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Abstract: The investigation of short-term earthquake-clustering features is made feasible through the
application of a purely stochastic Epidemic-Type Aftershock Sequence (ETAS) model. The learning
period that is used for the estimation of the parameters is composed by earthquakes with M≥ 2.6 that
occurred between January 2008 and May 2017. The model predictability is retrospectively examined
for the 12 June 2017 Lesvos earthquake (Mw6.4) and the subsequent events. The construction of time-
dependent seismicity maps and comparison between the observed and expected earthquake number
are performed in order to temporally and spatially test the evolution of the sequence, respectively.
The generation of 127 target events with M ≥ 3.0 in the period June–July 2017, just before the main
shock occurrence, is examined in a quantitative evaluation. The statistical criteria used for assessing
the model performance are the Relative Operating Characteristic Diagram, the R-score, and the
probability gain. Reliable forecasts are provided through the epidemic model testifying its superiority
towards a time-invariant Poisson model.

Keywords: earthquake clustering; triggered seismicity; strong main shocks; Greece
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1. Introduction

It is widely accepted that a large earthquake is followed by an increased seismicity
rate for several years [1] and at distinctly larger distances—2 or 3 times—than its rupture
length [2–4]. The investigation of clustering features of seismicity both in time and space
has proved to be one of the most important elements of earthquake forecasting in recent
decades. From a statistical point of view, the Epidemic-Type Aftershock Sequence (ETAS)
model [5–8] became the most popular in the scientific community and is introduced as the
most suitable model for describing the short-term seismicity [9,10].

During the evolution of a seismic sequence, when the magnitude of an earthquake
is smaller than that of the previous one, the event is considered an aftershock. This
definition is rather arbitrary and the distinction between “foreshocks”, “main shocks” and
“aftershocks” is not a trivial procedure. The concept upon which the epidemic models
are developed is that there is no need to distinguish this earthquake property. Each event
above the magnitude threshold, irrespective of whether it is small or large, is regarded
as being able to generate its own descendants. None of them is independent but rather
related to the previous events according to certain criteria and upon a certain weight. Since
its development, the ETAS model and its extensions have been widely applied towards
operational earthquake forecasting, particularly following a large earthquake [11–14]. Reliable
forecasts for main shocks have also been demonstrated through ETAS models [15–18].

The validation of earthquake-forecasting models constitutes an important component
of the application. This is the main concept behind international cooperation such as the
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Collaboratory for the Study of Earthquake Predictability (CSEP) [19]. The conducted tests
assess the performance of the models and aim at quantitatively specifying the uncertainties
involved in earthquake forecasts. These forecasts are computed in statistical terms towards
the probabilistic hazard assessment of earthquake risk [20–22].

The model application in the northern Aegean Sea is considered both suitable and
necessary, given that the study area attracts high seismological interest since it under-
goes intense active deformation, producing increased seismicity rates and frequent oc-
currences of strong (M ≥ 6.0) earthquakes. Strong (M ≥ 6.0) earthquakes are frequently
recorded in both the historical and instrumental eras, and in particular seven main shocks of
M ≥ 6.0 have occurred since 1980. These strong earthquakes along with the intense seismic
activity of smaller events offer a unique opportunity to apply and test clustering models
and track the evolution of the forthcoming sequences. Aiming to retrospectively test its
short-term predictability efficiency, the epidemic model by Console & Murru [7] is applied
to earthquakes that occurred in the area since January 2008. Particularly, the occurrence of
the 12 June 2017, Mw6.4 earthquake located south of Lesvos Island along with its aftershock
sequence are under investigation to corroborate and examine the model’s performance.
The evaluation of this performance is carried out through statistical methods based on
a binary approach, notably, the Relative Operating Characteristics (ROC) diagrams, the
R-score and the probability gain.

2. Brief Description of the Earthquake-Clustering Model

The model considers earthquakes as the realization of a Hawkes process, namely as a
point with coordinates (x, y, t, m) corresponding to its geographical position (x, y), occurrence
time (t) and earthquake magnitude (m). As in previous publications [7,8,23], we neglected
depth as a spatial coordinate. We based this decision on the fact that the depths of the
crustal earthquakes in our catalog range between 3 and 15 km. This consideration reduces
the involved location errors, which are higher for depth estimation in comparison with the
horizontal coordinate’s estimation. The basic assumption of the epidemic model is that each
event is triggered by the previous events and is capable of triggering subsequent events
depending upon its magnitude and spatial and temporal distance from the other events.

The expected occurrence-rate density, λ, for earthquakes with magnitudes above a
threshold, is modeled as the superposition of spontaneous and triggered events, as

λ(x, y, t, m) = frλ0(x, y, m) +
N

∑
i=1

H(t− ti)λi(x, y, t, m) (1)

where fr is a factor called “failure rate” that constitutes a measure of the fraction of
independent earthquakes with reference to the total number of earthquakes and represents
the spontaneous background seismicity, λ0(x, y, m) is the total time-invariant background
seismicity rate, ti is the occurrence time of each of the N earthquakes, H(t) is the Heaviside
step function, such that H(t) = 0 for t ≤ 0 and H(t) = 1 for t > 0, and λi(x, y, t, m) is
the kernel function describing the single contribution of each past event and depends on
the magnitude and the spatial distance from the triggering earthquake and the time lapse
between this event’s occurrence time and the target time.

The first and the second term of the right-hand side of Equation (1) represent the time-
invariant background “spontaneous” and the time-varying “triggered” seismic activity,
respectively. This means that any earthquake is not truly independent or dependent on any
other single earthquake, but it is rather linked to all past earthquakes and the background
seismicity, according to different weights.

