Article

Bounds for the Neuman-Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means

Wen-Hui Li ${ }^{1}{ }^{(1)}$, Peng Miao ${ }^{1}$ and Bai-Ni Guo ${ }^{2, *}$ (D)
1 Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China; wen.hui.li102@gmail.com (W.-H.L.); miaopeng881026@163.com (P.M.)
2 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China
* Correspondence: bai.ni.guo@gmail.com

Abstract

In this paper, the authors provide several sharp upper and lower bounds for the NeumanSándor mean in terms of the arithmetic and contra-harmonic means, and present some new sharp inequalities involving hyperbolic sine function and hyperbolic cosine function.

Keywords: Neuman-Sándor mean; arithmetic mean; contra-harmonic mean; bound; inequality; hyperbolic sine function; hyperbolic cosine function

MSC: Primary 26E60; Secondary 26D07; 33B10; 41A30

1. Introduction

In the literature, the quantities

$$
\begin{gathered}
A(s, t)=\frac{s+t}{2}, \quad G(s, t)=\sqrt{s t}, \quad H(s, t)=\frac{2 s t}{s+t^{\prime}} \\
\bar{C}(s, t)=\frac{2\left(s^{2}+s t+t^{2}\right)}{3(s+t)}, \quad C(s, t)=\frac{s^{2}+t^{2}}{s+t}, \\
S(s, t)=\sqrt{\frac{s^{2}+t^{2}}{2}}, \quad M_{p}(s, t)= \begin{cases}\left(\frac{s^{p}+t^{p}}{2}\right)^{1 / p}, & p \neq 0 ; \\
\sqrt{s t}, & p=0\end{cases}
\end{gathered}
$$

are called in [1-3], for example, the arithmetic mean, geometric mean, harmonic mean, centroidal mean, contra-harmonic mean, root-square mean, and the power mean of order p of two positive numbers s and t, respectively.

For $s, t>0$ with $s \neq t$, the first Seiffert means $P(s, t)$, the second Seiffert means $T(s, t)$, and Neuman-Sándor mean $M(s, t)$ are, respectively, defined [4-6] by

$$
P(s, t)=\frac{s-t}{4 \arctan \left(\sqrt{\frac{s}{t}}\right)-\pi}, \quad T(s, t)=\frac{s-t}{2 \arctan \frac{s-t}{s+t}}, \quad M(s, t)=\frac{s-t}{2 \operatorname{arsinh} \frac{s-t}{s+t}},
$$

where $\operatorname{arsinh} v=\ln \left(v+\sqrt{v^{2}+1}\right)$ is the inverse hyperbolic sine function.
The first Seiffert mean $P(s, t)$ can be rewritten [6] (Equation (2.4]) as

$$
P(s, t)=\frac{s-t}{2 \arcsin \frac{s-t}{s+t}}
$$

A chain of inequalities

$$
G(s, t)<L_{-1}(s, t)<P(s, t)<A(s, t)<M(s, t)<T(s, t)<Q(s, t)
$$

were given in [6], where

$$
L_{p}(s, t)= \begin{cases}{\left[\frac{t^{p+1}-s^{p+1}}{(p+1)(t-s)}\right]^{1 / p},} & p \neq-1,0 \\ \frac{1}{\mathrm{e}}\left(\frac{t^{t}}{s^{s}}\right)^{1 /(t-s)}, & p=0 \\ \frac{t-s}{\ln t-\ln s}, & p=-1\end{cases}
$$

is the p-th generalized logarithmic mean of s and t with $s \neq t$.
In [6,7], three double inequalities

$$
A(s, t)<M(s, t)<T(s, t), \quad P(s, t)<M(s, t)<T^{2}(s, t)
$$

and

$$
A(s, t) T(s, t)<M^{2}(s, t)<\frac{A^{2}(s, t)+T^{2}(s, t)}{2}
$$

were established for $s, t>0$ with $s \neq t$.
For $0<s, t<\frac{1}{2}$ with $s \neq t$, the inequalities

$$
\begin{aligned}
& \frac{G(s, t)}{G(1-s, 1-t)}<\frac{L_{-1}(s, t)}{L_{-1}(1-s, 1-t)}<\frac{P(s, t)}{P(1-s, 1-t)} \\
& \quad<\frac{A(s, t)}{A(1-s, 1-t)}<\frac{M(s, t)}{M(1-s, 1-t)}<\frac{T(s, t)}{T(1-s, 1-t)}
\end{aligned}
$$

of Ky Fan type were presented in [6] (Proposition 2.2).
In [8], Li and their two coauthors showed that the double inequality

$$
L_{p_{0}}(s, t)<M(s, t)<L_{2}(s, t)
$$

holds for all $s, t>0$ with $s \neq t$ and for $p_{0}=1.843 \ldots$, where p_{0} is the unique solution of the equation $(p+1)^{1 / p}=2 \ln (1+\sqrt{2})$.

In [9], Neuman proved that the double inequalities

$$
\alpha Q(s, t)+(1-\alpha) A(s, t)<M(s, t)<\beta Q(s, t)+(1-\beta) A(s, t)
$$

and

$$
\lambda C(s, t)+(1-\lambda) A(s, t)<M(s, t)<\mu C(s, t)+(1-\mu) A(s, t)
$$

hold for all $s, t>0$ with $s \neq t$ if and only if

$$
\alpha \leq \frac{1-\ln (1+\sqrt{2})}{(\sqrt{2}-1) \ln (1+\sqrt{2})}=0.3249 \ldots, \quad \beta \geq \frac{1}{3}
$$

and

$$
\lambda \leq \frac{1-\ln (1+\sqrt{2})}{\ln (1+\sqrt{2})}=0.1345 \ldots, \quad \mu \geq \frac{1}{6}
$$

