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Abstract: The generalized inverse has many important applications in aspects of the theoretical
research of matrices and statistics. One of the core problems of the generalized inverse is finding
the necessary and sufficient conditions of the reverse order laws for the generalized inverse of the
operator product. In this paper, we study the reverse order law for the g-inverse of an operator
product T1T2T3 using the technique of matrix form of bounded linear operators. In particular, some
necessary and sufficient conditions for the inclusion T3{1}T2{1}T1{1} ⊆ (T1T2T3){1} is presented.
Moreover, some finite dimensional results are extended to infinite dimensional settings.
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1. Introduction

Throughout this paper ‘an operator’ means ‘a bounded linear operator over Hilbert
space’. H, I, J and K denote arbitrary Hilbert spaces. L(H,K) denote the set of all bounded
linear operators from H to K and L(H) = L(H,H). I denotes the identity operator over
Hilbert space and O is the zero operator over Hilbert space. For an operator T ∈ L(H,K), T∗,
R(T) and N(T) denote the adjoint operator, the range and the null-space of T, respectively.

Recall that, an operator X ∈ L(K,H) is called the Moore–Penrose inverse of T ∈
L(H,K), if X satisfies the following four operator equations [1]:

(1) TXT = T, (2) XTX = X, (3) (TX)∗ = TX, (4) (XT)∗ = XT. (1)

If such operator X exists, then it is unique and is denoted by T†. It is well known that the
Moore–Penrose inverse of T exists if, and only if, R(T) is closed, see [2,3].

For any operator T ∈ L(H,K), let T{i, j, · · · , k} denote the set of operators X ∈ L(K,H)
which satisfy equations (i), (j), · · · , (k) from among Equations (1)–(4) of Formula (1). An op-
erator in T{i, j, · · · , k} is called an {i, j, · · · , k}-inverse of T and denoted by T(i,j,··· ,k). For
example, an operator X of the set T{1} is called a {1}-inverse or a g-inverse of T and is de-
noted by T(1). The well-known seven common types of generalized inverse of T introduced
from (1.1) are, respectively, the {1}-inverse, {1, 2}-inverse, {1, 3}-inverse, {1, 4}-inverse,
{1, 2, 3}-inverse, {1, 2, 4}-inverse and {1, 2, 3, 4}-inverse, the last being the unique Moore–
Penrose inverse. In particular, when T is nonsingular, then it is easily seen that T† = T−1.
We refer the reader to [2–4] for basic results on generalized inverses.

The concepts of the generalized inverse were shown to be very useful in various ap-
plied mathematical settings. For example, applications to singular differential or difference
equations, Markov chains, cryptography, iterative method or multibody system dynamics,
and so on, which can be found in [2,3,5–8]. In the above applied mathematical settings,
large-scale scientific computing problems eventually translate to least square problems.
Using generalized inverse to give some fast and effective iterative solution algorithms for
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these least square problems has attracted considerable attention, and many interesting
results have been obtained, see [2,3,9–11].

Suppose Ti, i = 1, 2, 3, and β are bounded linear operators over Hilbert space, the least
squares problem is finding x that minimizes the norm:

min
x
‖(T1T2T3)x− β‖2, (2)

which is used in many practical scientific problems. Any solution x of the above LS can
be expressed as x = (T1T2T3)

(1,3)β. If (T1T2T3)x = β is consistent, the minimum norm
solution x has the form x = (T1T2T3)

(1,4)β. The unique minimal norm least square solution
x of the above LS is x = (T1T2T3)

†β. One of the problems concerning the above LS is under
what conditions the reverse order law

T(1,j,...,k)
3 T(1,j,...,k)

2 T(1,j,...,k)
1 ⊆ (T1T2T3)

(1,j,...,k) (3)

holds.
If Formula (3) is true, then, according to the reverse order law Formula (3) and the iter-

ative algorithm theory, we can naturally construct some ideal iterative sequence, and then
design some fast and effective iterative algorithms to solve Formula (2). If Formula (3) is
not necessarily true, can we find the necessary and sufficient conditions for Formula (3)?
Applying the reverse order law to design some fast and effective iterative algorithms to
solve Formula (2), will avoid multiple decompositions of the correlation matrices and keep
it in each iteration. The structure of the iterative sequence reduces the amount of machine
storage, maintains the convergence, stability of the algorithm, and improves the operation
speed, see [2,3,9,11–13].