Assuming that the Gutenberg–Richter (G–R) law holds, the long-term average seis-
micity λo(x, y, m) can be expressed as:

λ0(x, y, m) = µ0(x, y)βe−β(m−m0) (2)
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where µ0(x, y) is the spatial density of earthquakes with magnitude m ≥ m0, mo is
the magnitude cutoff and β is connected to the b-value of the G–R law by the relation
β = b ln(10). The only criterion for the selection of the magnitude cutoff mo is that it should
be larger than the completeness magnitude. An algorithm for smoothing, introduced by
Frankel [24] and then modified by Console et al. [25], is then applied in an attempt to obtain
a continuous rate density µo(x, y). Instead of distinguishing events in a binary way, i.e., as
being independent or triggered, a probability is assigned to them as in the method adopted
by Zhuang et al. [26]. The iterative adjustment of the weights is carried out in a way similar
to that adopted by Marsan and Longliné [27]. It should be noted that for the estimation
of the smoothed distribution of the background seismicity, it is essential to compute the
correlation distance, cd, of the earthquake epicentral distribution. It could be regarded
as an indicator of the spatial variability of seismicity, revealing the spatial interrelation
of earthquakes.

The contribution of any past earthquake (xi, yi, mi, ti) to the occurrence-rate density,
λi, of the triggering earthquakes is expressed by three terms related to the time, magnitude
and space distribution, respectively, for t > ti,

λi(x, y, t, m) = Kh(t− ti)βe−β(m−mi) f (x− xi, y− yi) (3)

where K is the productivity coefficient, h(t) is the time and f (x, y) is the space distribution.
The time dependence is given by the modified Omori law [28], according to the relation

h(t) = (p− 1)cp−1(t− c)−p, p > 1, (4)

where c and p are characteristic parameters of the process.
The spatial distribution is modeled through a function f (x− xi, y− yi) with circular

symmetry around the point with coordinates (xi, yi), which is the location of the earthquake
with magnitude mi. In polar coordinates (r, θ), the function can be written as

f (r, θ) =
(q− 1)

π

d2(q−1)

(r2 + d2)
q (5)

where r is the distance of (x, y) from (xi, yi), q is a free parameter, d = d0eα(mi−m0) with
d0 being the characteristic triggering distance for an earthquake with magnitude mi in the
spatial distribution, and α is a free parameter, the productivity parameter. This means that
the average triggering distance of the aftershock zone is proportional to the square root of
the main shock rupture area [29]. It is worth mentioning that the spatial function varies
among different publications [26,30–34].

A maximum-likelihood procedure is followed for the estimation of the parameters
K, d0, q, α, c and p. The fraction of the spontaneous events, fr, is not a free parameter
but it depends on the other parameters since it is constrained by the condition that when
Equation (1) is integrated over a very long time, it provides the total number of expected
earthquakes, which is equal to the integral of λo(x, y, m). The β-value is independently
estimated from the other parameters by means of the likelihood-estimation method of
Aki [35].

3. Validation Methods

A crucial step in the application of an earthquake-forecasting model (EFM) is the
validation of the results. The assessment must be performed by means of robust and
rigorous tests that measure the effectiveness of the algorithm [36]. The statistical techniques
employed for this purpose and carried out in this study include the Relative Operating
Characteristic (ROC) diagrams, the R-score and the probability gain. Kossobokov [37],
Chen et al. [38], Zechar and Jordan [39], Murru et al. [15], and Console et al. [16], among
others, applied these techniques for the evaluation of earthquake-prediction algorithms
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and showed that the clustering epidemic model performs up to several hundred times
better than a simple random forecasting hypothesis.

Although the model provides forecasts rather than predictions, these statistical meth-
ods are based on a binary approach. The whole space–time volume is divided into cells.
Then, after setting a certain occurrence-rate threshold, we examined whether or not a
forecast is produced and whether or not an earthquake occurred. The outcomes are sum-
marized in a 2 × 2 contingency table where a is the number of successful forecasts of
occurrence, b is the number of false alarms, c is the number of successful forecasts of
non-occurrence and d is the number of events that failed to be predicted (Table 1).

Table 1. Contingency table representation.

Observed

Forecasted Yes No
Yes a b
No d c

Holliday et al. [40] proposed the terms hit rate (H) and false-alarm rate (F), estimated
by the ratios H = a/(a + d) and F = b/(b + c). H represents the fraction of events that
occurred in an alarm cell, based on a predefined threshold r and the fraction of false
alarms F, i.e., events that are predicted by the model based on the probability threshold,
but they have not actually occurred. When H is greater than F, the forecasting method is
considered successful, while if H is equal to F the predictions are purely random. For every
probability threshold, a single ROC diagram is built. The occurrence-rate threshold, r, is
chosen intuitively. The smaller the value of r, the more common it is for an earthquake to
be predicted by the model; yet, the number of false alarms increases.

A test statistic called R-score [41,42] is built based on the contingency table, according
to the equation:

R =
a

a + b
− d

c + d
(6)

The values of R vary between −1 and 1. When R is equal to 1, it is assumed that all
predictions, positive and negative ones, are correct, while R equal to −1 means that all
the predictions are wrong, and R = 0 corresponds to random predictions. Shi et al. [43]
proposed an alternative expression for the R-score with a similar interpretation:

R′ =
a

a + d
− b

b + c
(7)

The probability gain G is also considered as a measure of the effectiveness of the model
predictability. This quantity defined by Aki [44] represents the ratio between the success
rate and the average occurrence rate:

G = (a/(a + d))·e/(a + b) = H·e/(a + b) (8)

where e = a + b + c + d is the total number of cells multiplied by the number of time bins.
The values of G range between 0 and ∞. When G tends to ∞, all predictions are correct, G = 1
corresponds to random predictions (similar to R = 0) and G = 0 means that all predictions
are wrong.