In [10], (Theorems 1.1 to 1.3), it was found that the double inequalities

$$
\begin{aligned}
& \alpha_{1} H(s, t)+\left(1-\alpha_{1}\right) Q(s, t)<M(s, t)<\beta_{1} H(s, t)+\left(1-\beta_{1}\right) Q(s, t), \\
& \alpha_{2} G(s, t)+\left(1-\alpha_{2}\right) Q(s, t)<M(s, t)<\beta_{2} G(s, t)+\left(1-\beta_{2}\right) Q(s, t),
\end{aligned}
$$

and

$$
\alpha_{3} H(s, t)+\left(1-\alpha_{3}\right) C(s, t)<M(s, t)<\beta_{3} H(s, t)+\left(1-\beta_{3}\right) C(s, t)
$$

hold for all $s, t>0$ with $s \neq t$ if and only if

$$
\begin{aligned}
& \alpha_{1} \geq \frac{2}{9}=0.2222 \ldots, \quad \beta_{1} \leq 1-\frac{1}{\sqrt{2} \ln (1+\sqrt{2})}=0.1977 \ldots, \\
& \alpha_{2} \geq \frac{1}{3}=0.3333 \ldots, \quad \beta_{2} \leq 1-\frac{1}{\sqrt{2} \ln (1+\sqrt{2})}=0.1977 \ldots,
\end{aligned}
$$

and

$$
\alpha_{3} \geq 1-\frac{1}{2 \ln (1+\sqrt{2})}=0.4327 \ldots, \quad \beta_{3} \leq \frac{5}{12}=0.4166 \ldots
$$

In 2017, Chen and their two coauthors [11] established bounds for Neuman-Sándor mean $M(s, t)$ in terms of the convex combination of the logarithmic mean and the second Seiffert mean $T(s, t)$. In 2022, Wang and Yin [12] obtained bounds for the reciprocals of the Neuman-Sándor mean $M(s, t)$.

In [13], it was showed that the double inequality

$$
\begin{equation*}
\frac{\alpha}{A(s, t)}+\frac{1-\alpha}{\bar{C}(s, t)}<\frac{1}{T D(s, t)}<\frac{\beta}{A(s, t)}+\frac{1-\beta}{\bar{C}(s, t)} \tag{1}
\end{equation*}
$$

holds for all $s, t>0$ with $s \neq t$ if and only if $\alpha \leq \pi-3$ and $\beta \geq \frac{1}{4}$, where $T D(s, t)$ is the Toader mean introduced in [14] by

$$
T D(s, t)=\frac{2}{\pi} \int_{0}^{\pi / 2} \sqrt{s^{2} \cos ^{2} \phi+t^{2} \sin ^{2} \phi} \mathrm{~d} \phi
$$

In this paper, motivated by the double inequality (1), we will aim to find out the largest values α_{1}, α_{2}, and α_{3} and the smallest values β_{1}, β_{2}, and β_{3} such that the double inequalities

$$
\begin{gather*}
\frac{\alpha_{1}}{C(s, t)}+\frac{1-\alpha_{1}}{A(s, t)}<\frac{1}{M(s, t)}<\frac{\beta_{1}}{C(s, t)}+\frac{1-\beta_{1}}{A(s, t)} \tag{2}\\
\frac{\alpha_{2}}{C^{2}(s, t)}+\frac{1-\alpha_{2}}{A^{2}(s, t)}<\frac{1}{M^{2}(s, t)}<\frac{\beta_{2}}{C^{2}(s, t)}+\frac{1-\beta_{2}}{A^{2}(s, t)} \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
\alpha_{3} C^{2}(s, t)+\left(1-\alpha_{3}\right) A^{2}(s, t)<M^{2}(s, t)<\beta_{3} C^{2}(s, t)+\left(1-\beta_{3}\right) A^{2}(s, t) \tag{4}
\end{equation*}
$$

hold for all positive real numbers s and t with $s \neq t$.

2. Lemmas

To attain our main purposes, we need the following lemmas.
Lemma 1 ([15] (Theorem 1.25)). For $-\infty<s<t<\infty$, let $f, g:[s, t] \rightarrow \mathbb{R}$ be continuous on $[s, t]$, differentiable on (s, t), and $g^{\prime}(v) \neq 0$ on (s, t). If $\frac{f^{\prime}(v)}{g^{\prime}(v)}$ is (strictly) increasing (or (strictly) decreasing, respectively) on (s, t), so are the functions

$$
\frac{f(v)-f(s)}{g(v)-g(s)} \text { and } \frac{f(v)-f(t)}{g(v)-g(t)} .
$$

Lemma 2 ([16] (Lemma 1.1)). Suppose that the power series $f(v)=\sum_{\ell=0}^{\infty} u_{\ell} v^{\ell}$ and $g(v)=$ $\sum_{\ell=0}^{\infty} w_{\ell} v^{\ell}$ have the convergent radius $r>0$ and $w_{\ell}>0$ for all $\ell \in \mathbb{N}=\{0,1,2, \ldots\}$. Let $h(v)=\frac{f(v)}{g(v)}$. Then the following statements are true.

1. If the sequence $\left\{\frac{u_{\ell}}{w_{\ell}}\right\}_{\ell=0}^{\infty}$ is (strictly) increasing (or decreasing, respectively), then $h(v)$ is also (strictly) increasing (or decreasing, respectively) on $(0, r)$.
2. If the sequence $\left\{\frac{u_{\ell}}{w_{\ell}}\right\}_{\ell=0}^{\infty}$ is (strictly) increasing (or decreasing resepctively) for $0<\ell \leq \ell_{0}$ and (strictly) decreasing (or increasing resepctively) for $\ell>\ell_{0}$, then there exists $x_{0} \in(0, r)$
such that $h(v)$ is (strictly) increasing (decreasing) on ($0, x_{0}$) and (strictly) decreasing (or increasing resepctively) on $\left(x_{0}, r\right)$.

