraph of H, then

$$
\operatorname{trc}(H) \leq \operatorname{trc}\left(H^{\prime}\right) .
$$

Theorem 1. Let H be a connected graph, and let ab be an edge of H for which $H-a b$ is connected. Then

$$
\operatorname{trc}(H) \leq \operatorname{trc}(H-a b) \leq \operatorname{trc}(H)+2 d_{H-a b}(a, b)-1
$$

Proof. Since $H-a b$ is a connected spanning subgraph of H, we show that $\operatorname{trc}(H) \leq$ $\operatorname{trc}(H-a b)$ by Observation 3.

Next, we only need to show that $\operatorname{trc}(H-a b) \leq \operatorname{trc}(H)+2 d_{H-a b}(a, b)-1$. We fixed a total rainbow-connected coloring c of H using $\operatorname{trc}(H)$ colors, and set $d_{H-a b}(a, b)=k$ for simplicity. We picked two sets of colors $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}\right\}$ and $\beta=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ such that $\alpha \cap \beta=\varnothing$ and $(\alpha \cup \beta) \cap c(H)=\varnothing$, and let $P_{a b}=x_{0} x_{1} \ldots x_{k}$ be a shortest path between a and b in $H-a b$, where $x_{0}=a$ and $x_{k}=b$. For $H-a b$, we define a $(\operatorname{trc}(H)+2 k-1)$-total coloring c^{\prime} of $H-a b$ as follows:

For each $v \in V(H)$,

$$
c^{\prime}(v)= \begin{cases}\alpha_{i}, & \text { if } v=x_{i}, 1 \leq i \leq k-1 \\ c(v), & \text { otherwise }\end{cases}
$$

and for each $e \in E(H)$,

$$
c^{\prime}(e)= \begin{cases}\beta_{i}, & \text { if } e=x_{i-1} x_{i}, 1 \leq i \leq k ; \\ c(e), & \text { otherwise } .\end{cases}
$$

Now, we will prove that c^{\prime} is a total rainbow connected coloring of $H-a b$. For $u, v \in V(H-a b)$, there is a total rainbow $u-v$ path $Q_{u v}$ in (H, c) since c is a total rainbow connected coloring of H. We divide three cases.
Case 1. $V\left(Q_{u v}\right) \cap V(P)=\varnothing$.
In this case, the path $Q_{u v}$ is also a total rainbow $u-v$ path in $\left(H-a b, c^{\prime}\right)$ by definition of total coloring c^{\prime},
Case 2. $\left|V\left(Q_{u v}\right) \cap V\left(P_{a b}\right)\right|=1$.
In this case, we assume that $V\left(Q_{u v}\right) \cap V\left(P_{a b}\right)=\{z\}$. If $z=a$ or $z=b$, then $Q_{u v}$ is also a total rainbow $u-v$ path in $\left(H-a b, c^{\prime}\right)$. Otherwise, the path $Q_{u v}$ is also a total rainbow $u-v$ path in $\left(H-a b, c^{\prime}\right)$ since $c^{\prime}(z) \notin c\left(Q_{u v}\right)$. Case 3. $\left|V\left(Q_{u v}\right) \cap V\left(P_{a b}\right)\right| \geq 2$.

In this case, let u^{\prime} be the first vertex on $Q_{u v}$ from u to v so that $u^{\prime} \in V\left(P_{a b}\right) \cap V\left(Q_{u v}\right)$, and v^{\prime} is the last vertex on $Q_{u v}$ from u to v so that $v^{\prime} \in V\left(P_{a b}\right) \cap V\left(Q_{u v}\right)$. Let $Q_{u u^{\prime}}$ denote the subpath connecting u and u^{\prime} on $Q_{u v}$, and let $Q_{v^{\prime} v}$ denote the subpath connecting v^{\prime} and v on $Q_{u v}$.