We accomplished an additional quantitative test for a branching model’s performance
by means of the branching ratio, ρ, which is defined as the average number of direct
descendants generated per parent event [45,46]. In the ETAS model, the parent events are
supposed to be the background events and their descendants are aftershocks, which are
spatially and temporally related to the parent. Following Console et al. [47], the branching
ratio is:

ρ =
Kβ

β− a
=

Kbln10
bln10− a

(9)
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This concept is related to the stability of a branching model. When ρ < 1 each earth-
quake is assumed to trigger less than one aftershock, the seismicity diminishes, and even-
tually the family dies. That means the process is stable and stationary, indicating that the
estimated model parameters are rational [48]. On the contrary, a value of ρ > 1 means
that the process generates more than one primary aftershock per earthquake, indicating
that seismic activity exponentially increases with time. If we allow the ETAS parameters
to change over time, the process could be occasionally explosive in a specific aftershock
sequence, returning back to stability later on.

4. Study Area and Data

The study area is very frequently visited by large (M > 6.5) earthquakes, as historical
information and instrumental recordings testify, most of them being associated with dextral
strike–slip faulting and a NE–SW orientation, which is the dominant regional stress regime.
It constitutes the northern part of the Aegean microplate, bounded in the north by the North
Aegean Trough (NAT), which consists of the prolongation of the North Anatolian Fault
(NAF) into the Aegean [49]. Parallel to the NAT, other parallel fault branches are running,
which also accommodate large (up to M7.2) dextral strike–slip faulting earthquakes. Their
conjugate counterparts, of sinistral strike–slip motion, are mainly located in the western
part of the northern Aegean area, positioned almost parallel to the coastline of the Greek
mainland with a NW–SE strike. Trans-tensional faulting is also present in the study area,
manifested by the occurrence of M > 6.0 earthquakes that are mostly located in the eastern
part of the study area. The slight diversity in the type of faulting can be dynamically
interpreted as the result of the different orientations of the major regional faults with
respect to the fast (~3.5 cm/yr), almost N–S extension of the back arc Aegean region due
to the rollback of the eastern Mediterranean oceanic slab [50] that is subducted under the
continental Aegean microplate [51].

Figure 1 depicts the epicentral distribution of earthquakes with M ≥ 2.6 that occurred
in the study area between January 2008 and December 2018. Seismicity is mainly con-
centrated along the North Aegean Trough (NAT) and onto the well-defined subparallel
branches, as well as in the southeastern part where it is more diffused.

Among the most recent strong earthquakes is the 24 May 2014 Mw6.9 main shock,
which occurred approximately 20 km southeast of Samothraki Island in North Aegean
Trough (lat. 40.286◦, lon. 25.375◦). The absence of strong aftershocks with M > 5.0 as well
as aftershocks very close to the main shock are two of its main characteristics [52,53]. This
aftershock sequence belongs to the testing period in our analysis, as we will show in a
later section.

The last strong event (Mw6.4) occurred almost 15 km offshore of the southeastern
coast of Lesvos Island (lat. 38.849◦, lon. 26.305◦) on 12 June 2017. This destructive
earthquake caused one fatality, 15 injuries and extensive structural deterioration in the
towns and villages of Lesvos Island. The aftershock epicentral distribution defines a
NW–SE trending seismic zone offshore of the southeastern coasts of Lesvos Island. The
20 km-long seismogenic fault agrees with the seismicity spatiotemporal distribution. A
vivid subsequence began with the largest aftershock (Mw5.3) on 17 June, clustering in the
easternmost portion of the activated area [54]. When strong aftershocks produce secondary
aftershocks within an aftershock sequence, the modified Omori law is not efficient at
adequately fitting the aftershock activity. On the contrary, this fact constitutes the ETAS
model suitability for the statistical analysis of the seismicity, since the fluctuation of the
seismic activity is anticipated and predicted by the model. The aftershock sequence belongs
to the testing period of the epidemic model.

The data used for the current study were taken from the catalog compiled by the
Geophysics Department of the Aristotle University of Thessaloniki (GD–AUTh, https:
//doi.org/doi:10.7914/SN/HT (accessed on 1 January 2021)) [55] based on the recordings
of the Hellenic Unified Seismological Network (HUSN). It is recognized that the more
recent catalogs are characterized by higher quality and adequacy. In addition, it is necessary

https://doi.org/doi:10.7914/SN/HT
https://doi.org/doi:10.7914/SN/HT
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that the test of the forecasting hypothesis is carried out by means of a completely different
dataset, completely independent from the one used for the formulation hypothesis. This
requirement could pose a problem if the target events are large earthquakes since their
recurrence times are long. In any case, the learning period should include at least one
strong main shock since, in general, the learning period, as its name indicates, serves as a
guide, used for estimating the parameters. The model adjusted itself to the data, and then
we examined its performance using the data belonging to the testing period.

Axioms 2022, 11, x FOR PEER REVIEW 6 of 22 
 

 
Figure 1. Epicentral distribution of earthquakes with Μ ≥ 2.6 that occurred from January 2008 to 
December 2018. Events with 2.6 ≤ Μ < 4.0, 4.0 ≤ Μ < 5.0 and 5.0 ≤ Μ < 6.0 are depicted with white, 
orange and magenta, circles, respectively. The events of 2014 (Mw6.9) and that of 2017 (Mw6.4) are 
depicted with yellow stars. 