Lemma 3. Let

$$
h_{1}(v)=\frac{2 v \sinh v+\cosh v-1}{3 \sinh ^{2} v}
$$

Then $h_{1}(v)$ is strictly decreasing on $(0, \infty)$ with $\lim _{v \rightarrow 0^{+}} h_{1}(v)=\frac{5}{6}$ and $\lim _{v \rightarrow \infty} h_{1}(v)=0$.

Proof. Let

$$
f_{1}(v)=2 v \sinh v+\cosh v-1 \quad \text { and } \quad f_{2}(v)=3 \sinh ^{2} v=\frac{3}{2}[\cosh (2 v)-1] .
$$

Using the power series

$$
\begin{equation*}
\sinh v=\sum_{\ell=0}^{\infty} \frac{v^{2 \ell+1}}{(2 \ell+1)!} \quad \text { and } \quad \cosh v=\sum_{\ell=0}^{\infty} \frac{v^{2 \ell}}{(2 \ell)!} \tag{5}
\end{equation*}
$$

we can express the functions $f_{1}(v)$ and $f_{2}(v)$ as

$$
f_{1}(v)=\sum_{\ell=0}^{\infty} \frac{2(2 \ell+2)!+(2 \ell+1)!}{(2 \ell+1)!(2 \ell+2)!} v^{2 \ell+2} \quad \text { and } \quad f_{2}(v)=\frac{3}{2} \sum_{\ell=0}^{\infty} \frac{2^{2 \ell+2} v^{2 \ell+2}}{(2 \ell+2)!} .
$$

Hence, we have

$$
\begin{equation*}
h_{1}(v)=\frac{\sum_{\ell=0}^{\infty} u_{\ell} v^{2 \ell+2}}{\sum_{\ell=0}^{\infty} w_{\ell} v^{2 \ell+2}}, \tag{6}
\end{equation*}
$$

where $u_{\ell}=\frac{2(2 \ell+2)!+(2 \ell+1)!}{(2 \ell+1)!(2 \ell+2)!}$ and $w_{\ell}=\frac{3 \times 2^{2 \ell+1}}{(2 \ell+2)!}$.
Let $c_{\ell}=\frac{u_{\ell}}{w_{\ell}}$. Then

$$
c_{\ell}=\frac{2(2 \ell+2)!+(2 \ell+1)!}{3(2 \ell+1)!2^{2 \ell+1}} \quad \text { and } \quad c_{\ell+1}-c_{\ell}=-\frac{4(3 \ell+4)(2 \ell+2)!+3(2 \ell+3)!}{3(2 \ell+3)!2^{2 \ell+3}}<0
$$

As a result, by Lemma 2, it follows that the function $h_{1}(v)$ is strictly decreasing on $(0, \infty)$. From (6), it is easy to see that $\lim _{v \rightarrow 0^{+}} h_{1}(v)=\frac{u_{0}}{w_{0}}=\frac{5}{6}$.

Using the L'Hospital rule leads to $\lim _{v \rightarrow \infty} h_{1}(v)=0$ immediately. The proof of Lemma 3 is complete.

Lemma 4. Let

$$
h_{2}(v)=\frac{\left(\sinh ^{2} v-v^{2}\right) \cosh ^{4} v}{\left(\cosh ^{2} v+1\right) \sinh ^{4} v}
$$

Then $h_{2}(v)$ is strictly increasing on $v \in(0, \infty)$ and has the limit $\lim _{v \rightarrow 0^{+}} h_{2}(v)=\frac{1}{6}$ and $\lim _{v \rightarrow \infty} h_{2}(v)=1$.

Proof. Let

$$
f_{3}(v)=\left(\sinh ^{2} v-v^{2}\right) \cosh ^{4} v \quad \text { and } \quad f_{4}(v)=\left(\cosh ^{2} v+1\right) \sinh ^{4} v
$$

Since

$$
f_{3}^{\prime}(v)=2\left(\sinh v+3 \sinh ^{3} v-v \cosh v-2 v^{2} \sinh v\right) \cosh ^{3} v
$$

and

$$
f_{4}^{\prime}(v)=2\left(3 \cosh ^{2} v+1\right) \sinh ^{3} v \cosh v
$$

we obtain

$$
\begin{aligned}
\frac{f_{3}^{\prime}(v)}{f_{4}^{\prime}(v)} & =\frac{\left(\sinh v+3 \sinh ^{3} v-v \cosh v-2 v^{2} \sinh v\right) \cosh ^{2} v}{\left(3 \cosh ^{2} v+1\right) \sinh ^{3} v} \\
& =\frac{\cosh ^{2} v}{3 \cosh ^{2} v+1} \frac{\sinh v+3 \sinh ^{3} v-v \cosh v-2 v^{2} \sinh v}{\sinh ^{3} v} \\
& =\frac{1}{3+\frac{1}{\cosh ^{2} v}}\left(3+\frac{\sinh v-v \cosh v-2 v^{2} \sinh v}{\sinh ^{3} v}\right) \\
& =\frac{1}{3+\frac{1}{\cosh ^{2} v}}[3+g(v)],
\end{aligned}
$$

where

$$
g(v)=\frac{\sinh v-v \cosh v-2 v^{2} \sinh v}{\sinh ^{3} v}
$$

By using the identity that $\sinh (3 v)=3 \sinh v+4 \sinh ^{3} v$, we arrive at

$$
g(v)=4 \frac{\sinh v-v \cosh v-2 v^{2} \sinh v}{\sinh (3 v)-3 \sinh v} \triangleq 4 \frac{g_{1}(v)}{g_{2}(v)}
$$

