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Abstract: In a graph H with a total coloring, a path Q is a total rainbow if all elements in V(Q)∪ E(Q),
except for its end vertices, are assigned different colors. The total coloring of a graph H is a total
rainbow connected coloring if, for any x, y ∈ V(H), there is a total rainbow path joining them.
The total rainbow connection number trc(H) of H is the minimum integer r such that there is a
total rainbow-connected coloring of H using r colors. In this paper, we study the total rainbow
connection number of several graph operations (specifically, adding an edge, deleting an edge, and
the Cartesian product) for which the total rainbow connection number is upper-bounded by a linear
function of its radius.
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1. Introduction

Each graph is simple, undirected, and finite in this paper. Let H be a graph.
The distance dH(x, y) from x to y in H is the number of edges of a shortest path joining

x and y. The eccentricity eccH(x) of a vertex x is maxy∈V(H)dH(x, y). The radius rad(H)
and diameter diam(H) of H are, respectively, minu∈V(G)eccG(u) and maxu∈V(G)eccG(u). A
vertex x is a center of H if eccH(x) = rad(H).

An edge coloring of a graph H is a mapping c : E(H)→ A, where A is a set of colors.
A graph H with an edge coloring c is an edge-colored graph, and denoted by (H, c). A total
coloring of a graph H is a mapping c : V(H) ∪ E(H) → A, where A is a set of colors. A
graph H with a total coloring c is a total-colored graph, and denoted by (H, c). In an edge-
colored graph (H, c), a path Q is rainbow if c( f1) 6= c( f2) for f1, f2 ∈ E(Q) with f1 6= f2.
An edge coloring is a rainbow-connected edge coloring for H if H has a rainbow path joining x
and y for x, y ∈ V(H). Such a graph H is called rainbow connected. The rainbow connection
number rc(H) of H is the minimum value r for which H has a rainbow-connected edge coloring
using r colors.

McKeon and Zhang in [1] introduced and studied the rainbow connection number,
which has applications in transferring high-security information in multicomputer net-
works [2,3]. We refer the readers to [4–6] for more results.

As one can see, the above involves the edge coloring of a graph. A natural idea is to
generalize it to a concept that involves total coloring.

In a graph H with a total coloring, a path Q is total rainbow if all elements in V(Q) ∪
E(Q), except for its end vertices, are assigned different colors. A total coloring of a graph
H is a total rainbow-connected coloring if for any x, y ∈ V(H), there is a total rainbow path
joining them. The total rainbow connection number trc(H) of H is the minimum integer r
such that there is a total rainbow connected coloring of H using r colors.

Uchizawa et al. introduced total rainbow connected coloring in [7]. For a total-colored
graph (H, c), the rainbow total-connectivity problem is designed to determine whether H

Axioms 2022, 11, 254. https://doi.org/10.3390/axioms11060254 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060254
https://doi.org/10.3390/axioms11060254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11060254
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060254?type=check_update&version=2


Axioms 2022, 11, 254 2 of 7

is total rainbow connected. Uchizawa et al. [7] showed that the rainbow total-connectivity
problem is strongly NP-complete even for outerplanar graphs. Chen et al. [8] showed that
deciding whether a total-colored graph H is total rainbow connected is NP-complete. Jiang
et al. [9] studied the upper bound of the total rainbow connection number of a graph with
respect to its order and minimum degree. Liu et al. [10] studied the minimum number of
colors required to color G, such that each pair of distinct vertices of G are connected by r
internally vertex-disjoint total rainbow paths. Ma [11] studied the total rainbow connection
number of a graph by some property of its complementary graph. Ma et al. [12] determined
the total rainbow connection number of circular ladders and Möbius ladders. Sun [13]
determined the rainbow total-connection numbers of complete graphs, trees, cycles and
wheels. Sun [14] studied the upper bound of the total rainbow connection number of a
graph with respect to its size.

We will study the total rainbow connection number of several graph operations. In
Section 2, we how the total rainbow connection number of a graph G will change if we add
(or delete) an edge in G. In Section 3, we study the total rainbow connection number of
Cartesian product graphs.

2. Adding an Edge or Deleting an Edge

In this section, we shall investigate how the rainbow vertex connection number of a
graph G will change if we add (or delete) an edge in G.