The reverse order law for generalized inverses of operator (or matrix) product yields a
class of interesting problems that are fundamental in the theory of generalized inverses,
see [2,3], which have attracted considerable attention since the middle 1960s, and many
interesting results have been obtained, see [14–22].

For the generalized inverses of matrix product, Greville [7] first gave a necessary and
sufficient condition for (AB)† ⊆ B† A†. Since then, the problem of the reverse order law
for generalized inverses of a matrix product was studied widely. Hartwig [8] derived the
necessary and sufficient conditions for the Moore–Penrose inverse of the product of three
matrices, and Y. Tian [14] obtained the reverse order law for the Moore–Penrose inverse
of the products of multiple matrices. M. Wei [15] and De Pierro [16], respectively, derived
necessary and sufficient conditions for the reverse order laws B{1}A{1} ⊆ (AB){1}
and B{1, 2}A{1, 2} ⊆ (AB){1, 2}, by applying product singular value decomposition
(PSVD). M. Wei [17] then deduced necessary and sufficient conditions for reverse order
laws for g-inverse of multiple matrix product. For An{1, 2, k}An−1{1, 2, k} · · · A1{1, 2, k} ⊆
(A1 A2 · · · An){1, 2, k}, k = 3, 4, Xiong and Zheng [18] presented the equivalent conditions
using extremal ranks of the generalized Schur complement.

For the generalized inverses of operator product, Bouldin [5] and Izumino [19] ex-
tended the results of Greville [7] to the bounded linear operators on Hilbert space, using
the gaps between subspaces. Let T1 ∈ L(H,L) and T2 ∈ L(K,H), such that the prod-
uct T1T2 is meaningful, using the technique of matrix form of bounded linear operators,
D.S.Djordjević [20] showed that the reverse order law T†

2 T†
1 = (T1T2)

† holds if, and only
if, R(T∗1 T1T2) ⊆ R(T2) and R(T2T∗2 T∗1 ) ⊆ R(T∗1 ). J.Kohila et al. [21] obtained the necessary
and sufficient conditions for the reverse order law of the Moore–Penrose inverse in rings
with involutions. In [22], D.S.Cvetković-IIić et al., studied this reverse order law of the
Moore–Penrose inverse in C∗-algebra. The reader can find more results of the reverse order
law for the Moore–Penrose inverse of operator product in [23–27].

Recently, Xiong and Qin [28,29] studied the reverse order laws for {1, 3}−inverse and
{1, 4}−inverse of operator products, using the technique of matrix form of bounded linear
operators [30] and some equivalent conditions are derived for these reverse order laws.
With the same threads of [28,29], in this paper, we will study the reverse order law for
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the g-inverse of an operator product T1T2T3. In particular, some necessary and sufficient
conditions for the reverse order law

T3{1}T2{1}T1{1} ⊆ (T1T2T3){1} (4)

is presented. Moreover, some finite dimensional results are extended to infinite dimen-
sional settings.

2. A Set of Lemmas

As the main tools of our discussion, we first present the following lemmas.

Lemma 1 ([30]). Suppose T ∈ L(H,K) that have a closed range. Let H1 and H2 be closed and
mutually orthogonal subspaces of H, such that H1

⊕
H2 = H, and K1, K2 be closed and mutually

orthogonal subspaces of K, such that K = K1
⊕

K2. Then the operator T has the following matrix
representations with respect to the orthogonal sums of subspaces H = H1

⊕
H2 = R(T∗)

⊕
N(T)

and K = K1
⊕

K2 = R(T)
⊕

N(T∗):

(1) T =

(
T11 T12
O O

)
:
(

H1
H2

)
→
(

R(T)
N(T∗)

)
and T† =

(
T∗11E−1 O
T∗12E−1 O

)
:
(

R(T)
N(T∗)

)
→(

H1
H2

)
,

where E = T11T∗11 + T12T∗12 is invertible on R(T);

(2) T =

(
T11 O
T21 O

)
:
(

R(T∗)
N(T)

)
→
(

K1
K2

)
and T† =

(
F−1T∗11 F−1T∗12

O O

)
:
(

K1
K2

)
→(

R(T∗)
N(T)

)
,

where F = T∗11T11 + T∗21T21 is invertible on R(T∗);

(3) T =

(
T11 O
O O

)
:
(

R(T∗)
N(T)

)
→

(
R(T)

N(T∗)

)
and T† =

(
T−1

11 O
O O

)
:
(

R(T)
N(T∗)

)
→(

R(T∗)
N(T)

)
,

where T11 is invertible on R(T∗).