where $g_{1}(v)=\sinh v-v \cosh v-2 v^{2} \sinh v$ and $g_{2}(v)=\sinh (3 v)-3 \sinh v$.
Straightforward computation gives

$$
\begin{array}{ll}
g_{1}^{\prime}(v)=-\left(5 v \sinh v+2 v^{2} \cosh v\right), & g_{2}^{\prime}(v)=3[\cosh (3 v)-\cosh v], \\
g_{1}^{\prime \prime}(v)=-\left(5 \sinh v+9 v \cosh v+2 v^{2} \sinh v\right), & g_{2}^{\prime \prime}(v)=3[3 \sinh (3 v)-\sinh v],
\end{array}
$$

and

$$
g_{1}\left(0^{+}\right)=g_{2}\left(0^{+}\right)=g_{1}^{\prime}\left(0^{+}\right)=g_{2}^{\prime}\left(0^{+}\right)=g_{1}^{\prime \prime}\left(0^{+}\right)=g_{2}^{\prime \prime}\left(0^{+}\right)=0
$$

Consequently, we obtain

$$
\frac{g_{1}^{\prime \prime}(v)}{g_{2}^{\prime \prime}(v)}=-\frac{5 \sinh v+9 v \cosh v+2 v^{2} \sinh v}{3[3 \sinh (3 v)-\sinh v]} \triangleq-\frac{1}{3} \frac{g_{3}(v)}{g_{4}(v)}
$$

Using the power series of $\sinh v$ and $\cosh v$, we deduce

$$
\begin{aligned}
g_{3}(v) & =5 \sum_{\ell=0}^{\infty} \frac{v^{2 \ell+1}}{(2 \ell+1)!}+9 \sum_{\ell=0}^{\infty} \frac{v^{2 \ell+1}}{(2 \ell)!}+2 \sum_{\ell=0}^{\infty} \frac{v^{2 \ell+3}}{(2 \ell+1)!} \\
& =14 v+\sum_{\ell=1}^{\infty}\left[\frac{5}{(2 \ell+1)!}+\frac{9}{(2 \ell)!}+\frac{2}{(2 \ell-1)!}\right] v^{2 \ell+1} \\
& =14 v+\sum_{\ell=1}^{\infty}\left[\frac{(4 \ell+7)(2 \ell)!+9(2 \ell+1)!}{(2 \ell)!(2 \ell+1)!}\right] v^{2 \ell+1}
\end{aligned}
$$

and

$$
g_{4}(v)=3 \sum_{\ell=0}^{\infty} \frac{(3 v)^{2 \ell+1}}{(2 \ell+1)!}-\sum_{\ell=0}^{\infty} \frac{v^{2 \ell+1}}{(2 \ell+1)!}=\sum_{\ell=0}^{\infty}\left[\frac{3^{2 \ell+2}-1}{(2 \ell+1)!}\right] v^{2 \ell+1} .
$$

Therefore, we find

$$
\frac{g_{3}(v)}{g_{4}(v)}=\frac{\sum_{\ell=0}^{\infty} u_{\ell} v^{2 \ell+1}}{\sum_{\ell=0}^{\infty} w_{\ell} v^{2 \ell+1}}
$$

where

$$
u_{\ell}=\left\{\begin{array}{ll}
14, & \ell=0 ; \\
\frac{(4 \ell+7)(2 \ell)!+9(2 \ell+1)!}{(2 \ell)!(2 \ell+1)!}, & \ell \geq 1
\end{array} \quad \text { and } \quad w_{\ell}= \begin{cases}8>0, & \ell=0 \\
\frac{3^{2 \ell+2}-1}{(2 \ell+1)!}, & \ell \geq 1\end{cases}\right.
$$

Let $c_{\ell}=\frac{u_{\ell}}{w_{\ell}}$. Then

$$
c_{\ell}= \begin{cases}\frac{7}{4}, & \ell=0 \\ \frac{(4 \ell+7)(2 \ell)!+9(2 \ell+1)!}{\left(3^{2 \ell+2}-1\right)(2 \ell)!}, & \ell \geq 1\end{cases}
$$

When $\ell=0$, we have $c_{1}-c_{0}=-\frac{51}{40}<0$. When $\ell \geq 1$, it follows that

$$
\begin{aligned}
c_{\ell+1}-c_{\ell}= & \frac{(4 \ell+11)(2 \ell+2)!+9(2 \ell+3)!}{\left(3^{2 \ell+4}-1\right)(2 \ell+2)!}-\frac{(4 \ell+7)(2 \ell)!+9(2 \ell+1)!}{\left(3^{2 \ell+2}-1\right)(2 \ell)!} \\
= & \frac{1}{\left(3^{2 \ell+2}-1\right)\left(3^{2 \ell+4}-1\right)(2 \ell+2)!}\{[(4 \ell+11)(2 \ell+2)! \\
& \left.+9(2 \ell+3)!]\left(3^{2 \ell+2}-1\right)-[(4 \ell+7)(2 \ell)!+9(2 \ell+1)!](2 \ell+2)\left(3^{2 \ell+4}-1\right)\right\} \\
= & \frac{1}{\left(3^{2 \ell+2}-1\right)\left(3^{2 \ell+4}-1\right)(2 \ell+2)!}\{[(4 \ell+11)(2 \ell+2)! \\
& +9(2 \ell+3)!] 3^{2 \ell+2}-[(4 \ell+7)(2 \ell)!+9(2 \ell+1)!](2 \ell+2) 3^{2 \ell+4} \\
& +(2 \ell+2)[(4 \ell+7)(2 \ell)!+9(2 \ell+1)!]-[(4 \ell+11)(2 \ell+2)!+9(2 \ell+3)!]\} \\
= & -\frac{1}{\left(3^{2 \ell+2}-1\right)\left(3^{2 \ell+4}-1\right)(2 \ell+2)!}\{[(8 \ell+13)(2 \ell+2)! \\
& \left.+9(16 \ell+15)(2 \ell+1)!] 3^{2 \ell+2}+9(2 \ell+1)!+4(2 \ell+2)!\right\} \\
< & 0 .
\end{aligned}
$$