The data used for the current study were taken from the catalog compiled by the 
Geophysics Department of the Aristotle University of Thessaloniki (GD–AUTh, 
https://dx.doi.org/doi:10.7914/SN/HT (accessed on 1 January 2021)) [55] based on the re-
cordings of the Hellenic Unified Seismological Network (HUSN). It is recognized that the 
more recent catalogs are characterized by higher quality and adequacy. In addition, it is 
necessary that the test of the forecasting hypothesis is carried out by means of a completely 
different dataset, completely independent from the one used for the formulation hypoth-
esis. This requirement could pose a problem if the target events are large earthquakes 
since their recurrence times are long. In any case, the learning period should include at 
least one strong main shock since, in general, the learning period, as its name indicates, 
serves as a guide, used for estimating the parameters. The model adjusted itself to the 
data, and then we examined its performance using the data belonging to the testing pe-
riod. 

For the aforementioned reasons, the learning period was chosen to last from the 1 
January of 2008 until the 31 May 2017. It includes the 2014 Mw6.9 main shock along with 
the swarm that occurred near the Aegean coast of northwestern Turkey during January–
March 2017, which was relocated and detailed by Mesimeri et al. [56]. The completeness 
magnitude was equal to Mc = 2.6 according to the goodness-of-fit method (GFT) [57]. The 
maximum-likelihood method proposed by Aki [35] was used for the calculation of the b-
value, being equal to 1.0100 ± 0.0003. The standard deviation estimate was carried out 

Figure 1. Epicentral distribution of earthquakes with M ≥ 2.6 that occurred from January 2008 to
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orange and magenta, circles, respectively. The events of 2014 (Mw6.9) and that of 2017 (Mw6.4) are
depicted with yellow stars.

For the aforementioned reasons, the learning period was chosen to last from the
1 January of 2008 until the 31 May 2017. It includes the 2014 Mw6.9 main shock along with
the swarm that occurred near the Aegean coast of northwestern Turkey during January–
March 2017, which was relocated and detailed by Mesimeri et al. [56]. The completeness
magnitude was equal to Mc = 2.6 according to the goodness-of-fit method (GFT) [57]. The
maximum-likelihood method proposed by Aki [35] was used for the calculation of the
b-value, being equal to 1.0100 ± 0.0003. The standard deviation estimate was carried out
through the methodology introduced by Shi & Bolt [58]. As a result, 3919 events were
included in the dataset above the magnitude threshold.

5. Results

The spatial distribution of the background seismicity was estimated for the learning
period with the smoothing method of Console et al. [25] following Frankel [24]. For the
determination of the correlation distance cd, the catalog with the 3919 events was divided
in two subcatalogs containing an equal number of events, namely, 1960 and 1959 events,
respectively. The division depends only on the number of events. The first subcatalog
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covers the period between the 1 January 2008 and the 6 November 2010 and the second
subcatalog covers the rest of the learning period. A normal grid with nodes at distances
of 2 km was used covering a rectangular area with side of 150 km far from the origin
point (lat. 39.5◦, lon. 25◦) in each axis. The process carried out included the maximization
of the likelihood of the seismicity contained in the second half of the catalog under the
time-independent Poisson model estimated from the first half, and vice versa. The optimal
values for the two periods were equal to 8 km and 9 km, respectively, as shown in Figure 2.
The fact that these values are close indicates the stability in time of the spatial distribution
of the seismic activity, despite the fact that there is some discrepancy between the duration
of the two subcatalogs. The average of the two optimal values, i.e., cd = 8.5 km, was chosen
for the smoothed distribution shown in Figure 3.
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The color scale represents the number of events occurred in cells of 2 km × 2 km wide over the total
duration of the catalog.



Axioms 2022, 11, 249 8 of 21

In order to obtain a spatial distribution that does not comprise the triggered part of
seismicity, we estimated the maximum-likelihood best-fit parameters of the ETAS model
by progressively adjusting the background seismicity. Table 2 shows the results yielded
after seven consecutive iterations. The new smoothed seismicity distribution in the study
area was obtained by means of the parameters that were derived after the final iteration
(Figure 4).

Table 2. Values obtained for the parameters of the epidemic model in the progressive adjustment of
the background seismicity.

Parameters
Number of Iterations

1st 2nd 3rd 4th 5th 6th 7th

k (daysp−1) 0.2275 0.2245 0.2245 0.2230 0.2230 0.2219 0.2218
d0 (km) 1.378 1.400 1.4115 1.4150 1.4250 1.4250 1.4256

q 1.9819 2.0178 2.0297 2.0347 2.0450 2.0450 2.0436
c (days) 0.0075 0.00725 0.00725 0.00725 0.00712 0.00712 0.00713

p 1.0306 1.0311 1.0309 1.0309 1.0309 1.0309 1.0309
α 0.3932 0.3931 0.3956 0.3956 0.3962 0.3962 0.3953
fr 0.321 0.324 0.322 0.321 0.322 0.325 0.325

lnL 46,849.32 46,995.06 46,995.45 46,995.73 46,996.02 46,996.11 46,996.17

Figures 3 and 4 reveal the smoothed seismicity spatial distribution associated with the
major regional faults. In the second map particularly, the seismicity is more scattered. Using
the same color scale for a direct comparison between Figures 3 and 4, we see that after the
consecutive iterations there is not any single point associated with warm colors, meaning
that the rate density is smoothed. The influence of the seismic excitation that occurred near
the coast of northwestern Turkey during the first months of 2017 as well as the effect of the
2014 Samothraki sequence are partly eliminated. As expected, the spots along the North
Aegean Trough are still present. The southeastern and southwestern boundaries of the
study area also exhibit some degree of clustering since they are historically connected with
increased seismic activity.