Because $Q_{u v}$ is a total rainbow, we know that $c\left(Q_{u u^{\prime}}\right) \cap c\left(Q_{v^{\prime} v}\right)=\varnothing$. It follows the definition of c^{\prime} that $Q_{u u^{\prime}}$ and $Q_{v^{\prime} v}$ are also a total rainbow in $\left(H-a b, c^{\prime}\right)$ such that $c^{\prime}\left(Q_{u u^{\prime}}\right) \cap c^{\prime}\left(Q_{v^{\prime} v}\right)=\varnothing$ and $c^{\prime}\left(Q_{u u^{\prime}}\right) \cup c^{\prime}\left(Q_{v^{\prime} v}\right) \subseteq c(H)$. Pick the subpath $P_{u^{\prime} v^{\prime}}$ joining u^{\prime} and v^{\prime} on $P_{a b}$ with total coloring c^{\prime}. Thus, $c^{\prime}\left[P_{u^{\prime} v^{\prime}}\right] \subseteq \alpha \cup \beta$ and $P_{u^{\prime} v^{\prime}}$ is a total rainbow. Since $c(H) \cap(\alpha \cup \beta)=\varnothing$, the path $Q_{u u^{\prime}} \cup P_{u^{\prime} v^{\prime}} \cup Q_{v^{\prime} v}$ is a total rainbow in $\left(H-a b, c^{\prime}\right)$.

Following the above three cases shows that c^{\prime} is a total rainbow connected coloring of $H-a b$. Thus, $\operatorname{trc}(H-a b) \leq \operatorname{trc}(H)+2 d_{H-a b}(a, b)-1$.

Remark 1. Pick a complete graph K_{4} with vertex set $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$, and let H be the graph obtained from K_{4} by deleting edge $v_{0} v_{2}$. On one hand, since $\operatorname{diam}(H)=\operatorname{diam}\left(H-v_{1} v_{3}\right)=2$, by Observation $2, \operatorname{trc}(H) \geq 3$ and $\operatorname{trc}\left(H-v_{1} v_{3}\right) \geq 3$. On the other hand, the graphs H and $H-v_{1} v_{3}$ have a total rainbow connected coloring using 3 colors as Figure $1 a, b$, respectively. Thus, $\operatorname{trc}(H)=\operatorname{trc}\left(H-v_{1} v_{3}\right)=3$, and the lower bound in Theorem 1 is sharp.

Figure 1. Graphs H and $H-v_{1} v_{3}$ in Remark 1. A sharp example for the lower bound in Theorem 1.

Remark 2. Let $P_{6}=v_{0} v_{1} \cdots v_{5}$ be a path of length 5 , and let H be the graph obtained from P_{6} by adding edge $v_{1} v_{4}$. See Figure $2 a$ for details. Since $\operatorname{diam}(H)=3$, we know that $\operatorname{trc}(H) \geq 2 \operatorname{diam}(H)-1=5$ from Observation 2. Moreover, the graph H has a total rainbow connected coloring using 5 colors as Figure $2 a$. So $\operatorname{trc}(H)=5$. Since diam $\left(H-v_{1} v_{4}\right)=5$, we know that $\operatorname{trc}\left(H-v_{1} v_{4}\right) \geq 2 \operatorname{diam}\left(H-v_{1} v_{4}\right)-1=9$ from Observation 2. Moreover, the graph $H-v_{1} v_{4}$ has a total rainbow connected coloring using 9 colors as shown in Figure 2b. So $\operatorname{trc}\left(H-v_{1} v_{4}\right)=9$. Thus, $\operatorname{trc}\left(H-v_{1} v_{4}\right)=9=\operatorname{trc}(H)+2 d_{H-v_{1} v_{4}}\left(v_{1}, v_{4}\right)-2$, and the upper bound in Theorem 1 is almost sharp.

(a)

(b)

Figure 2. Graphs H and $H-v_{1} v_{4}$ in Remark 2. A almost sharp example for the upper bound in Theorem 1.

Corollary 1. Let H be a connected graph. Pick $x y \in E(H)$ such that $H-x y$ is connected. Then

$$
\operatorname{trc}(H) \leq \operatorname{trc}(H-x y) \leq \operatorname{trc}(H)+2 \operatorname{diam}(H-x y)-1
$$

Theorem 2. Let H be a connected graph. Pick $x, y \in V(H)$ such that $x y \notin E(H)$. Then

$$
\operatorname{trc}(H)-2 d_{H}(x, y)+1 \leq \operatorname{trc}(H+x y) \leq \operatorname{trc}(H) .
$$

Proof. Since H is an induced subgraph of $H+x y$, we have that $\operatorname{trc}(H+x y) \leq \operatorname{trc}(H)$ by Observation 3.