By Lemma 2, it follows that the function $\frac{g_{3}(v)}{g_{4}(v)}$ is strictly decreasing on $(0, \infty)$, so the function $\frac{g_{1}^{\prime \prime}(v)}{g_{2}^{\prime \prime}(v)}$ is strictly increasing on $(0, \infty)$. Applying Lemma 1, it follows that the function $g(v)$ is strictly increasing on $(0, \infty)$. By the L'Hospital rule, we have

$$
\lim _{v \rightarrow 0^{+}} g(v)=-\frac{7}{3} \quad \text { and } \quad \lim _{v \rightarrow \infty} g(v)=0
$$

It is common knowledge that the function $\cosh v$ is strictly increasing on $(0, \infty)$. Hence, the function $\frac{1}{3+\frac{1}{\cosh ^{2} v}}$ is strictly increasing on $(0, \infty)$. Therefore, the function $h_{2}(v)$ is strictly increasing on $(0, \infty)$ with the limits

$$
\lim _{v \rightarrow 0} h_{2}(v)=\frac{1}{6} \quad \text { and } \quad \lim _{v \rightarrow \infty} h_{2}(v)=1
$$

The proof of Lemma 3 is complete.
Lemma 5. Let

$$
h_{3}(v)=\frac{2 v \cosh ^{2} v}{\sinh v}
$$

Then $h_{3}(v)$ is strictly increasing on $(0, \infty)$ and has the limit $\lim _{v \rightarrow 0^{+}} h_{3}(v)=2$.

Proof. Let $k_{1}(v)=2 v \cosh ^{2} v=v \cosh (2 v)+v$ and $k_{2}(v)=\sinh v$. By Equation (5), we have

$$
k_{1}(v)=2 v+\sum_{\ell=1}^{\infty} \frac{2^{2 \ell}}{(2 \ell)!} v^{2 \ell+1} \quad \text { and } \quad k_{2}(v)=\sum_{\ell=0}^{\infty} \frac{v^{2 \ell+1}}{(2 \ell+1)!} .
$$

Hence,

$$
\begin{equation*}
h_{3}(v)=\frac{2 v+\sum_{\ell=1}^{\infty} u_{\ell} v^{2 \ell+1}}{\sum_{\ell=0}^{\infty} w_{\ell} v^{2 \ell+1}} \tag{7}
\end{equation*}
$$

where

$$
u_{\ell}=\left\{\begin{array}{ll}
2, & \ell=0 ; \\
\frac{2^{2 \ell}}{(2 \ell)!}, & \ell \geq 1
\end{array} \quad \text { and } \quad w_{\ell}=\frac{1}{(2 \ell+1)!}\right.
$$

Let $c_{\ell}=\frac{u_{\ell}}{w_{\ell}}$. Then

$$
c_{\ell}=\left\{\begin{array}{ll}
2, & \ell=0 ; \\
\frac{(2 \ell+1)!2^{2 \ell}}{(2 \ell)!}, & \ell \geq 1
\end{array} \text { and } \quad c_{\ell+1}-c_{\ell}= \begin{cases}10, & \ell=0 \\
\frac{(3 \ell+5)(2 \ell+1)!2^{2 \ell+1}}{(2 \ell+2)!}>0, & \ell \geq 1\end{cases}\right.
$$

Thus, by Lemma 2, it follows that the function $h_{3}(v)$ is strictly increasing on $(0, \infty)$. From (7), it is easy to see that $\lim _{v \rightarrow 0^{+}} h_{3}(v)=\frac{u_{0}}{w_{0}}=2$. The proof of Lemma 5 is complete.

3. Bounds for Neuman-Sándor Mean

Now we are in a position to state and prove our main results.
Theorem 1. For $s, t>0$ with $s \neq t$, the double inequality (2) holds if and only if

$$
\alpha_{1} \geq 2[1-\ln (1+\sqrt{2})]=0.237253 \ldots \quad \text { and } \quad \beta_{1} \leq \frac{1}{6} .
$$

Proof. Without loss of generality, we assume that $s>t>0$. Let $q=\frac{s-t}{s+t}$. Then $q \in(0,1)$ and

$$
\frac{\frac{1}{M(s, t)}-\frac{1}{A(s, t)}}{\frac{1}{C(s, t)}-\frac{1}{A(s, t)}}=\frac{\frac{\operatorname{arsinh} q}{q}-1}{\frac{1}{1+q^{2}}-1} .
$$

Let $q=\sinh \phi$. Then $\phi \in(0, \ln (1+\sqrt{2}))$ and

$$
\frac{\frac{1}{M(s, t)}-\frac{1}{A(s, t)}}{\frac{1}{C(s, t)}-\frac{1}{A(s, t)}}=\frac{\frac{\phi}{\sinh \phi}-1}{\frac{1}{\cosh ^{2} \phi}-1}=\frac{(\sinh \phi-\phi) \cosh ^{2} \phi}{\sinh ^{3} \phi} \triangleq F(\phi)=\frac{k_{1}(\phi)}{k_{2}(\phi)} .
$$

Let

$$
k_{1}(\phi)=(\sinh \phi-\phi) \cosh ^{2} \phi \quad \text { and } \quad k_{2}(\phi)=\sinh ^{3} \phi .
$$