First, we need some new notations. A path with n vertices is denoted by Pn. A
path Q is called an a-b path, denoted by Pab, if a and b are its endpoints. Let H be a
graph. For an integer r ≥ 1 and subset A ⊆ V(H), the r-step open neighborhood Nr

H(A) is
{y ∈ V(H) : dH(A, y) = r}. We simply write NH(A) for N1

H(A) and Nr
A(x) for Nr

H({x}).
Similarly, the r-step closed neighborhood Nr

H [A] is {y ∈ V(H) : d(A, y) ≤ r}. We simply
write NH [A] for N1

H [A] and Nr
H [x] for Nr

H [{x}]. For A, B ⊆ V(H), let EH [A, B] denote
{ ab : a ∈ A, b ∈ B, ab ∈ E(H) }. For a graph H and an edge ab ∈ E(G), we use G − ab
to denote the graph obtained from G by delating ab. For a graph H and two vertices
a, b ∈ V(H) such that ab 6∈ E(H), we use H + ab to denote the graph obtained from H by
adding xy. We refer to the book [15] for notation and terminology not described here.

Let Qv0vk = v0v1 · · · vk be a total coloring path in (G, c). We define four sets of colors
as follows.

c(Qv0vk ) = {c( f ) : f ∈ E(Qv0vk )} ∪ {c(w) : w ∈ V(Qv0vk )\{v0, vk}},
c[Qv0vk ) = {c( f ) : f ∈ E(Qv0vk )} ∪ {c(w) : w ∈ V(Qv0vk )\{vk}},
c(Qv0vk ] = {c( f ) : f ∈ E(Qv0vk )} ∪ {c(w) : w ∈ V(Qv0vk )\{v0}},
c[Qv0vk ] = {c( f ) : f ∈ E(Qv0vk )} ∪ {c(w) : w ∈ V(Qv0vk )}.

We can see that the following observations hold.

Observation 1. For any connected graph H, trc(H) = 1 if and only if H is complete, and
otherwise, trc(H) ≥ 3.

Observation 2. For any connected graph H,

trc(H) ≥ 2diam(H)− 1.

Observation 3. Let H and H′ be two connected graphs. If H′ is a spanning subgraph of H, then

trc(H) ≤ trc(H′).

Theorem 1. Let H be a connected graph, and let ab be an edge of H for which H − ab is con-
nected. Then

trc(H) ≤ trc(H − ab) ≤ trc(H) + 2dH−ab(a, b)− 1.
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Proof. Since H − ab is a connected spanning subgraph of H, we show that trc(H) ≤
trc(H − ab) by Observation 3.

Next, we only need to show that trc(H − ab) ≤ trc(H) + 2dH−ab(a, b)− 1. We fixed
a total rainbow-connected coloring c of H using trc(H) colors, and set dH−ab(a, b) = k for
simplicity. We picked two sets of colors α = {α1, α2, . . . , αk−1} and β = {β1, β2, . . . , βk}
such that α ∩ β = ∅ and (α ∪ β) ∩ c(H) = ∅, and let Pab = x0x1 . . . xk be a shortest
path between a and b in H − ab, where x0 = a and xk = b. For H − ab, we define a
(trc(H) + 2k− 1)-total coloring c′ of H − ab as follows:

For each v ∈ V(H),

c′(v) =
{

αi, i f v = xi, 1 ≤ i ≤ k− 1;
c(v), otherwise.

and for each e ∈ E(H),

c′(e) =
{

βi, i f e = xi−1xi, 1 ≤ i ≤ k;
c(e), otherwise.

Now, we will prove that c′ is a total rainbow connected coloring of H − ab. For
u, v ∈ V(H − ab), there is a total rainbow u-v path Quv in (H, c) since c is a total rainbow
connected coloring of H. We divide three cases.
Case 1. V(Quv) ∩V(P) = ∅.

In this case, the path Quv is also a total rainbow u-v path in (H − ab, c′) by definition
of total coloring c′,
Case 2. |V(Quv) ∩V(Pab)| = 1.

In this case, we assume that V(Quv)∩V(Pab) = {z}. If z = a or z = b, then Quv is also
a total rainbow u-v path in (H − ab, c′). Otherwise, the path Quv is also a total rainbow u-v
path in (H − ab, c′) since c′(z) 6∈ c(Quv).
Case 3. |V(Quv) ∩V(Pab)| ≥ 2.