Lemma 2 ([2,3]). Let T ∈ L(H,K) have a closed range and G ∈ L(K,H). Then the following
statements are equivalent:

(1) TGT = T ⇔ G ∈ T{1};
(2) there exists some X ∈ L(K,H), such that G = T† + X− T†TXTT†.

Lemma 3 ([2,3]). Let T ∈ L(H,K) and N ∈ L(K,H) have closed ranges. Then

(1) TT†N = N ⇔ R(N) ⊆ R(T);

(2) NT†T = N ⇔ R(N∗) ⊆ R(T∗).

Lemma 4 ([24]). Let T ∈ L(H,K) and N ∈ L(M,N) have closed ranges. Then TXN = O for
every X ∈ L(N,H) if and only if T = O or N = O.

3. Main Results

Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I) where T1, T2, T3 and T1T2T3 are regular
operators. From Lemma 1, we know that the operators T1, T2 and T3 have the following
matrix forms with respect to the orthogonal sum of subspaces:

T1 =

(
T11

1 T12
1

O O

)
:
(

R(T2)
N(T∗2 )

)
→
(

R(T1)
N(T∗1 )

)
, (5)
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T†
1 =

(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
:
(

R(T1)
N(T∗1 )

)
→
(

R(T2)
N(T∗2 )

)
, (6)

where D = T11
1 (T11

1 )∗ + T12
1 (T12

1 )∗ is invertible on R(T1).

T2 =

(
T11

2 O
O O

)
:
(

R(T∗2 )
N(T2)

)
→
(

R(T2)
N(T∗2 )

)
, (7)

T†
2 =

(
(T11

2 )−1 O
O O

)
:
(

R(T2)
N(T∗2 )

)
→
(

R(T∗2 )
N(T2)

)
, (8)

where T11
2 is invertible on R(T∗2 ).

T3 =

(
T11

3 O
T21

3 O

)
:
(

R(T∗3 )
N(T3)

)
→
(

R(T∗2 )
N(T2)

)
, (9)

T†
3 =

(
S−1(T11

3 )∗ S−1(T21
3 )∗

O O

)
:
(

R(T∗2 )
N(T2)

)
→
(

R(T∗3 )
N(T3)

)
, (10)

where S = (T11
3 )∗T11

3 + (T21
3 )∗T21

3 is invertible on R(T∗3 ).
According to the Formulas (5)–(10), we have the following theorem.

Theorem 1. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I) where T1, T2 and T3 are regular
operators. Then

(1) N(T1) ⊆ R(T2)⇔ (T12
1 )∗D−1T11

1 = O and (T12
1 )∗D−1T12

1 = I;

(2) N(T2) ⊆ R(T3)⇔ T21
3 S−1(T11

3 )∗ = O and T21
3 S−1(T21

3 )∗ = I;

(3) R(T†
2 (I − T†

1 T1)) ⊆ R(T3) ⇔ (I − T11
3 S−1(T11

3 )∗)(T11
2 )−1(I − (T11

1 )∗D−1T11
1 ) =

O and
(I − T11

3 S−1(T11
3 )∗)(T11

2 )−1(T11
1 )∗D−1T12

1 = O and
− T21

3 S−1(T11
3 )∗(T11

2 )−1(I − (T11
1 )∗D−1T11

1 ) = O and
− T11

3 S−1(T11
3 )∗(T11

2 )−1(T11
1 )∗D−1T12

1 = O.