Then elaborated computations lead to $k_{1}\left(0^{+}\right)=k_{2}\left(0^{+}\right)=0$ and

$$
\frac{k_{1}^{\prime}(\phi)}{k_{2}^{\prime}(\phi)}=\frac{2(\sinh \phi-\phi) \sinh \phi+(\cosh \phi-1) \cosh \phi}{3 \sinh ^{2} \phi}=1-\frac{2 \phi \sinh \phi+\cosh \phi-1}{3 \sinh ^{2} \phi} .
$$

Combining this with Lemmas 1 and 3 reveals that the function $F(\phi)$ is strictly increasing on $(0, \ln (1+\sqrt{2}))$. Moreover, it is easy to compute the limits

$$
\lim _{\phi \rightarrow 0^{+}} F(\phi)=\frac{1}{6} \quad \text { and } \quad \lim _{\phi \rightarrow \ln (1+\sqrt{2})^{-}} F(\phi)=2-2 \ln (1+\sqrt{2}) .
$$

The proof of Theorem 1 is thus complete.
Corollary 1. For all $\phi \in(0, \ln (1+\sqrt{2}))$, the double inequality

$$
\begin{equation*}
1-\beta_{1}\left(1-\frac{1}{\cosh ^{2} \phi}\right)<\frac{\phi}{\sinh \phi}<1-\alpha_{1}\left(1-\frac{1}{\cosh ^{2} \phi}\right) \tag{8}
\end{equation*}
$$

holds if and only if

$$
\alpha_{1} \leq \frac{1}{6} \quad \text { and } \quad \beta_{1} \geq 2[1-\ln (1+\sqrt{2})]=0.237253 \ldots
$$

Theorem 2. For $s, t>0$ with $s \neq t$, the double inequality (3) holds if and only if

$$
\alpha_{2} \geq \frac{4}{3}\left[1-\ln ^{2}(1+\sqrt{2})\right]=0.297574 \ldots \quad \text { and } \quad \beta_{2} \leq \frac{1}{6}
$$

Proof. Without loss of generality, we assume that $s>t>0$. Let $q=\frac{s-t}{s+t}$. Then $q \in(0,1)$ and

$$
\frac{\frac{1}{M^{2}(s, t)}-\frac{1}{A^{2}(s, t)}}{\frac{1}{C^{2}(s, t)}-\frac{1}{A^{2}(s, t)}}=\frac{\frac{\operatorname{arsinh}^{2} q}{q^{2}}-1}{\frac{1}{\left(1+q^{2}\right)^{2}}-1} .
$$

Let $q=\sinh \phi$. Then $\phi \in(0, \ln (1+\sqrt{2}))$ and

$$
\frac{\frac{1}{M^{2}(s, t)}-\frac{1}{A^{2}(s, t)}}{\frac{1}{C^{2}(s, t)}-\frac{1}{A^{2}(s, t)}}=\frac{\frac{\phi^{2}}{\sinh ^{2} \phi}-1}{\frac{1}{\cosh ^{4} \phi}-1}=\frac{\left(\sinh ^{2} \phi-\phi^{2}\right) \cosh ^{4} \phi}{\left(\cosh ^{2} \phi+1\right) \sinh ^{4} \phi} \triangleq H(\phi) \text {. }
$$

By Lemma 4, it is easy to show that $H(\phi)$ is strictly increasing on $(0, \ln (1+\sqrt{2}))$. Moreover, the limits

$$
\lim _{\phi \rightarrow 0^{+}} H(\phi)=\frac{1}{6} \quad \text { and } \quad \lim _{\phi \rightarrow \ln (1+\sqrt{2})^{-}} H(\phi)=\frac{4}{3}\left[1-\ln ^{2}(1+\sqrt{2})\right]
$$

can be computed readily. The double inequality (3) is thus proved.
Corollary 2. For all $\phi \in(0, \ln (1+\sqrt{2}))$, the double inequality

$$
\begin{equation*}
1-\beta_{2}\left(1-\frac{1}{\cosh ^{4} \phi}\right)<\left(\frac{\phi}{\sinh \phi}\right)^{2}<1-\alpha_{2}\left(1-\frac{1}{\cosh ^{4} \phi}\right) \tag{9}
\end{equation*}
$$

holds if and only if

$$
\alpha_{2} \leq \frac{1}{6} \quad \text { and } \quad \beta_{2} \geq \frac{4}{3}\left[1-\ln ^{2}(1+\sqrt{2})\right]=0.297574 \ldots
$$

Theorem 3. For $s, t>0$ with $s \neq t$, the double inequality (4) holds if and only if

$$
\alpha_{3} \leq \frac{1-\ln ^{2}(1+\sqrt{2})}{3 \ln ^{2}(1+\sqrt{2})}=0.095767 \ldots \quad \text { and } \quad \beta_{3} \geq \frac{1}{6} .
$$

Proof. Without loss of generality, we assume that $s>t>0$. Let $q=\frac{s-t}{s+t}$. Then $q \in(0,1)$ and

$$
\frac{M^{2}(s, t)-A^{2}(s, t)}{C^{2}(s, t)-A^{2}(s, t)}=\frac{\frac{q^{2}}{\operatorname{arsinh}^{2} q}-1}{\left(1+q^{2}\right)^{2}-1} .
$$

Let $q=\sinh \phi$. Then $\phi \in(0, \ln (1+\sqrt{2}))$ and

$$
\frac{M^{2}(s, t)-A^{2}(s, t)}{C^{2}(s, t)-A^{2}(s, t)}=\frac{\frac{\sinh ^{2} \phi}{\phi^{2}}-1}{\cosh ^{4} \phi-1} \triangleq G(\phi)=\frac{k_{1}(\phi)}{k_{2}(\phi)}
$$

where

$$
k_{1}(\phi)=\frac{\sinh ^{2} \phi}{\phi^{2}}-1 \quad \text { and } \quad k_{2}(\phi)=\cosh ^{4} \phi-1
$$