In this case, let u′ be the first vertex on Quv from u to v so that u′ ∈ V(Pab) ∩V(Quv),
and v′ is the last vertex on Quv from u to v so that v′ ∈ V(Pab) ∩V(Quv). Let Quu′ denote
the subpath connecting u and u′ on Quv, and let Qv′v denote the subpath connecting v′ and
v on Quv.

Because Quv is a total rainbow, we know that c(Quu′) ∩ c(Qv′v) = ∅. It follows
the definition of c′ that Quu′ and Qv′v are also a total rainbow in (H − ab, c′) such that
c′(Quu′) ∩ c′(Qv′v) = ∅ and c′(Quu′) ∪ c′(Qv′v) ⊆ c(H). Pick the subpath Pu′v′ joining u′

and v′ on Pab with total coloring c′. Thus, c′[Pu′v′ ] ⊆ α∪ β and Pu′v′ is a total rainbow. Since
c(H) ∩ (α ∪ β) = ∅, the path Quu′ ∪ Pu′v′ ∪Qv′v is a total rainbow in (H − ab, c′).

Following the above three cases shows that c′ is a total rainbow connected coloring of
H − ab. Thus, trc(H − ab) ≤ trc(H) + 2dH−ab(a, b)− 1.

Remark 1. Pick a complete graph K4 with vertex set {v0, v1, v2, v3}, and let H be the graph
obtained from K4 by deleting edge v0v2. On one hand, since diam(H) = diam(H − v1v3) = 2,
by Observation 2, trc(H) ≥ 3 and trc(H − v1v3) ≥ 3. On the other hand, the graphs H and
H − v1v3 have a total rainbow connected coloring using 3 colors as Figure 1a,b, respectively. Thus,
trc(H) = trc(H − v1v3) = 3, and the lower bound in Theorem 1 is sharp.

v1 v2

v3v0
(a) (b)

α1

α1 α1

α1

β1 β1

β2

β2

v1 v2

v3v0

α1

α1 α1

α1

β1 β1

β2

β2

β2

Figure 1. Graphs H and H − v1v3 in Remark 1. A sharp example for the lower bound in Theorem 1.
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Remark 2. Let P6 = v0v1 · · · v5 be a path of length 5, and let H be the graph obtained from P6 by
adding edge v1v4. See Figure 2a for details. Since diam(H) = 3, we know that
trc(H) ≥ 2diam(H) − 1 = 5 from Observation 2. Moreover, the graph H has a total rain-
bow connected coloring using 5 colors as Figure 2a. So trc(H) = 5. Since diam(H − v1v4) = 5,
we know that trc(H − v1v4) ≥ 2diam(H − v1v4)− 1 = 9 from Observation 2. Moreover, the
graph H − v1v4 has a total rainbow connected coloring using 9 colors as shown in Figure 2b. So
trc(H − v1v4) = 9. Thus, trc(H − v1v4) = 9 = trc(H) + 2dH−v1v4(v1, v4)− 2, and the upper
bound in Theorem 1 is almost sharp.

v0

v1

v2 v3

v4

v5v0

v1

v2 v3

v4

v5

(a) (b)

α1

α1

α1

α2

α1

α2

β1

β2

β3

β1

β2

β3

v0

v1

v2 v3

v4

v5v0

v1

v2 v3

v4

v5

α3

α1

α1

α2

α4

α4

β1 β5

β4

β3

β2

Figure 2. Graphs H and H − v1v4 in Remark 2. A almost sharp example for the upper bound in
Theorem 1.

Corollary 1. Let H be a connected graph. Pick xy ∈ E(H) such that H − xy is connected. Then

trc(H) ≤ trc(H − xy) ≤ trc(H) + 2diam(H − xy)− 1.

Theorem 2. Let H be a connected graph. Pick x, y ∈ V(H) such that xy 6∈ E(H). Then

trc(H)− 2dH(x, y) + 1 ≤ trc(H + xy) ≤ trc(H).

Proof. Since H is an induced subgraph of H + xy, we have that trc(H + xy) ≤ trc(H) by
Observation 3.

Next, we only need to prove that trc(H)− 2dH(x, y) + 1 ≤ trc(H + xy). Let H′ =
H + xy. Then H′ − xy = H. By Theorem 1, we know that trc(H′ − xy) ≤ trc(H′) +
2dH′−xy(x, y)− 1, i.e., trc(H) ≤ trc(H + xy)+ 2dH(x, y)− 1. Thus, trc(H + xy) ≥ trc(H)−
2dH(x, y) + 1.