Next, we only need to prove that $\operatorname{trc}(H)-2 d_{H}(x, y)+1 \leq \operatorname{trc}(H+x y)$. Let $H^{\prime}=$ $H+x y$. Then $H^{\prime}-x y=H$. By Theorem 1, we know that $\operatorname{trc}\left(H^{\prime}-x y\right) \leq \operatorname{trc}\left(H^{\prime}\right)+$ $2 d_{H^{\prime}-x y}(x, y)-1$, i.e., $\operatorname{trc}(H) \leq \operatorname{trc}(H+x y)+2 d_{H}(x, y)-1$. Thus, $\operatorname{trc}(H+x y) \geq \operatorname{trc}(H)-$ $2 d_{H}(x, y)+1$.

Remark 3. Let H be the graph in Remark 1. Then $H^{\prime}=H-v_{1} v_{3}$ and $e=v_{1} v_{3}$ is a sharp example of the upper bound in Theorem 2. Let H be the graph in Remark 2. Then $H^{\prime}=H-v_{1} v_{4}$ and $e=v_{1} v_{4}$ is an almost sharp example of the lower bound in Theorem 2.

Corollary 2. Let H be a connected graph. Pick $x, y \in V(H)$ such that $x y \notin E(H)$. Then

$$
\operatorname{trc}(H)-2 \operatorname{diam}(H)+1 \leq \operatorname{trc}(H+x y) \leq \operatorname{trc}(H)
$$

3. Cartesian Product

Let I and J be two graphs. Their Cartesian product $I \square J$ is the graph with vertex set $V(I) \times V(J)$, and (i, i) and $\left(i^{\prime}, i^{\prime}\right)$ are adjacent if and only if $i=i^{\prime}$ and $j j^{\prime} \in E(J)$, or $j=j^{\prime}$ and $i i^{\prime} \in E(I)$. It is easy to check that $\operatorname{rad}(I \square J)=\operatorname{rad}(I)+\operatorname{rad}(J)$ and $\operatorname{diam}(I \square J)=$ $\operatorname{diam}(I)+\operatorname{diam}(J)$.

Let I and J be two graphs. Assume that $V(I)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $V(J)=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. Define serval mappings as follows.

For a $y_{a} \in V(J)$, define

$$
\begin{aligned}
& x^{y_{a}}:=\left(x, y_{a}\right) \text { for each vertex } x \in V(I), \\
& I_{1}^{y_{a}}:=\left(V\left(I_{1}^{y_{a}}\right), E\left(I_{1}^{y_{a}}\right)\right) \text { for each subgraph } I_{1} \subseteq I,
\end{aligned}
$$

where $V\left(I_{1}^{y_{a}}\right)=\left\{\left(x, y_{a}\right): u \in V\left(I_{1}\right)\right\}$ and $E\left(I_{1}^{y_{a}}\right)=\left\{\left(x, y_{a}\right)\left(x^{\prime}, v_{a}\right): x x^{\prime} \in E\left(I_{1}\right)\right\}$.
For a $y_{b} \in V(J)$, define

$$
\begin{aligned}
& \left(x, y_{a}\right)^{y_{b}}:=\left(x, y_{b}\right) \text { for each vertex }\left(x, y_{a}\right) \in V\left(I^{y_{a}}\right), \\
& I_{1}^{y_{b}}:=\left(V\left(I_{1}^{y_{b}}\right), E\left(I_{1}^{y_{b}}\right)\right) \text { for each subgraph } I_{1} \subseteq I^{y_{a}},
\end{aligned}
$$

where $V\left(I_{1}^{y_{b}}\right)=\left\{\left(x, y_{b}\right):\left(x, y_{a}\right) \in V\left(I_{1}^{y_{a}}\right)\right\}$ and $E\left(I_{1}^{y_{b}}\right)=\left\{\left(x, y_{b}\right)\left(x^{\prime}, y_{b}\right):\left(x, v_{a}\right)\left(x^{\prime}, y_{a}\right) \in\right.$ $\left.E\left(I_{1}^{y_{a}}\right)\right\}$.