Then $k_{1}\left(0^{+}\right)=k_{2}\left(0^{+}\right)=0$ and

$$
\frac{k_{1}^{\prime}(\phi)}{k_{2}^{\prime}(\phi)}=\frac{\phi \cosh \phi-\sinh \phi}{2 \phi^{3} \cosh ^{3} \phi} .
$$

Denote

$$
k_{3}(\phi)=\phi \cosh \phi-\sinh \phi \quad \text { and } \quad k_{4}(\phi)=2 \phi^{3} \cosh ^{3} \phi,
$$

it is easy to obtain $k_{3}\left(0^{+}\right)=k_{4}\left(0^{+}\right)=0$ and

$$
\begin{equation*}
\frac{k_{4}^{\prime}(\phi)}{k_{3}^{\prime}(\phi)}=\frac{6 \phi \cosh ^{2} \phi}{\sinh \phi}+6 \phi^{2} \cosh ^{2} \phi \tag{10}
\end{equation*}
$$

Since the function $v^{2} \cosh ^{2} v$ is strictly increasing on $(0, \infty)$, by Lemma 5 , we see that the ratio in (10) is strictly increasing and $\frac{k_{3}^{\prime}(\phi)}{k_{4}^{\prime}(\phi)}$ is strictly decreasing on $(0, \ln (1+\sqrt{2}))$. Consequently, from Lemma 1, it follows that $G(\phi)$ is strictly decreasing on $(0, \ln (1+\sqrt{2}))$.

The limits

$$
\lim _{\phi \rightarrow 0^{+}} G(\phi)=\frac{1}{6} \quad \text { and } \quad \lim _{\phi \rightarrow \ln (1+\sqrt{2})^{-}} G(\phi)=\frac{1-\ln ^{2}(1+\sqrt{2})}{3 \ln ^{2}(1+\sqrt{2})}
$$

can be computed easily. The proof of Theorem 3 is thus complete.
Corollary 3. For all $\phi \in(0, \ln (1+\sqrt{2}))$, the double inequality

$$
\begin{equation*}
1+\alpha_{3}\left(\cosh ^{4} \phi-1\right)<\left(\frac{\sinh \phi}{\phi}\right)^{2}<1+\beta_{3}\left(\cosh ^{4} \phi-1\right) \tag{11}
\end{equation*}
$$

holds if and only if

$$
\alpha_{3} \leq \frac{1-\ln ^{2}(1+\sqrt{2})}{3 \ln ^{2}(1+\sqrt{2})}=0.095767 \ldots \quad \text { and } \quad \beta_{3} \geq \frac{1}{6}
$$

4. A Double Inequality

From Lemma 5, we can deduce

$$
\begin{equation*}
\frac{\sinh v}{v}<\cosh ^{2} v \quad \text { and } \quad \frac{\sinh v}{v}>\frac{\tanh ^{2} x}{v^{2}} \tag{12}
\end{equation*}
$$

for $v \in(0, \infty)$. The inequality

$$
\begin{equation*}
\left(\frac{\sinh v}{v}\right)^{3}>\cosh v \tag{13}
\end{equation*}
$$

for $v \in(0, \infty)$ can be found and has been applied in [17] (p. 65), [18] (p. 300), [19] (pp. 279, 3.6.9), and [20] (p. 260). In [21], (Lemma 3), Zhu recovered the fact stated in [19] (pp. 279, 3.6.9) that the exponent 3 in the inequality (13) is the least possible, that is, the inequality

$$
\begin{equation*}
\left(\frac{\sinh v}{v}\right)^{p}>\cosh v \tag{14}
\end{equation*}
$$

for $x>0$ holds if and only if $p \leq 3$.
Inspired by (12) and (14), we find out the following double inequality.
Theorem 4. The inequality

$$
\begin{equation*}
\cosh ^{\alpha} v<\frac{\sinh v}{v}<\cosh ^{\beta} v \tag{15}
\end{equation*}
$$

for $v \neq 0$ holds if and only if $\alpha \leq \frac{1}{3}$ and $\beta \geq 1$.
Proof. Let

$$
h(v)=\frac{\ln \sinh v-\ln v}{\ln \cosh v} \triangleq \frac{f_{1}(v)}{f_{2}(v)}
$$

Direct calculation yields

$$
\frac{f_{1}^{\prime}(v)}{f_{2}^{\prime}(v)}=\frac{v \cosh ^{2} v-\sinh v \cosh v}{v \sinh ^{2} v}=\frac{v \cosh (2 v)+v-\sinh (2 v)}{v \cosh (2 v)-v} \triangleq \frac{f_{3}(v)}{f_{4}(v)} .
$$

Using the power series of $\sinh v$ and $\cosh v$, we obtain

$$
\begin{gathered}
f_{3}(v)=v+v \sum_{\ell=0}^{\infty} \frac{(2 v)^{2 \ell}}{(2 \ell)!}-\sum_{\ell=0}^{\infty} \frac{(2 v)^{2 \ell+1}}{(2 \ell+1)!}=\sum_{\ell=1}^{\infty}\left[\frac{2^{2 \ell}}{(2 \ell)!}-\frac{2^{2 \ell+1}}{(2 \ell+1)!}\right] v^{2 \ell+1} \\
=\sum_{\ell=0}^{\infty} \frac{(2 \ell+1) 2^{2 \ell+2}}{(2 \ell+3)!} v^{2 \ell+3} \triangleq \sum_{\ell=0}^{\infty} u_{\ell} v^{2 \ell+3}
\end{gathered}
$$

and

$$
f_{4}(v)=v \sum_{\ell=0}^{\infty} \frac{(2 v)^{2 \ell}}{(2 \ell)!}-v=\sum_{\ell=1}^{\infty} \frac{2^{2 \ell}}{(2 \ell)!} v^{2 \ell+1}=\sum_{\ell=0}^{\infty} \frac{2^{2 \ell+2}}{(2 \ell+2)!} v^{2 \ell+3} \triangleq \sum_{\ell=0}^{\infty} w_{\ell} v^{2 \ell+3},
$$

where

$$
u_{\ell}=\frac{(2 \ell+1) 2^{2 \ell+2}}{(2 \ell+3)!} \quad \text { and } \quad w_{\ell}=\frac{2^{2 \ell+2}}{(2 \ell+2)!}
$$