Proof. By Lemma 3, we know that

N(T1) ⊆ R(T2)⇔ (I − T2T†
2 )(I − T†

1 T1) = O, (11)

N(T2) ⊆ R(T3)⇔ (I − T3T†
3 )(I − T†

2 T2) = O, (12)

and

R(T†
2 (I − T†

1 T1)) ⊆ R(T3)⇔ (I − T3T†
3 )T

†
2 (I − T†

1 T1) = O. (13)

Combining the Formulas (5)–(10) with the Formulas (11)–(13), we have

N(T1) ⊆ R(T2) ⇔ (I − T2T†
2 )(I − T†

1 T1) = O

⇔ (T12
1 )∗D−1T11

1 = O and (T12
1 )∗D−1T12

1 = I, (14)

N(T2) ⊆ R(T3) ⇔ (I − T3T†
3 )(I − T†

2 T2) = O

⇔ T21
3 S−1(T11

3 )∗ = O and T21
3 S−1(T21

3 )∗ = I (15)

and
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R(T†
2 (I − T†

1 T1)) ⊆ R(T3) ⇔ (I − T3T†
3 )T

†
2 (I − T†

1 T1) = O

⇔ (I − T11
3 S−1(T11

3 )∗)(T11
2 )−1(I − (T11

1 )∗D−1T11
1 ) = O,

(I − T11
3 S−1(T11

3 )∗)(T11
2 )−1(T11

1 )∗D−1T12
1 = O,

−T21
3 S−1(T11

3 )∗(T11
2 )−1(I − (T11

1 )∗D−1T11
1 ) = O,

−T11
3 S−1(T11

3 )∗(T11
2 )−1(T11

1 )∗D−1T12
1 = O. (16)

From (14)–(16), we have Theorem 1.

From Lemma 1, we know that the operator T1T2T3 has the following matrix forms
with respect to the orthogonal sum of subspaces:

T1T2T3 =

(
T11

1 T11
2 T11

3 O
O O

)
:
(

R(T∗3 )
N(T3)

)
→
(

R(T1)
N(T∗1 )

)
(17)

and

(T1T2T3)
∗ =

(
(T11

3 )∗(T11
2 )∗(T11

1 )∗ O
O O

)
:
(

R(T1)
N(T∗1 )

)
→
(

R(T∗3 )
N(T3)

)
. (18)

Combining (5)–(10) with the results in Lemma 2, it follows that there exist three
bounded linear operators W, H, P:

W =

(
W11 W12
W21 W22

)
:
(

R(T1)
N(T∗1 )

)
→
(

R(T2)
N(T∗2 )

)
,

where W ∈ L(K, J) and W11, W12, W21, W22 are arbitrary bounded linear operators on
appropriate spaces.

H =

(
H11 H12
H21 H22

)
:
(

R(T2)
N(T∗2 )

)
→
(

R(T∗2 )
N(T2)

)
,

where H ∈ L(J, I) and H11, H12, H21, H22 are arbitrary bounded linear operators on appro-
priate spaces.

P =

(
P11 P12
P21 P22

)
:
(

R(T∗2 )
N(T2)

)
→
(

R(T∗3 )
N(T3)

)
,

where P ∈ L(I,H) and P11, P12, P21, P22 are arbitrary bounded linear operators on appropri-
ate spaces.

Furthermore, by Lemma 2, we have

T(1)
1 = T†

1 + W − T†
1 T1WT1T†

1 =

(
τ11 W12
τ21 W22

)
, where (19)

τ11 = (T11
1 )∗D−1 + W11 − (T11

1 )∗D−1T11
1 W11 − (T11

1 )∗D−1T12
1 W21,

τ21 = (T12
1 )∗D−1 + W21 − (T12

1 )∗D−1T12
1 W21 − (T12

1 )∗D−1T11
1 W11.

T(1)
2 = T†

2 + H − T†
2 T2HT2T†

2 =

(
(T11

2 )−1 H12
H21 H22

)
, (20)

T(1)
3 = T†

3 + P− T†
3 T3PT3T†

3 =

(
µ11 µ12
P21 P22

)
, where (21)
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µ11 = S−1(T11
3 )∗ + P11 − P11T11

3 S−1(T11
3 )∗ − P12T21

3 S−1(T11
3 )∗,

µ12 = S−1(T21
3 )∗ + P12 − P12T21

3 S−1(T21
3 )∗ − P11T11

3 S−1(T21
3 )∗.

Combining the Formulas (17)–(21) with the results in Theorem 1, we obtain the main
result of this paper.

Theorem 2. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), where T1, T2, T3 and T1T2T3 are
regular operators. Then the following statements are equivalent:

(1) T3{1}T2{1}T1{1} ⊆ (T1T2T3){1};
(2) N(T1) ⊆ R(T2), N(T2) ⊆ R(T3) and R(T†

2 (I − T†
1 T1)) ⊆ R(T3).