Similarly, for $u_{a} \in V(I)$, define mappings $v^{u_{a}}$ for each $v \in V(J), J_{1}^{u_{a}}$ for subgraph $J_{1} \subseteq J$; for $u_{b} \in V(I)$, define mappings $\left(u_{a}, v\right)^{u_{b}}$ for $\left(u_{a}, v\right) \in V\left(J^{u_{a}}\right)$, and $J_{1}^{u_{b}}$ for $J_{1} \subseteq J^{u_{a}}$.

An r-tree is a tree with a root r. For a r-tree $R, r T v$ is the only path connecting r and v in R. The level $\ell_{R}(v)$ of a vertex v in R is the length of the path $r T v$. The depth of an r-tree is $\operatorname{dep}(R)=\max \left\{\ell_{R}(v): v \in V(R)\right\}$.

If $x \in r R y$, then x is an ancestor of y, and y is a descendant of x. In R, both vertices are related if one is a descendant of the other.

Given an r-tree R and two sets of colors $\alpha=\left\{\alpha_{i}: 0 \leq i \leq \operatorname{dep}(R)\right\}$ and $\gamma=\left\{\gamma_{i}: 1 \leq\right.$ $i \leq \operatorname{dep}(R)\}$, we define a (α, γ)-total coloring c of R as follows:

$$
c(v)=\alpha_{\ell_{R}(v)} \text { for any } v \in V(R)
$$

and

$$
c(e)=\gamma_{k} \text { for any } e=x y \in E(R),
$$

where $k=\max \left\{\ell_{R}(x), \ell_{R}(y)\right\}$.
Now, we are ready to show the following result.
Theorem 3. Let I and J be two connected, non-trivial graphs. Then

$$
2 \operatorname{rad}(I \square J)-1 \leq \operatorname{trc}(I \square J) \leq 4 \operatorname{rad}(I \square J)
$$

Proof. Since $\operatorname{trc}(I \square J) \geq 2 \operatorname{diam}(I \square J)-1 \geq 2 \operatorname{rad}(I \square J)-1$, we have $\operatorname{trc}(I \square J) \geq 2 \operatorname{rad}(I \square J)-$ 1. Thus, the lower bound holds.

Next, we prove that the upper bound is true. Pick a breadth-first search tree (or BFS-tree) R in I rooted at some center u_{0}, and pick a breadth-first search tree (or BFS-tree) Q in J rooted at some center v_{0}. To prove that $\operatorname{trc}(I \square J) \leq 4 \operatorname{rad}(I \square J)$, it is sufficient to prove that $\operatorname{trc}(R \square Q) \leq 4 \operatorname{rad}(I \square J)$ from Observation 3 .

Let $V(I)=V(R)=\left\{u_{0}, u_{1}, \cdots, u_{n}\right\}, V(J)=V(Q)=\left\{v_{0}, v_{1}, \cdots, v_{m}\right\}, \operatorname{dep}(R)=a$ and $\operatorname{dep}(Q)=b$. It is easy to see that $\operatorname{dep}(R)=\operatorname{rad}(R)=\operatorname{rad}(I)=a$ and $\operatorname{dep}(Q)=$ $\operatorname{rad}(Q)=\operatorname{rad}(J)=b$. Let $\alpha=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{a}\right\}, \alpha^{\prime}=\left\{\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \cdots, \alpha_{a}^{\prime}\right\}, \beta=\left\{\beta_{0}, \beta_{1}, \cdots, \beta_{b}\right\}$, $\beta^{\prime}=\left\{\beta_{0}^{\prime}, \beta_{1}^{\prime}, \cdots, \beta_{b}^{\prime}\right\}, \gamma=\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{a}\right\}, \gamma^{\prime}=\left\{\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \cdots, \gamma_{a}^{\prime}\right\}, \varepsilon=\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{b}\right\}$, and $\varepsilon^{\prime}=\left\{\varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}, \cdots, \varepsilon_{b}^{\prime}\right\}$ be eight sets of colors such that they are pairwise disjoints. We color $R \square Q$ by two steps.
Step 1: We give $R^{v_{0}}$ a (α, γ)-total coloring, and give $R^{v_{i}}$ a $\left(\alpha^{\prime}, \gamma^{\prime}\right)$-total coloring, where $i \geq 1$. Denoted by c_{1}, this total coloring of $R \square Q$.
Step 2: We must change the colors at this step for some vertices. For $Q^{u_{0}}$, give it a (β, ε) total coloring, and $Q^{u_{j}}$ so that u_{j} is a leaf in R, give it a $\left(\beta^{\prime}, \varepsilon^{\prime}\right)$-total coloring. Moreover, we assign the other edges not colored by color α_{1} (it does matter). Denote by c_{2} this modified total coloring of $R \square Q$.