Remark 3. Let H be the graph in Remark 1. Then H′ = H − v1v3 and e = v1v3 is a sharp
example of the upper bound in Theorem 2. Let H be the graph in Remark 2. Then H′ = H − v1v4
and e = v1v4 is an almost sharp example of the lower bound in Theorem 2.

Corollary 2. Let H be a connected graph. Pick x, y ∈ V(H) such that xy 6∈ E(H). Then

trc(H)− 2diam(H) + 1 ≤ trc(H + xy) ≤ trc(H).

3. Cartesian Product

Let I and J be two graphs. Their Cartesian product I�J is the graph with vertex set
V(I)×V(J), and (i, i) and (i′, i′) are adjacent if and only if i = i′ and jj′ ∈ E(J), or j = j′

and ii′ ∈ E(I). It is easy to check that rad(I�J) = rad(I) + rad(J) and diam(I�J) =
diam(I) + diam(J).

Let I and J be two graphs. Assume that V(I)= {x1, x2, . . . , xn} and V(J) = {y1, y2, . . . , ym}.
Define serval mappings as follows.

For a ya ∈ V(J), define

xya := (x, ya) for each vertex x ∈ V(I),

Iya
1 := (V(Iya

1 ), E(Iya
1 )) for each subgraph I1 ⊆ I,
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where V(Iya
1 ) = {(x, ya) : u ∈ V(I1)} and E(Iya

1 ) = {(x, ya)(x′, va) : xx′ ∈ E(I1)}.
For a yb ∈ V(J), define

(x, ya)
yb := (x, yb) for each vertex (x, ya) ∈ V(Iya),

Iyb
1 := (V(Iyb

1 ), E(Iyb
1 )) for each subgraph I1 ⊆ Iya ,

where V(Iyb
1 ) = {(x, yb) : (x, ya) ∈ V(Iya

1 )} and E(Iyb
1 ) = {(x, yb)(x′, yb) : (x, va)(x′, ya) ∈

E(Iya
1 )}.

Similarly, for ua ∈ V(I), define mappings vua for each v ∈ V(J), Jua
1 for subgraph

J1 ⊆ J; for ub ∈ V(I), define mappings (ua, v)ub for (ua, v) ∈ V(Jua) , and Jub
1 for J1 ⊆ Jua .

An r-tree is a tree with a root r. For a r-tree R, rTv is the only path connecting r and v
in R. The level `R(v) of a vertex v in R is the length of the path rTv. The depth of an r-tree is
dep(R) = max{`R(v) : v ∈ V(R)}.

If x ∈ rRy, then x is an ancestor of y, and y is a descendant of x. In R, both vertices are
related if one is a descendant of the other.

Given an r-tree R and two sets of colors α = {αi : 0 ≤ i ≤ dep(R)} and γ = {γi : 1 ≤
i ≤ dep(R)}, we define a (α, γ)-total coloring c of R as follows:

c(v) = α`R(v) f or any v ∈ V(R)

and
c(e) = γk f or any e = xy ∈ E(R),

where k = max{`R(x), `R(y)}.
Now, we are ready to show the following result.

Theorem 3. Let I and J be two connected, non-trivial graphs. Then

2rad(I�J)− 1 ≤ trc(I�J) ≤ 4rad(I�J).

Proof. Since trc(I�J) ≥ 2diam(I�J)− 1 ≥ 2rad(I�J)− 1, we have trc(I�J) ≥ 2rad(I�J)−
1. Thus, the lower bound holds.

Next, we prove that the upper bound is true. Pick a breadth-first search tree (or
BFS-tree) R in I rooted at some center u0, and pick a breadth-first search tree (or BFS-tree)
Q in J rooted at some center v0. To prove that trc(I�J) ≤ 4rad(I�J), it is sufficient to prove
that trc(R�Q) ≤ 4rad(I�J) from Observation 3.