We then applied the epidemic model to retrospectively evaluate its performance. The
original formulation of the ETAS model is intended for modeling aftershock sequences,
but it may be extended to forecast the occurrence of stronger events. The testing period
in our case is selected to start a few days before the occurrence of the 12 July 2017 Mw6.4
main shock, starting on the 1 June 2017, and lasting until the 31 July 2017. The choice of the
testing period was adopted so that it began a few days before the main shock in order to test
not only the performance of the aftershock activity but also the performance of the model
towards the main shock. It was assumed that each forecast refers to seismicity starting at
0:00 and ending at 24:00 for every day of the testing period. The foreshock activity in the
testing period of the first 11 days of June included only an event with M ≥ 2.7. This low
foreshock activity influenced the forecasted occurrence probability for an event with M ≥ 6.0,
which was found low at midnight, approximately 12 h before the occurrence of the main
shock, and was equal to 0.4 × 10−6.

We calculated daily occurrence probabilities for several days before and after the
main shock, 30 days in total, for three magnitude ranges (Figure 5). An abrupt increase
in the daily probabilities appeared in relation to the first computations that were carried
out approximately 12 h after the occurrence of the target event, and are marked by the
dashed line. The occurrence probabilities became extremely high, particularly for M ≥ 3.0
earthquakes, which were assigned a daily occurrence probability equal to 1 for almost
all of the remaining study period. On 13 June the occurrence of events with M ≥ 4.0
corresponded to a daily probability of occurrence equal to 0.995, whereas for those with
M ≥ 5.0, the occurrence probability was equal to 0.393. The dotted line corresponds to the
occurrence time of the Mw5.3 event on 17 June, the occurrence of which resulted in jumps
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in the plots of the occurrence probabilities for earthquakes with M ≥ 4.0 (prob = 0.904) and
M ≥ 5.0 (prob = 0.195).
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Figure 4. Smoothed seismicity distribution of the study area (1 January 2008–31 May 2017) obtained by
the smoothing algorithm applied to the weighted catalog with a correlation distance of cd = 8.5 km. The
color scale represents the number of events occurred in cells of 2 km × 2 km over the total duration
of the catalog.
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Figure 5. Daily occurrence probabilities of at least one event with M ≥ 3.0, M ≥ 4.0 and M ≥ 5.0
with blue, violet, and orange lines, respectively, for the period 1 June 2017–30 June 2017. The dashed
line corresponds to the occurrence time of the Mw6.4, 12 June 2017 main shock. The dotted line
corresponds to the occurrence time of the Mw5.3 aftershock on the 17 June.



Axioms 2022, 11, 249 10 of 21

The observed and expected number of earthquakes with M ≥ 3.0 and M ≥ 4.0 are
compared in Figure 6a,b, respectively. Given the absence of foreshocks at midnight, 12 h
before the occurrence of the main shock, it is plausible that a small number of events is
expected for both magnitude ranges. Then, on 13 June, particularly for earthquakes with
M ≥ 3.0, the expected earthquake frequency increases rapidly. For most of the days, the
expected number of events is larger than the observed one, but in general, the model
manages to sufficiently predict the number of events. The sequence lacks earthquakes
with M ≥ 4.0, as we see in Figure 6b. The predictions are not contradictory, though, since
especially during the last ten days of June, the expected numbers range in low levels, under
one expected event per day, between 0.33 and 0.85.
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Figure 6. (a) Expected (blue bars) and observed (red bars) number of events with M ≥ 3.0 per day,
under the ETAS model with the best-fit parameters. (b) The same as in (a) but with M ≥ 4.0.

We then aimed to show the time-dependent seismicity related to the expected number
of earthquakes with magnitudes of M≥ 3.0 for a few days after the occurrence of the Mw6.4
Lesvos main shock on 12 June. For that reason, we divided the entire area into square cells
of 0.1◦ × 0.1◦ in an attempt to examine if the spatial pattern of the expected earthquakes is
in agreement with the earthquake’s epicentral distribution. As shown in the relevant maps
(Figure 7), the spatial distribution of the expected number of events is in good agreement
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with the locations of the observed events on 13 and 14 June 2017. All of them are located
in sites where the expected daily rate-density per cell is comparatively high. For a more
detailed illustration, the maps are focused on an area south of Lesvos Island, where we
anticipated intense aftershock activity.
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Figure 7. Expected daily number of events per cell of 0.1◦ × 0.1◦ of events with M ≥ 3.0 on 13 and 14
June. The computations are performed at midnight of each day. The white circles show the epicenters
of the aftershocks observed on that certain day.

In addition, with the qualitative assessment of the model performance, the quantitative
evaluation included the generation of ROC diagrams by constructing a 2 × 2 contingency
table. The initial date of the verification period coincided with the same date of the test
phase, i.e., 1 June, and the final date was 31 July 2017. The study area was divided, as
previously mentioned, into 713 square cells of 0.1◦ × 0.1◦ and 61 bins of 24 h each, resulting
in 43,493 time–space cells. The magnitude threshold of the earthquakes for which forecasts
are required was set equal to 3.0. One-hundred-twenty-seven (127) target events comprised
the aforementioned period, the epicentral distribution of which is shown in Figure 8. The
target events are concentrated in the offshore area south of Lesvos Island. For that reason,
the map in Figure 9 focuses on a smaller part relative to the whole study area.