Please note that colors $\alpha_{0}, \alpha_{0}^{\prime}, \alpha_{a}$, and α_{a}^{\prime} do not arise in $\left(R \square Q, c_{2}\right)$. Therefore, we use $4 a+4 b$ colors in ($R \square Q, c_{2}$).

Now, we will prove that c_{2} is our desired coloring. First, we have the following two claims.

Claim 1. Let v_{i} be any vertex in Q. In each $R^{v_{i}}$ with $0 \leq i \leq m$, if x and y are related, then the path $x R^{v_{i}} y$ joining x and y is total rainbow.

Proof of Claim 1. Since x and y are related in $R^{v_{i}}$, there exists the path $x R^{v_{i}} y$ in $R^{v_{i}}$ joining x and y. In Step 1, since different vertices on $x R^{v_{i}} y$ have different levels in $R^{v_{i}}$, the path $x R^{v_{i}} y$ is total rainbow in $\left(R^{v_{i}}, c_{1}\right)$. Moreover, since the internal vertices of $x R^{v_{i}} y$ are not leaves in $R^{v_{i}}$, the colors of the internal vertices of $x R^{v_{i}} y$ are not changed in Step 2. Therefore, $x R^{v_{i}} y$ is also the total rainbow in $\left(R^{v_{i}}, c_{2}\right)$, and Claim 1 holds.

Claim 2. Let u_{i} be a vertex in R such that u_{i} is a leaf in R or the root of R. In $Q^{u_{i}}$, if x and y are related, then the path $x Q^{u_{i}} y$ joining x and y is total rainbow.

Proof of Claim 2. Since x and y are related in $Q^{u_{i}}$, there exists the path $x Q^{u_{i}} y$ in $Q^{u_{i}}$ joining x and y. Since different vertices on $x Q^{u_{i}} y$ have different levels in $Q^{u_{i}}$, the path $x Q^{u_{i}} y$ is total rainbow in Step 2, and Claim 2 holds.

For any two vertices $x=\left(u_{i}, v_{j}\right), y=\left(u_{s}, v_{t}\right) \in V(R \square Q)$, it is sufficient to prove that $\left(R \square Q, c_{2}\right)$ has a total rainbow path joining them. By symmetry, suppose that $\ell_{R}\left(u_{i}\right) \leq \ell_{R}\left(u_{s}\right)$. Consider three cases.
Case 1. $v_{j} \neq v_{0}$ and $v_{t} \neq v_{0}$.
Pick a leaf u_{k} in R so that u_{k} is a descendant of u_{s}. Then the path $x R^{v_{j}}\left(u_{0}, v_{j}\right) Q^{u_{0}}\left(u_{0}, v_{0}\right)$ $R^{v_{0}}\left(u_{k}, v_{0}\right) Q^{u_{k}}\left(u_{k}, v_{t}\right) R^{v_{t}} y$ is our desired total rainbow $x-y$ path in $R \square Q$. Case 2. $v_{j}=v_{t}=v_{0}$.

Pick a leaf u_{k} in R so that u_{k} is a descendant of u_{s}, and a leaf v_{r} in Q. Then the path $x R^{v_{0}}\left(u_{0}, v_{0}\right) Q^{u_{0}}\left(u_{0}, v_{r}\right) R^{v_{r}}\left(u_{k}, v_{r}\right) Q^{u_{k}}\left(u_{k}, v_{0}\right) R^{v_{0}} y$ is our desired total rainbow $x-y$ path in $R \square Q$.
Case 3. Exactly one of v_{j} and v_{t} is v_{0}.
Assume that $v_{j}=v_{0}$. Pick a leaf u_{k} in R such that u_{k} is a descendant of u_{s}, and a leaf v_{r} in Q such that u_{r} is a descendant of u_{t}. Then the path $x R^{v_{0}}\left(u_{0}, v_{0}\right) Q^{u_{0}}\left(u_{0}, v_{r}\right) R^{v_{r}}\left(u_{k}, v_{r}\right)$ $Q^{u_{k}}\left(u_{k}, v_{t}\right) R^{v_{t}} y$ is our desired total rainbow $x-y$ path in $R \square Q$.