Proof. From the Formula 1 in Lemma 1, we know that the reverse order law (4) holds,
i.e., the conditions 1 in Theorem 2 holds, if, and only if,

(T1T2T3)T
(1)
3 T(1)

2 T(1)
1 (T1T2T3) = T1T2T3 (22)

holds for any T(1)
i ∈ Ti{1}, i = 1, 2, 3.

By (17) and (19)–(21), we have

(T1T2T3)T
(1)
3 T(1)

2 T(1)
1 (T1T2T3)

=

(
T11

1 T11
2 T11

3 O
O O

)
×
(

µ11 µ12
P21 P22

)
×
(
(T11

2 )−1 H12
H21 H22

)
×
(

τ11 W12
τ21 W22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
ν11 ν12
O O

)(
T11

1 T11
2 T11

3 O
O O

)
=

(
ν11T11

1 T11
2 T11

3 O
O O

)
, (23)

where

ν11 = (T11
1 T11

2 T11
3 µ11(T11

2 )−1)τ11 + (T11
1 T11

2 T11
3 µ12H22)τ11

+(T11
1 T11

2 T11
3 µ11(T11

2 )−1)τ21 + (T11
1 T11

2 T11
3 µ12H22)τ21,

ν12 = (T11
1 T11

2 T11
3 µ11(T11

2 )−1)W12 + (T11
1 T11

2 T11
3 µ12H21)W12

+(T11
1 T11

2 T11
3 µ11H12)W22 + (T11

1 T11
2 T11

3 µ12H22)W22.

In the rest of this section, we will prove that the conditions 1 in Theorem 2 is equal to
the conditions 2 in Theorem 2, i.e., the Formula (22) is equal to the Formulas (14)–(16) in
Theorem 1.

Conditions2⇒ Conditions1: Combining (23) with (14)–(16), we have

ν11T11
1 T11

2 T11
3 = T11

1 T11
2 T11

3

and
(T1T2T3)T

(1)
3 T(1)

2 T(1)
1 (T1T2T3)

=

(
T11

1 T11
2 T11

3 O
O O

)
×
(

µ11 µ12
P21 P22

)
×
(
(T11

2 )−1 H12
H21 H22

)
×
(

τ11 W12
τ21 W22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
ν11T11

1 T11
2 T11

3 O
O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
= T1T2T3. (24)
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That is, from (14)–(16), we have (22), i.e., we proved that Conditions2⇒ Conditions1.
Conditions1⇒ Conditions2: If the reverse order law T3{1}T2{1}T1{1} ⊆ (T1T2T3){1}

holds. From Lemma 2, we known that the equation (T1T2T3)T
(1)
3 T(1)

2 T(1)
1 (T1T2T3) = T1T2T3

holds for any T(1)
i ∈ Ti{1}, i = 1, 2, 3.

Firstly, let

T(1)
1 = T†

1 + (I − T†
1 T1)W =

(
η11 η12
η21 η22

)
, (25)

where
η11 = (T11

1 )∗D−1 + (I − (T11
1 )∗D−1T11

1 )W11 − (T11
1 )∗D−1T12

1 W21,

η12 = (I − (T11
1 )∗D−1T11

1 )W12 − (T11
1 )∗D−1T12

1 W22,

η21 = (T12
1 )∗D−1 + (I − (T12

1 )∗D−1T12
1 )W21 − (T12

1 )∗D−1T11
1 W11,

η22 = (I − (T12
1 )∗D−1T12

1 )W22 − (T12
1 )∗D−1T11

1 W12,

T(1)
2 = T†

2 =

(
(T11

2 )−1 O
O O

)
, (26)

T(1)
3 = T†

3 + P(I − T3T†
3 ) =

(
ρ11 ρ12
ρ21 ρ22

)
, (27)

where
ρ11 = S−1(T11

3 )∗ + P11(I − T11
3 S−1(T11

3 )∗)− P12T21
3 S−1(T11

3 )∗,

ρ12 = S−1(T11
3 )∗ + P12(I − T21

3 S−1(T21
3 )∗)− P11T11

3 S−1(T21
3 )∗,

ρ21 = P21(I − T11
3 S−1(T11

3 )∗)− P22T21
3 S−1(T11

3 )∗,

ρ22 = P22(I − T21
3 S−1(T21

3 )∗)− P21T11
3 S−1(T21

3 )∗.