It may happen that two or more events, particularly those belonging in the magnitude
range of [3.0, 3.2], occur in the same time–space cell of 0.1◦ × 0.1◦ lasting 24 h. It is
more reasonable that when dealing with alarm-based forecasts, each cell of the time–space
target volume is considered once, so that the total number of counts considered in the 2D
binary matrix is identical to the total number of cells in the time–space volume. Thus, if
two events occur in the same time–space bin, they must be counted as one observation
and are considered as one success in the case that they are forecasted yes, and as one
missed event in the case of being forecasted no. As a result, seventy-three (73) out of the
one-hundred-twenty-seven (127) earthquakes with M ≥ 3.0 were the target events, while
fifty-four (54) events were excluded from the computations.

When filling in the contingency tables, a forecast was defined in a certain cell if the
occurrence rate of earthquakes with magnitude greater than 3.0 exceeded the threshold
value r. The calculations were performed every 24 h in cells of 0.1◦ × 0.1◦. The results for
various occurrence-rate thresholds between 0.0005 and 0.03 are presented in Table 3. In
most cases, except for r = 0.03, the vast majority of cells are empty. Based on the contingency
tables, the values of the hit rate H and the false-alarm rate F were computed in order to
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be employed for the creation of the ROC diagrams. For each occurrence-rate threshold,
a different point (H, F) was plotted in the ROC diagram (Figure 9a). In general, when
increasing the rate threshold r, the H and F decrease, i.e., both the fraction of events that
occurred in an alarm cell and the fraction of false alarms decrease. This happens because
the predictions are stricter. It is not that common for a cell to be assigned a high occurrence
probability, meaning that alarms are more infrequent. For example, when r = 0.03, only
1659 out of the 43,493 cells, i.e., 3.8 per cent of the cells contain alarms. Consequently, that
leads to lower false alarms but also to a lower percentage of hit rates.
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Figure 8. Epicentral distribution of the 127 target events with M ≥ 3.0 that occurred during the
testing period (June–July 2017). Events with 3.0 ≤ M < 4.0, 4.0 ≤ M < 5.0, 5.0 ≤ M < 6.0 are
depicted with white, orange and magenta circles, respectively. The Mw6.4 event of 12 June 2017 is
depicted with a yellow star.

In the examined case, we can make a remarkable observation concerning the stability
of the hit-rate values. Specifically, for occurrence-rate thresholds between 0.005 and 0.03, H
was stable and equal to 0.78. That means 57 out of 73 earthquake targets were predicted
since they belonged to cells with high occurrence rates, greater than 0.03, while the remain-
ing 16 of them belonged to cells with very low occurrence rates, lower than 0.005. The
remaining earthquakes would be very difficult to predict, only by significantly reducing
the occurrence-rate threshold. A total 67 out of the 73 target events were predicted when
decreasing the rate threshold to r = 0.0005. However, this would significantly increase the
false-alarm rate at 70 per cent.
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Figure 9. (a) Values of the hit rate H versus the false-alarm rate F. Each value of F corresponds
to a different threshold rate for issuing alarms. Events that occur in the same time–space bin are
counted as one observation. Random forecasts correspond to the black line. (b) Same as in (a), for the
probability gain G, computed on the whole space–time volume.

Table 3. Contingency tables for the clustering model related to the testing period between 1 June
2017–31 July 2017 using various occurrence-rate thresholds for events with M≥ 3.0. Events that occur
in the same time–space bin are counted as one observation.

Forecasted Observed

r = 0.03 Yes No
Yes a = 57 b = 1602
No d = 16 c = 41, 818

r = 0.02
Yes a = 57 b = 2323
No d = 16 c = 41, 097

r = 0.01
Yes a = 57 b = 4226
No d = 16 c = 39, 194

r = 0.005
Yes a = 57 b = 7542
No d = 16 c = 35, 878

r = 0.001
Yes a = 60 b = 20, 735
No d = 13 c = 22, 685

r = 0.0005
Yes a = 67 b = 30, 488
No d = 6 c = 12, 932

The difference between H and F could be considered as a measure of the randomness of
the predictions. The biggest difference between them was observed for r = 0.03, H − F = 0.744
(Table 4). In all the examined cases, even when the false-alarm rate was at its highest value,
for r = 0.0005, the predictions were far from random. This can be easily shown in Figure 10a.

The assessment of the ETAS model was also carried out through the probability gain G.
Figure 9b shows the results of G versus F. When the false-alarm rate increases, G decreases.
The values of G range from a few tens to some units. Regarding the two alternative
expressions of the R-score, R’ obtained higher values than R [15]. This mainly happened
due to their formulations, because d was much smaller than b, and b was smaller than c.
For r = 0.03, the value of G was quite high, equal to 20.47. At the same time, the value of R’
was maximized. For that occurrence-rate threshold, the real rate of successes was equal
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to 0.034. This value resulted from the fact that 57 events were successfully estimated over
1659 alarms. In that way, not only were the space–time cells that were rightly expected
to accommodate an earthquake taken into account, but also those that, according to the
model, corresponded to an earthquake, but in reality an event did not ultimately occur.