Thus, c_{2} is our desired coloring, and we are done.
Remark 4. $K_{2} \square K_{2}$ is a sharp example for the lower bound of Theorem 3. Pick two graphs I and J such that $\operatorname{diam}(I)=2 \operatorname{rad}(I)$ and $\operatorname{diam}(J)=2 \operatorname{rad}(J)$, then $\operatorname{trc}(I \square J) \geq 2 \operatorname{diam}(I \square J)-1=$ $2 \operatorname{diam}(I)+2 \operatorname{diam}(J)-1=4 \operatorname{rad}(I)+4 \operatorname{rad}(J)-1$. Therefore, the upper bound of Theorem 3 is sharp up to an additive constant 1.

4. Conclusions

In our paper, we obtain the upper bound of the total rainbow connection number of several graph operations (specifically, adding or deleting an edge, and the Cartesian product). It is interesting to study the total rainbow connection number of some other graph operations, such as lexicographic product, strong product and directed product.

Author Contributions: Conceptualization, H.L., Y.M. and Y.Z.; methodology, H.L.; writing-original draft preparation, H.L.; writing-review and editing, Y.M. and Y.Z.; funding acquisition, H.L., Y.M. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by National Natural Science Foundation of China(11901426), Foundation of Henan Educational Committee (HNGD2022060,22A110003), and "the Foundation of Henan Normal University(2020PL05)".
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank the referees for a careful reading of the paper and for many constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chartr, G.; Johns, G.L.; McKeon, K.A.; Zhang, P. Rainbow connection in graphs. Math. Bohem. 2008, 133, 85-98. [CrossRef]
2. Li, X.; Sun, Y. Rainbow Connections of Graphs; SpringerBriefs in Math; Springer: New York, NY, USA, 2012.
3. Li, X.; Sun, Y.; Shi, Y. Rainbow Connections of Graphs: A Survey. Graphs Combin. 2013, 29, 1-38. [CrossRef]
4. Huang, X.; Li, X.; Shi, Y.; Yue, J.; Zhao, Y. Rainbow connections for outerplanar graphs with diameter 2 and 3. Appl. Math. Comput. 2014, 242, 227-280. [CrossRef]
5. Li, S.; Li, X.; Shi, Y. Note on the complexity of deciding the rainbow (vertex-)connectedness for bipartite graphs. Appl. Math. Comput. 2015, 258, 158-161. [CrossRef]
6. Li, X.; Shi, Y. Rainbow connection in 3-connected graphs. Graphs Combin. 2013, 29, 1471-1475. [CrossRef]
7. Uchizawa, K.; Aoki, T.; Ito, T.; Suzuki, A.; Zhou, X. On the Rainbow Connectivity of Graphs: Complexity and FPT Algorithms. In LNCS; Springer: Berlin/Heidelberg, Germany, 2011.
8. Chen, L.; Huo, B.; Ma, Y. Hardness results for total rainbow connection of graphs. Discuss. Math. Graph Theory 2016, 36, 355-362. [CrossRef]
9. Jiang, H.; Li, X.; Zhang, Y. Upper bounds for the total rainbow connection of graphs. J. Combin. Optim. 2016, 32, 260-266. [CrossRef]
10. Liu, H.; Mestre, Â.; Sousa, T. Total rainbow k-connection in graphs. Discrete Appl. Math. 2014, 174, $92-101$. [CrossRef]
11. Ma, Y. Total Rainbow Connection Number and Complementary Graph. Results Math. 2016, 70, 173-182. [CrossRef]
12. Ma, Y.; Chen, L.; Li, H.; Li, H. The total rainbow connection numbers of cubic graphs. Util. Math. 2016, 99, 143-150.
13. Sun, Y. On two variants of rainbow connection. WSEAS Trans. Math. 2013, 12, 266-276.
14. Sun, Y. On rainbow total-coloring of a graph. Discret. Appl. Math. 2015, 194, 171-177. [CrossRef]
15. Bondy, J.A.; Murty, U.S.R. Graph Theory; GTM 244; Springer: Berlin/Heidelberg, Germany, 2008.