Then, we have
(T1T2T3)T

(1)
3 T†

2 T(1)
1 (T1T2T3) = T1T2T3 (28)

and

(T1T2T3)T
(1)
3 T†

2 T(1)
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

ρ11 ρ12
ρ21 ρ22

)
×
(
(T11

2 )−1 O
O O

)
×
(

η11 η12
η21 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (29)

Since Wij (i, j = 1, 2) are arbitrary, let W11 = W12 = W21 = W22 = O, we have

(T1T2T3)T
(1)
3 T†

2 T(1)
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

ρ11 ρ12
ρ21 ρ22

)
×
(
(T11

2 )−1 O
O O

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (30)

Combining (29) with (30), we have
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(
T11

1 T11
2 T11

3 O
O O

)
×

(
ρ11 ρ12
ρ21 ρ22

)
×
(
(T11

2 )−1 O
O O

)
×
(

η11 − (T11
1 )∗D−1 η12

η21 − (T12
1 )∗D−1 η22

)
×

(
T11

1 T11
2 T11

3 O
O O

)
=

(
O O
O O

)
. (31)

Let P11 = P12 = P21 = P22 = O, then from (31), we have

(
T11

1 T11
2 T11

3 O
O O

)
×

(
S−1(T11

3 )∗ S−1(T21
3 )∗

O O

)
×
(
(T11

2 )−1 O
O O

)
×
(

η11 − (T11
1 )∗D−1 η2

η21 − (T12
1 )∗D−1 η22

)
×

(
T11

1 T11
2 T11

3 O
O O

)
=

(
O O
O O

)
. (32)

From (31) and (32), we get

(
T11

1 T11
2 T11

3 O
O O

)
×

(
ρ11 − S−1(T11

3 )∗ ρ12 − S−1(T21
3 )∗

ρ21 ρ22

)
×
(
(T11

2 )−1 O
O O

)
×

(
(η11 − (T11

1 )∗D−1 η2
η21 − (T12

1 )∗D−1 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
O O
O O

)
. (33)

According to the Equation (33), we have

T11
1 T11

2 T11
3 P11(I − T11

3 S−1(T11
3 )∗)(T11

2 )−1(I − (T11
1 )∗D−1T11

1 )W11T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 P12T21

3 S−1(T11
3 )∗(T11

2 )−1(I − (T11
1 )∗D−1T11

1 )W11T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 P11(I − T11

3 S−1(T11
3 )∗)(T11

2 )−1(T11
1 )∗D−1T12

1 W21T11
1 T11

2 T11
3

+T11
1 T11

2 T11
3 P12T21

3 S−1(T11
3 )∗(T11

2 )−1(T11
1 )∗D−1T12

1 W21T11
1 T11

2 T11
3

= O. (34)

Since P11, P12 and W11, W21 are arbitrary, then from Lemma 4 and (34), we have

(I − T11
3 S−1(T11

3 )∗)(T11
2 )−1(I − (T11

1 )∗D−1T11
1 ) = O,

(I − T11
3 S−1(T11

3 )∗)(T11
2 )−1(T11

1 )∗D−1T12
1 = O,

−T21
3 S−1(T11

3 )∗(T11
2 )−1(I − (T11

1 )∗D−1T11
1 ) = O,

−T11
3 S−1(T11

3 )∗(T11
2 )−1(T11

1 )∗D−1T12
1 = O. (35)

From (35) and (16), we get that if the reverse order law T3{1}T2{1}T1{1} ⊆ (T1T2T3){1}
holds, then R(T†

2 (I − T†
1 T1)) ⊆ R(T3).

Secondly, let

T(1)
1 = T†

1 =

(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
, (36)

T(1)
2 = T†

2 + (I − T2T†
2 )H =

(
(T11

2 )−1 O
H21 H22

)
, (37)

T(1)
3 = T†

3 + P(I − T3T†
3 ) =

(
ρ11 ρ12
ρ21 ρ22

)
, (38)

where
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ρ11 = S−1(T11
3 )∗ + P11(I − T11

3 S−1(T11
3 )∗)− P12T21

3 S−1(T11
3 )∗,

ρ12 = S−1(T11
3 )∗ + P12(I − T21

3 S−1(T21
3 )∗)− P11T11

3 S−1(T21
3 )∗,

ρ21 = P21(I − T11
3 S−1(T11

3 )∗)− P22T21
3 S−1(T11

3 )∗,

ρ22 = P22(I − T21
3 S−1(T21

3 )∗)− P21T11
3 S−1(T21

3 )∗.