Table 4. Statistical tools applied for various occurrence-rate thresholds.

r = 0.03 r = 0.02 r = 0.01 r = 0.005 r = 0.001 r = 0.0005

H = 0.78 H = 0.78 H = 0.78 H = 0.78 H = 0.82 H = 0.92
F = 0.036 F = 0.053 F = 0.097 F = 0.173 F = 0.477 F = 0.701
R = 0.033 R = 0.034 R = 0.0129 R = 0.007 R = 0.023 R = 0.002
R’ = 0.744 R’ = 0.727 R’ = 0.684 R’ = 0.607 R’ = 0.344 R’ = 0.217
G = 20.47 G = 14.27 G = 7.93 G = 4.47 G = 1.72 G = 1.32

For further investigating the model’s performance, different magnitude thresholds
over the completeness magnitude were tested, from 3.0 up to 4.0 in steps of 0.2 magnitude
units. This resulted in modifications to the contingency table. As a result, the corresponding
ROC diagrams and the probability-gain diagrams also changed (Figure 10). The higher the
threshold magnitude, the smaller the number of successes and false alarms. In any case,
all predictions were far from being random. For example, for r = 0.001 and a magnitude
threshold equal to 4.0, the real success rate was 0.0014 (6 successes out of 4027 alarms)
towards a random occurrence rate equal to 0.0002 (12 events over 43,493 space–time cells).
For a magnitude threshold equal to 3.0 and r = 0.01, the real success rate was 0.013 towards
a random occurrence rate equal to 0.0016.
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Figure 10. (a) Values of the hit rate H versus the false-alarm rate F for different magnitude thresholds.
Each value of F corresponds to a different threshold rate for issuing alarms. Events that occur in the
same time–space bin are counted as one observation. Random forecasts correspond to the black line.
(b) Same as in (a) for the probability gain G, computed on the whole space–time volume.

Regarding the branching ratio, the computed value of ρ for the suggested model was
equal to 0.267, indicating the stability of the model.

For comparison and a more profound investigation, the alternative approach was also
followed, where every event was considered in the computations irrespective of whether
an event had previously occurred in the same time–space cell. That means the target events
with M ≥ 3.0 were 127. For comparison we refer to the Appendix A.

6. Discussion and Conclusions

The performance of an epidemic model of clustered seismicity in the northern Aegean
Sea area was retrospectively evaluated. The absence of foreshocks is responsible for the
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low probability of occurrence for an event with M ≥ 6.0 a few hours before the occurrence
of the Mw6.4 Lesvos main shock. The performance of the model regarding the aftershock
sequence was quite satisfactory, although the observed aftershocks were fewer than those
anticipated by the model. The spatial distribution of the expected seismicity rate agreed well
with the spatial distribution of the observed seismicity during 13 and 14 June 2017, since all
of them were located in sites where the expected daily rate-density per cell was high.

The quantitative assessment of the model deemed 127 target events with M ≥ 3.0
whose occurrence in June and July 2017 were investigated in terms of probabilities through
the construction of contingency tables, the application of statistical criteria and the genera-
tion of ROC diagrams. We pursued two different approaches, in which events that occurred
in the same time–space bin were either counted as one observation or as different ones.
Thus, in the first case, there were 73 target events compared to 127 in the second case.

We examined earthquake occurrence in both approaches through various occurrence-
probability thresholds r. High threshold rates resulted in high values of probability gain
and low values of false-alarm rate. Although we expected that the values of H would also
decrease as r increased, there was a remarkable stability for several occurrence-probability
thresholds. The optimal solution should ensure that not only the rate of successes is high
but also the rate of false alarms is low. For example, for r = 0.03, only a small percentage of
3.6 per cent corresponded to earthquakes that the model predicted but that did not occur.
We considered this value of the occurrence-rate threshold as the most suitable towards that
direction, predicting 78 per cent in the first case and 67 per cent of the target events in the
second case, while simultaneously maintaining false alarms at very low levels.

We then compared the model’s performance with a clustering model previously
applied in the Greek territory, details of which are provided in Table 5. As expected, the
value of the correlation distance in the northern Aegean area was smaller since it referred
to a much smaller area. This may also be attributed to the slightly smaller magnitude
threshold adopted in this study. We observed, though, that the values of the estimated
parameters in both cases were quite close, indicating similar spatio-temporal behavior. The
calculated value of the branching ratio was equal to ρ = 0.267, showing that the branching
process was stable. The two compared values were similar since they were derived from
almost equal parameter estimations.

The daily probabilities of occurrence of having at least one event with M ≥ 6.0 in the
study area at midnight on 12 June was equal to 1.1 × 10−3. The respective probability
for the main shock, when applying the epidemic clustering model in the Greek territory,
was almost 3000 times greater than the estimate for the northern Aegean area. A possible
interpretation is probably either the presence or absence of foreshocks. In the testing period,
during the first eleven days of June, 51 events with M ≥ Mth occurred before the main
shock, while in the northern Aegean area only one event is included in the catalog. This
also might be attributed to the calculation area of the daily probability for an event with
M ≥ 6.0, which included the whole study area and not only the particular cell corresponding to
the main shock. Larger study areas are probably associated with larger occurrence probabilities.

The maps depicting the time-dependent seismicity were created based on a grid of
square cells with dimensions 0.2◦ × 0.2◦ (Figure 11) while the corresponding northern
Aegean area was divided into square cells of 0.1◦ × 0.1◦ because of its smaller dimensions.
The spatial patterns based on the two different models were similar, as anticipated based
on the similar values of the estimated parameters. Yet, the clustering model exclusively
developed for the northern Aegean area provided a more concentrated and focused pattern
around higher densities (marked with orange and red colors in Figure 7).
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Table 5. Estimated parameters of the clustering model applied in the Greek territory.