Let V(I) = V(R) = {u0, u1, · · · , un}, V(J) = V(Q) = {v0, v1, · · · , vm}, dep(R) = a
and dep(Q) = b. It is easy to see that dep(R) = rad(R) = rad(I) = a and dep(Q) =
rad(Q) = rad(J) = b. Let α = {α0, α1, · · · , αa}, α′ = {α′0, α′1, · · · , α′a}, β = {β0, β1, · · · , βb},
β′ = {β′0, β′1, · · · , β′b}, γ = {γ1, γ2, · · · , γa}, γ′ = {γ′1, γ′2, · · · , γ′a}, ε = {ε1, ε2, · · · , εb},
and ε′ = {ε′1, ε′2, · · · , ε′b} be eight sets of colors such that they are pairwise disjoints. We
color R�Q by two steps.
Step 1: We give Rv0 a (α, γ)-total coloring, and give Rvi a (α′, γ′)-total coloring, where
i ≥ 1. Denoted by c1, this total coloring of R�Q.
Step 2: We must change the colors at this step for some vertices. For Qu0 , give it a (β, ε)-

total coloring, and Quj so that uj is a leaf in R, give it a (β′, ε′)-total coloring. Moreover, we
assign the other edges not colored by color α1 (it does matter). Denote by c2 this modified
total coloring of R�Q.

Please note that colors α0, α′0, αa, and α′a do not arise in (R�Q, c2). Therefore, we use
4a + 4b colors in (R�Q, c2).

Now, we will prove that c2 is our desired coloring. First, we have the following
two claims.

Claim 1. Let vi be any vertex in Q. In each Rvi with 0 ≤ i ≤ m, if x and y are related, then the
path xRvi y joining x and y is total rainbow.
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Proof of Claim 1. Since x and y are related in Rvi , there exists the path xRvi y in Rvi joining
x and y. In Step 1, since different vertices on xRvi y have different levels in Rvi , the path
xRvi y is total rainbow in (Rvi , c1). Moreover, since the internal vertices of xRvi y are not
leaves in Rvi , the colors of the internal vertices of xRvi y are not changed in Step 2. Therefore,
xRvi y is also the total rainbow in (Rvi , c2), and Claim 1 holds.

Claim 2. Let ui be a vertex in R such that ui is a leaf in R or the root of R. In Qui , if x and y are
related, then the path xQui y joining x and y is total rainbow.

Proof of Claim 2. Since x and y are related in Qui , there exists the path xQui y in Qui joining
x and y. Since different vertices on xQui y have different levels in Qui , the path xQui y is
total rainbow in Step 2, and Claim 2 holds.

For any two vertices x = (ui, vj), y = (us, vt) ∈ V(R�Q), it is sufficient to prove that
(R�Q, c2) has a total rainbow path joining them. By symmetry, suppose that
`R(ui) ≤ `R(us). Consider three cases.
Case 1. vj 6= v0 and vt 6= v0.

Pick a leaf uk in R so that uk is a descendant of us. Then the path xRvj(u0, vj)Qu0(u0, v0)
Rv0(uk, v0)Quk (uk, vt)Rvt y is our desired total rainbow x-y path in R�Q.
Case 2. vj = vt = v0.

Pick a leaf uk in R so that uk is a descendant of us, and a leaf vr in Q. Then the
path xRv0(u0, v0)Qu0(u0, vr)Rvr (uk, vr)Quk (uk, v0)Rv0 y is our desired total rainbow x-y path
in R�Q.
Case 3. Exactly one of vj and vt is v0.

Assume that vj = v0. Pick a leaf uk in R such that uk is a descendant of us, and a leaf
vr in Q such that ur is a descendant of ut. Then the path xRv0(u0, v0)Qu0(u0, vr)Rvr (uk, vr)
Quk (uk, vt)Rvt y is our desired total rainbow x-y path in R�Q.

Thus, c2 is our desired coloring, and we are done.

Remark 4. K2�K2 is a sharp example for the lower bound of Theorem 3. Pick two graphs I and
J such that diam(I) = 2rad(I) and diam(J) = 2rad(J), then trc(I�J) ≥ 2diam(I�J)− 1 =
2diam(I) + 2diam(J)− 1 = 4rad(I) + 4rad(J)− 1. Therefore, the upper bound of Theorem 3 is
sharp up to an additive constant 1.

4. Conclusions

In our paper, we obtain the upper bound of the total rainbow connection number
of several graph operations (specifically, adding or deleting an edge, and the Cartesian
product). It is interesting to study the total rainbow connection number of some other
graph operations, such as lexicographic product, strong product and directed product.
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