Then, we have

(T1T2T3)T
(1)
3 T(1)

2 T†
1 (T1T2T3) = T1T2T3 (39)

and
(T1T2T3)T

(1)
3 T(1)

2 T†
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

ρ11 ρ12
ρ21 ρ22

)
×
(
(T11

2 )−1 O
H21 H22

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (40)

Since Hij (i, j = 1, 2) are arbitrary, let H21 = H22 = O, we have

(T1T2T3)T
(1)
3 T(1)

2 T†
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

ρ11 ρ12
ρ21 ρ22

)
×
(
(T11

2 )−1 O
O O

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (41)

Combining (40) with (41), we have(
T11

1 T11
2 T11

3 O
O O

)
×

(
ρ11 ρ12
ρ21 ρ22

)
×
(

O O
H21 H22

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×

(
T11

1 T11
2 T11

3 O
O O

)
=

(
O O
O O

)
. (42)

Let P11 = P12 = P21 = P22 = O, then from (42), we have

(
T11

1 T11
2 T11

3 O
O O

)
×

(
S−1(T11

3 )∗ S−1(T21
3 )∗

O O

)
×
(

O O
H21 H22

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×

(
T11

1 T11
2 T11

3 O
O O

)
=

(
O O
O O

)
. (43)

From (42) and (43), we get(
T11

1 T11
2 T11

3 O
O O

)
×

(
ρ11 − S−1(T11

3 )∗ ρ12 − S−1(T21
3 )∗

ρ21 ρ22

)
×
(

O O
H21 H22

)
×

(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
O O
O O

)
. (44)

According to the Equation (44), we have

T11
1 T11

2 T11
3 P12(I − T21

3 S−1(T21
3 )∗)H21(T11

1 )∗D−1T11
1 T11

2 T11
3

+T11
1 T11

2 T11
3 P12(I − T21

3 S−1(T21
3 )∗)H22(T12

1 )∗D−1T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 P11T11

3 S−1(T21
3 )∗H21(T11

1 )∗D−1T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 P11T11

3 S−1(T21
3 )∗H22(T12

1 )∗D−1T11
1 T11

2 T11
3 = O. (45)
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Since P11, P12 and H21, H22 are arbitrary, then from Lemma 4 and (45), we have

I − T21
3 S−1(T21

3 )∗ = O and T11
3 S−1(T21

3 )∗ = O. (46)

From (15) and (46), we get that if the reverse order law T3{1}T2{1}T1{1} ⊆ (T1T2T3){1}
holds, then N(T2) ⊆ R(T3).

Thirdly, let

T(1)
1 = T†

1 + (I − T†
1 T1)W =

(
η11 η12
η21 η22

)
, (47)

where

η11 = (T11
1 )∗D−1 + (I − (T11

1 )∗D−1T11
1 )W11 − (T11

1 )∗D−1T12
1 W21,

η12 = (I − (T11
1 )∗D−1T11

1 )W12 − (T11
1 )∗D−1T12

1 W22,

η21 = (T12
1 )∗D−1 + (I − (T12

1 )∗D−1T12
1 )W21 − (T12

1 )∗D−1T11
1 W11,

η22 = (I − (T12
1 )∗D−1T12

1 )W22 − (T12
1 )∗D−1T11

1 W12,

T(1)
2 = T†

2 + H(I − T2T†
2 ) =

(
(T11

2 )−1 H12
O H22

)
, (48)

T(1)
3 = T†

3 =

(
S−1(T11

3 )∗ S−1(T21
3 )∗

O O

)
. (49)

Then we have
(T1T2T3)T†

3 T(1)
2 T(1)

1 (T1T2T3) = T1T2T3 (50)

and

(T1T2T3)T†
3 T(1)

2 T(1)
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

S−1(T11
3 )∗ S−1(T21

3 )∗

O O

)
×
(
(T11

2 )−1 H12
O H22

)
×
(

η11 η12
η21 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (51)