Time Span 1 January 2010–31 May 2017

Testing period 1 June 2017–31 July 2017
Study region lat. 34.0◦–42◦ N, lon. 19.0◦–29.5◦ E

Magnitude threshold 2.7
Correlation distance(km) 14.5

k (daysp−1) 0.2218
d0 (km) 1.4256

q 2.0436
c (days) 0.0071

p 1.0309
a 0.3953
fr 0.3250
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Concluding, the performance of the northern Aegean clustering model was retrospec-
tively verified by comparing the expected and observed earthquake numbers and through
various statistical criteria. Target events with M≥ 3.0 were predicted with high probabilities
and at the same time, the model did not produce a great deal of false alarms. The encour-
aging retrospective results that emerged from our analysis and the forecast-verification
procedures indicate that the clustering model is able to provide reliable information regard-
ing short-term probabilities of occurrence of future events. As a next step, it could be thus
used as a contribution to real-time forecasts, even for practical purposes.
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Appendix A

The quantitative assessment of the model performance was made feasible by means of
the construction of a 2 × 2 contingency table, which provides information on the number
of successful and wrong predictions, both in cells that accommodate earthquakes and those
that do not. Particularly for the events that belong in the lowest magnitude range [3.0, 3.2],
we noticed that they may occur in the same time–space cell of 0.1◦ × 0.1◦ lasting 24 h.
As previously mentioned, since we were dealing with alarm-based, forecasts it was more
rational to consider each cell once and discard the multiple ones. In practice, this means that
if two or more events occur in the same time–space bin, they are counted as one observation.

In the case of the northern Aegean area clustering model, there were fifty-four (54)
multiple events with M ≥ 3.0, which means that there were seventy-three (73) target events.
The alternative approach was followed in this supplementary material, whereby every
earthquake was counted as a different observation irrespective of whether an event had
previously occurred in the same time–space cell. This fact resulted in 127 target events with
M ≥ 3.0.

The contingency tables for various occurrence-rate thresholds r were recalculated
(Table A1). The sum of the elements of each contingency table was not equal to the number
of time–space cells (43,493), but equal to the number of cells plus the number of events that
had repeatedly ruptured a cell (43,547). Actually, the number of successes (forecasted yes,
observed yes) was balanced by the number of missed alarms (forecasted no, observed yes).
In the other two entries of the binary matrix (observed no), no difference was noticed.

Table A1. Contingency tables for the clustering model related to the testing period between 1 June
2017–31 July 2017 using various occurrence-rate thresholds r for events with M ≥ 3.0. Events that
occur in the same time–space bin are counted as different observations.

Forecasted Observed

r = 0.03 Yes No
Yes a = 85 b = 1602
No d = 42 c = 41, 818

r = 0.02
Yes a = 85 b = 2323
No d = 42 c = 41, 097

r = 0.01
Yes a = 85 b = 4226
No d = 42 c = 39, 194

r = 0.005
Yes a = 85 b = 7542
No d = 42 c = 35, 878

r = 0.001
Yes a = 88 b = 20, 735
No d = 39 c = 22, 685

r = 0.0005
Yes a = 120 b = 30, 488
No d = 7 c = 12, 932

https://doi.org/10.7914/SN/HT
https://doi.org/10.7914/SN/HT
https://www.soest.hawaii.edu/gmt
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Based on the contingency tables, the values of H, F, R, R’ and G were calculated (Table A2).
We observed that the stability of H still held for occurrence-rate thresholds between r = 0.005
and 0.03. The fraction of events that occurred in an alarm cell in comparison with the
previous case decreased. This is explained by the fact that the events that had repeatedly
ruptured a particular cell over one day were mainly detected in the catalog soon after the
occurrence of the main shock on 12 June, when the probabilities of occurrence were still
low. Thus, they were counted as multiple failures.

Table A2. Statistical tools applied for various occurrence-rate thresholds.

r = 0.03 r = 0.02 r = 0.01 r = 0.005 r = 0.001 r = 0.0005

H = 0.67 H = 0.67 H = 0.67 H = 0.67 H = 0.70 H = 0.94
F = 0.036 F = 0.053 F = 0.097 F = 0.173 F = 0.4774 F = 0.701
R = 0.049 R = 0.034 R = 0.019 R = 0.010 R = 0.002 R = 0.003
R’ = 0.632 R’ = 0.615 R’ = 0.572 R’ = 0.496 R’ = 0.215 R’ = 0.243
G = 17.26 G = 12.09 G = 6.76 G = 3.82 G = 1.45 G = 1.34
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Figure A1. (a) Values of the hit rate H versus the false-alarm rate F. Each value of F corresponds to 
a different threshold rate for issuing alarms. Events that occur in the same time–space bin are 
counted as different observations. The black line shows the trend of the H parameter for random 
forecasts. (b) Same as in (a), for the probability gain G, computed on the whole space–time volume. 

Figure A1. (a) Values of the hit rate H versus the false-alarm rate F. Each value of F corresponds to a
different threshold rate for issuing alarms. Events that occur in the same time–space bin are counted
as different observations. The black line shows the trend of the H parameter for random forecasts.
(b) Same as in (a), for the probability gain G, computed on the whole space–time volume.

We also tested different magnitude thresholds, from 3.0 up to 4.0 in steps of 0.2
magnitude units, in the case where events that occurred in the same time–space bin were
counted as different observations. Every event with M ≥ 3.6 belonged to different time–
space bins and consequently, the respective contingency tables were the same. Figure A2
depicts the corresponding ROC diagrams and the probability-gain diagrams.

We may remark that for events with M ≥ 3.0, the failure rate reached significantly
higher values in both examined cases. The values of the hit rates were also higher (blue
lines in Figures 10 and A2a). We observed a difference for earthquakes with M ≥ 3.2 in
the second case, where the value of H (red line) surpassed the corresponding value that
resulted from events with M ≥ 3.0 (blue line).
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