When setting $c_{\ell}=\frac{u_{\ell}}{w_{\ell}}$, we obtain

$$
c_{\ell}=\frac{2 \ell+1}{2 \ell+3}=1-\frac{2}{2 \ell+3}
$$

is increasing on $\ell \in \mathbb{N}$. Therefore, by Lemma 2, the ratio $\frac{f_{3}(v)}{f_{4}(v)}$ is increasing on $(0, \infty)$. Using Lemma 1, we obtain that

$$
h(v)=\frac{f_{1}(v)}{f_{2}(v)}=\frac{f_{1}(v)-f_{1}\left(0^{+}\right)}{f_{2}(v)-f_{2}\left(0^{+}\right)}
$$

is increasing on $(0, \infty)$.
Moreover, the limits $\lim _{v \rightarrow 0^{+}} h_{1}=\frac{1}{3}$ and $\lim _{v \rightarrow \infty} h_{1}=1$ are obvious. The proof of Lemma 4 is thus complete.

5. A Remark

For $v, r \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(\frac{\sinh v}{v}\right)^{r}=1+\sum_{m=1}^{\infty}\left[\sum_{k=1}^{2 m} \frac{(-r)_{k}}{k!} \sum_{j=1}^{k}(-1)^{j}\binom{k}{j} \frac{T(2 m+j, j)}{\binom{2 m+j}{j}}\right] \frac{(2 v)^{2 m}}{(2 m)!} \tag{16}
\end{equation*}
$$

where the rising factorial $(r)_{k}$ is defined by

$$
(r)_{k}=\prod_{\ell=0}^{k-1}(r+\ell)= \begin{cases}r(r+1) \cdots(r+k-1), & k \geq 1 \\ 1, & k=0\end{cases}
$$

and $T(2 m+j, j)$ is called central factorial numbers of the second kind and can be computed by

$$
T(n, \ell)=\frac{1}{\ell!} \sum_{j=0}^{\ell}(-1)^{j}\binom{\ell}{j}\left(\frac{\ell}{2}-j\right)^{n}
$$

for $n \geq \ell \geq 0$.
The series expansion (16) was recently derived in [22] (Corollary 4.1).
Can one find bounds of the function $\left(\frac{\sinh v}{v}\right)^{r}$ for $v, r \in \mathbb{R} \backslash\{0\}$?

6. Conclusions

In this paper, we found out the largest values $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and the smallest values β_{1}, β_{2}, β_{3} such that the double inequalities (2), (3), and (4) hold for all positive real number $s, t>0$ with $s \neq t$. Moreover, we presented some new sharp inequalities (8), (9), (11), and (15) involving the hyperbolic sine function $\sinh \phi$ and the hyperbolic cosine function $\cosh \phi$.

Author Contributions: Writing-original draft, W.-H.L., P.M. and B.-N.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Acknowledgments: The authors thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, W.-D.; Qi, F. Sharp bounds for Neuman-Sándor's mean in terms of the root-mean-square. Period. Math. Hung. 2014, 69, 134-138. [CrossRef]
2. Jiang, W.-D.; Qi, F. Sharp bounds in terms of the power of the contra-harmonic mean for Neuman-Sándor mean. Cogent Math. 2015, 2, 995951. [CrossRef]
3. Qi, F.; Li, W.-H. A unified proof of inequalities and some new inequalities involving Neuman-Sándor mean. Miskolc Math. Notes 2014, 15, 665-675. [CrossRef]
4. Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176.
5. Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221-222.
6. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253-266.
7. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean II. Math. Pannon. 2006, 17, 49-59.
8. Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 2012, 6, 567-577. [CrossRef]
9. Neuman, E. A note on a certain bivariate mean. J. Math. Inequal. 2012, 6, 637-643. [CrossRef]
10. Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, 2012, 302635. [CrossRef]
11. Chen, J.-J.; Lei, J.-J.; Long, B.-Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means. J. Inequal. Appl. 2017, 2017, 251. [CrossRef] [PubMed]
12. Wang, X.-L.; Yin, L. Sharp bounds for the reciprocals of the Neuman-Sándor mean. J. Interdiscip. Math. 2022.
13. Hua, Y.; Qi, F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 2014, 28, 775-59780. [CrossRef]
14. Toader, G. Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 1998, 218, 358-368. [CrossRef]
15. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley \& Sons: New York, NY, USA, 1997,
16. Simić, S.; Vuorinen, M. Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal. 2012, 2012, 932061. [CrossRef]
17. Guo, B.-N.; Qi, F. The function $\left(b^{x}-a^{x}\right) / x$: Logarithmic convexity and applications to extended mean values. Filomat 2011, 25, 63-73. [CrossRef]
18. Kuang, J.C. Applied Inequalities, 3rd ed.; Shangdong Science and Technology Press: Jinan, China, 2004; pp. 300-301.
19. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970.
20. Qi, F. On bounds for norms of sine and cosine along a circle on the complex plane. Kragujevac J. Math. 2024, 48, 255-266. [CrossRef]
21. Zhu, L. On Wilker-type inequalities. Math. Inequal. Appl. 2007, 10, 727-731. [CrossRef]
22. Qi, F.; Taylor, P. Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind. arXiv 2022, arxiv:2204.05612v4.