Since Wij (i, j = 1, 2) are arbitrary, let W11 = W12 = W21 = W22 = O, we have

(T1T2T3)T
(1)
3 T†

2 T(1)
1 (T1T2T3) = T1T2T3

⇔
(

T11
1 T11

2 T11
3 O

O O

)
×
(

S−1(T11
3 )∗ S−1(T21

3 )∗

O O

)
×
(
(T11

2 )−1 H12
O H22

)
×
(
(T11

1 )∗D−1 O
(T12

1 )∗D−1 O

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
T11

1 T11
2 T11

3 O
O O

)
. (52)

Combining (51) with (52), we have(
T11

1 T11
2 T11

3 O
O O

)
×
(

S−1(T11
3 )∗ S−1(T21

3 )∗

O O

)
×
(
(T11

2 )−1 H12
O H22

)
×

(
η11 − (T11

1 )∗D−1 η12
η21 − (T12

1 )∗D−1 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
O O
O O

)
. (53)
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Let H12 = H22 = O, then from (53) we have(
T11

1 T11
2 T11

3 O
O O

)
×
(

S−1(T11
3 )∗ S−1(T21

3 )∗

O O

)
×
(
(T11

2 )−1 O
O O

)
×

(
η11 − (T11

1 )∗D−1 η2
η21 − (T12

1 )∗D−1 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
O O
O O

)
. (54)

From (53) and (54), we get(
T11

1 T11
2 T11

3 O
O O

)
×
(

S−1(T11
3 )∗ S−1(T21

3 )∗

O O

)
×
(

O H12
O H22

)
×

(
η11 − (T11

1 )∗D−1 η2
η21 − (T12

1 )∗D−1 η22

)
×
(

T11
1 T11

2 T11
3 O

O O

)
=

(
O O
O O

)
. (55)

According to the Formula (55), we have

T11
1 T11

2 T11
3 S−1(T11

3 )∗H12(I − (T12
1 )∗D−1T12

1 )W21T11
1 T11

2 T11
3

+T11
1 T11

2 T11
3 S−1(T21

3 )∗H22(I − (T12
1 )∗D−1T12

1 )W21T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 S−1(T11

3 )∗H12(T12
1 )∗D−1T11

1 W11T11
1 T11

2 T11
3

−T11
1 T11

2 T11
3 S−1(T21

3 )∗H22(T12
1 )∗D−1T11

1 W11T11
1 T11

2 T11
3

= O. (56)

Since H12, H22 and W11, W21 are arbitrary, then from Lemma 4 and (56), we have

I − (T12
1 )∗D−1T12

1 = O and (T12
1 )∗D−1T11

1 = O. (57)

From (14) and (57), we get that if the reverse order law T3{1}T2{1}T1{1} ⊆ (T1T2T3){1}
holds, then N(T1) ⊆ R(T2).

Finally, combining (35), (46) with (57), we prove that if the reverse order law Formula (4)
holds, the equalities (14)–(16) also hold. That is, Conditions1⇒ Conditions2.

Corollary 1. Let T1 ∈ L(J,K) and T2 ∈ L(I, J), where T1, T2 and T1T2 are regular operators.
Then the following statements are equivalent:

(1) T2{1}T1{1} ⊆ (T1T2){1};
(2) N(T1) ⊆ R(T2).

4. Conclusions

Many problems in applied sciences, such as non-linear control theory, matrix analysis,
statistics and numerical linear algebra are closely related to the least squares problems of the
operator equation (T1T2 · · · Tn)x = b. If the operator equation is consistent, any solution
x of the above equation can be expressed as x = (T1T2 · · · Tn)(1)b. One of the problems
concerning the above least squares problems is under what conditions the reverse order
law for the g-inverse of operator product holds. In this paper, by using the technique of
matrix form of bounded linear operators, we study the reverse order law for the g-inverse
of an operator product T1T2T3. In particular, some necessary and sufficient conditions
for the inclusion T3{1}T2{1}T1{1} ⊆ (T1T2T3){1} is presented. Moreover, some finite
dimensional results are extended to infinite dimensional settings. The work in this paper
provides a useful tool in many algorithms for the computation of the least squares solutions
of operator equations.
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